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ABSTRACT

Object based image analysis has gained on the traditional per-pixel multi-spectral based approaches. The main pitfall of using

anisotropic diffusion for creating a multi scale representation of a remotely sensed image remains the computational burden.

Producing the coarser scales in a multi scale representation or, diffusing spatially large images involves significant time and

resources. This paper proposes a fast approach for anisotropic diffusion that overcomes spatial size limitations by distributing

the diffusion as individual sub-processes over several overlapping sub-images. The overlap areas are synchronized at specific

diffusion time ensuring that the fast approximation does not deviate too much from its single process equivalent. The later

shall be demonstrated for a medium sized image, which can be diffused using both schemes. In addition, we shall include

experimental data for very large images that can not efficiently be processed using a sequential approach.

1. INTRODUCTION

In recent years, the use of multi scale representation for the analysis of remotely sensed images has received increasing interest

[1, 2, 3]. These approaches acknowledge the fact that the analysis of images depends on the scale of the objects of interest.

Multi scale representations based on scale space theory encapsulates two concepts: scale space filtering and the linking strategy

which deals with the methodology that relates signal structure at different scales. Scale space filtering concerns the mechanism

that embeds the signal into a one-parameter family of derived signals for which the signal content is simplified. The parameter

describes the scale or resolution at which the signal is represented. The main idea is that the amount of local extrema in the

signal and its derivatives should decrease with scale. Initially linear or Gaussian scale-space was preferred, however inher-

ent drawbacks such as the dislocation of feature and the similar treatment of noise and important signal structure lead toward

non-linear scale-spaces filters. Anisotropic diffusion is an established technique for image enhancement and multi scale repre-

sentation. Although originally proposed for gray-scale images [4, 5], it has been long extended to color [6, 7], multi [8] and

hyperspectral [9, 10] images. Furthermore, fast numerical approximations and parallelization [11, 12] schemes have improved

computation times significantly. However, dealing with high resolution images remains challenging.

2. FAST ANISOTROPIC DIFFUSION

The focus lies on edge-affected diffusion processes in which the diffusion is locally adaptive aiming to favor intra-region instead

of inter-region smoothing, thus overcoming the dislocation of region boundaries. The mathematical form of this type of process

[5, 6] is given by:

∀i = 1, 2, . . . ,M and ∀t ∈ R+ : ∂tu
(i)(t) = div

[
g(|∇σru(t)|)∇u(i)(t)

]
(1)



The scale-space image u is obtained by evolving the above PDE using the original M -bands image f(x) = {f (1)(x),. . .,

f (M)(x)},∀x ∈ Ω ⊂ Z
2, as the initial condition for the scale parameter t = 0, in conjunction with homogeneous von Neumann

boundary conditions, where x denotes a 2D position vector on the image plane Ω. Note that |∇σru(t)| is the regularized vector-

valued gradient magnitude obtained by convolving the image with a Gaussian kernel of size σr [5], and g is the diffusivity

function, which is a bounded, positive, decreasing function that discriminates the different diffusion models. The time sampling

start from the naturally sampling of the scale-space image [13]:

tj =

{
0 if j = 0

exp [2(j − 1)τ ] if j > 0
(2)

where τ denotes the time step considered for time discretization. A compact version of the scale space stack may be extracted

from the sampled set of scales: Let {t0, t1, . . . , tend} represent the set of discrete times/scale obtained via scale space sampling,

then the purpose of scale selection is to obtain a subset of discrete scales S = {s0, s1, . . . send}, where the localization scale

s0 = tj is the scale for which u(tj) contains a minimum amount of noise whilst retaining all important image features at their

exact location. For image enhancement the identification of the scale s0 suffices.

In some application domains the pixel resolution of the imagery is so high that an image cannot be processed as one.

In such circumstances, the image is divided into sub-images, which usually have a degree of overlap. These sub-images

are processed separately whereafter the final results are reintegrated. We propose a method in which the overlap areas are

regularly synchronized: Once the parameters of the anisotropic diffusion are estimated on the full image, the iterative procedure

starts. The latter consist of two steps: (i) For each sub-image we calculate the next diffusion scale tj (2) via the AOS-based

numerical approximation of (1) [7] using as many concurrent processes as efficiently possible. (ii) Once all sub-images are

processed, the overlap areas are synchronized. Hereafter the estimations needed for the scale selection are performed [8].

This procedure repeats until either the desired amount of diffusion scales is reached or a stopping criterion is met. For sub-

image synchronization, we adopt an approach that seamlessly rejoins the sub-image. For this purpose, a weighted sum of the

overlapping pixel values where the weights are inversely proportional to the distance of the respective sub-image center, is

adopted. The overlap areas are synchronized at specific diffusion times and should ensure that the fast approximation does not

deviate too much from its single process equivalent.In this paper, a fast approximation for anisotropic diffusion is introduced

that significantly alleviates the limitations with respect to spatial size whilst retaining a high degree of accuracy with respect to

its single process equivalent.

3. PRELIMINARY RESULTS AND DISCUSSION

Figure 1 shows the scale-space representation of a 4-band 1022 x 1023 image (Fig 1(a)) for which the creation of a set of

60 scales, i.e. t0, . . . t60 was achieved in approximately 516 seconds when using tiles of 256 by 256 and an overlap of 32

pixels on using a maximum of 8 concurrent processes. The sequential method takes more than 5 hours. The quality of the fast

diffusion approximation is very high in the finer scales. For the very coarse scales (Fig.1(i)-(j)) one can observe the appear-

ance of underlying tiles. The latter is due to the fact that the synchronization is performed at each sampled time step tj , which

is increasing exponentially. The latter can be remedied by increasing the amount of synchronization steps at the coarser scales 1.

This work proposes a fast approach for anisotropic diffusion based enhancement and scale-space representation very high

resolution images. It overcomes spatial size limitations by distributing the diffusion as individual sub-processes over several

1A binary of the proposed scheme is available at http://www.etro.vub.ac.be/Personal/iuvanham/Multiscale-Diffusion.rar



overlapping sub-images. In this way multi scale representations obtained via nonlinear anisotropic diffusion filtering can be

achieved efficiently.
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Fig. 1. Multi scale representation: (a) Original image, (b) to (h) s0 = t24, s1 = t26, s2 = t32, s3 = t36, s4 = t41, s5 = t43,

s6 = t46, s7 = t51, s8 = t53
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