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1. INTRODUCTION

Atmospheric absorption of electromagnetic energy is a problem across the broader topic of remote sensing. Atmospheric

scientists have spent a great deal of effort to characterize the atmosphere, estimate atmospheric parameters from data, and

generate methodologies for removing those atmospheric effects (e.g., empirical line correction [1] [2] and MODTRAN [3], to

name a few). Although many of the techniques for estimating atmospheric parameters and removing atmospheric effects from

imagery have been very successful, there is a level of uncertainty in the estimates that are still unaccounted for on reconstructed

data.

This article provides a brief look at how the error in the estimate of the atmospheres affects the reconstruction of a hy-

perspectral image (i.e., going from sensor-reaching radiance to estimated re ectance and working in the illumination-neutral

re ectance environment). To this end, we rst investigate and develop distance measures between atmospheric pro les. This

is a non-trivial problem, as it is currently unknown what the differences between atmospheric pro les really mean and how

two distances with the same numerical value may affect the estimated re ectance of a hyperspectral signature. That is to say,

different pairs of atmospheric pro les with the same measured distance between them may not have the same effect on the error

in their target signature, and therefore the relationship is likely one-to-many and not necessarily one-to-one. As such, one must

carefully choose how the input error (input being the atmospheric pro le) is represented.

The second aspect of this paper is the mapping between input error (how far off is the estimated atmospheric pro le from

the actual atmospheric conditions under which the targets of interest were imaged) and the output error (the error as measured

by the Euclidean distance between the calculated re ectance spectrum of a target under the true atmospheric pro le and that of

a target under the estimated atmospheric pro le).

The importance of a good de nition of a distance between two atmospheres can not be understated. It is a precursor to better

understanding the effects of atmospheric estimation error on other processes such as Change Detection, target detectors such

as the Adaptive Matched Filter [4] or Adaptive Cosine Estimator [4], and other algorithms such as the Normalized Difference

Vegetation Index (NDVI) [5] used in vegetation health analysis.
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2. DISTANCES BETWEEN ATMOSPHERES

There are two general approaches to de ning a distance between atmospheres. A rst approach is to measure the distance

between two solar irradiance curves de ned by a blackbody radiator (the sun) transmitting through an atmospheric pro le. A

second approach is to consider the difference between the pro les themselves. How are atmospheric pro les characterized? The

most signi cant and widely recognized approach is to characterize the atmosphere by the water vapor content of the atmosphere.

Several measures of water vapor content exist: absolute humidity, water vapor mixing ratio, relative humidity, and others.

The values described vary as a function of altitude, which gives a good argument to consider a weighting factor in the

distance measurement between the pro les themselves. Preliminarily, we describe the distance between atmospheres as the

Euclidean distance between the measures of two parameters that describe the pro le taken at four radiosonde layers. In par-

ticular, we use the water vapor mixing ratio w1 (in grams of H2O per kilogram of all other gasses) and absolute humidity ρ

(grams of H2O per cubic centimeter) because these measures of water vapor are the most independent. (Relative humidity,

for example, is dependent on both temperature and pressure.) These two distances are shown in Eqn. 1 and Eqn. 2, where

zi ∈ {0m, 500m, 1000m, 1500m} and {a1, a2} are the two atmospheric pro les being compared. Preliminary results are

presented in Section 4 using this methodology.

d(a1, a2) =

√√√√ 4∑
i=1

(w1 (a1, zi) − w1 (a2, zi))
2 (1)

d(a1, a2) =

√√√√ 4∑
i=1

(ρ (a1, zi) − ρ (a2, zi))
2 (2)

The distance between pro les is expanded to include the atmospheric density effect as described in [6]. The concept is that

the magnitude of the effect on the transmission of the water vapor content of a particular atmospheric level is a function of the

density effect. The transmittance t(z), or the ratio of the radiation reaching the target to the radiation incident on the top of the

atmosphere as a function of the target altitude z is an integral resulting in

t(z) = exp

[
−

kawlρ0H

μ
exp(−

z

H
)

]
(3)

where w1 is the constituent mixing ratio, ka is the mass absorption coef cient, ρ0 is the maximum density at sea level, μ is the

cosine of the zenith angle, and H is the scale height (around 8km, the altitude at which the density is e−1 = 36% of its value at

sea level). Due to the rules of integration, one can divide the integral into the four target altitudes, which using Eqn. 2 yields a

weighting of

d(a1, a2) =

√√√√ 4∑
i=1

Δt(zi) (ρ (a1, zi) − ρ (a2, zi))
2
, (4)

where Δt(zi) = t(zi) − t(zi+1)

The remainder of the work will explore this new density-weighted distance between pro les, comparing it to those de ned

in Eqns. 1 - 2.
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Fig. 1. (a) Plot of the Euclidean Distance measure between all nine percentile measurements of water vapor mixing ratio (x-
axis) and the corresponding Euclidean Distances between the radiance spectra (y-axis). The points have a correlation coef cient
of 0.959. (b) Plot of the Euclidean Distance measure between all nine percentile measurements of absolute humidity (x-axis)
and the corresponding Euclidean Distances between the radiance spectra (y-axis). The points have a correlation coef cient of
0.960.

3. EXPERIMENTATION

The atmospheric pro le data are taken from the Laser Environmental Effects Distribution Reference (LEEDR) [7]. These data

were collected from radiosonde measurements at multiple sites across the world. They are grouped by the month, time of day,

and - most signi cantly - the percentile in which they fall in a distribution correlated to relative humidity. For the purposes

of this paper, we will consider atmospheric pro les taken at nine different percentiles of the distribution: 1%, 5%, 10%, 20%,

50%, 80%, 90%, 95%, and 99%.

The pro les taken at these distributions become user-de ned atmospheres used by MODTRAN to generate the sensor-

reaching radiance for a target of a spectrally independent surface albedo of one. The scene geometry is of a sensor at an altitude

of 3048m with a nadir zenith angle imaging a target on the surface at 300m MSL. The image is collected at 1:00 p.m. EDT on

June 1, 2001 at a location of 43◦E, 77◦W.

4. PRELIMINARY RESULTS

Results are presented in Fig. 1 where the x-axis is the Euclidean distance between the estimated re ectance of the target signa-

tures generated with the imaged atmosphere and an incorrect atmosphere. The y-axis is the error between the imaged atmosphere

and the incorrect atmosphere. These results show high levels of correlation between the atmospheric pro le estimation error

and the difference between the resulting radiance spectra.

5. CONCLUSIONS

For our nal paper, we will accomplish two things. First, we will submit the measures shown above for the four re ectance

spectra shown in Fig. 2: cropland, galvanized steel, deciduous tree, and olive paint. These spectra emphasize different portions

of the wavelengths they span. We will evaluate how these different re ectance spectra improve or degrade the correlation

between the error measure for the atmospheric pro le pairs and the error measure for the radiance spectra. The variation in

target signatures will give us a better idea of how the error in the estimate of the atmospheric conditions affects broad categories

of imaged targets. Second, we will evaluate weighting functions for the different radiosonde altitudes and how these effect the

correlation.
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Fig. 2. Re ectance plots of four target signatures: cropland, galvanized steel, deciduous tree, and olive paint
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