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1. INTRODUCTION

In recent years, kernel methods have demonstrated their performance in hyperspectral imaging. Among the reasons their ability

to handle large input spaces is essential. However for this type of applications a critical problem is the choice of the kernel

which must combine spectral and spatial information [1] and of course achieve good generalization performance.

The kernel design stage is generally defined as the optimization of a distance metric when the kernel is chosen in a particular

subspace. The alignment criterion between a parametrized kernel and a target kernel [2, 3] belongs to this family. However

this solution does not embed the kernel learning problem in a particular kernel-based algorithms such as the support vector

machine (SVM). This is not the case of [4] where both problems of kernel learning and SVM estimation are jointly solved in a

transductive setting using semidefinite programming.

The Bayesian formalism is another powerful framework for kernel learning. In [5] a hierarchical model is used to achieve

a transductive learning of the kernel matrix. In the Bayesian learning context, relevance vector machine (RVM) is the natural

choice to tackle jointly the Kernel learning and estimation of the classification algorithm parameters. A solution to this problem

is proposed in [6] where linear composite kernel learning and RVM regression coefficients estimation are performed using a

global hierarchic Bayesian model.

This contributions proposes a general formalism for joint transductive learning of the kernel matrix and regression coeffi-
cients estimation in a Bayesian context.

2. HIERARCHICAL BAYESIAN MODEL

2.1. Regression model

We work in a transduction setting where some of the data are labeled and the remainder are unlabeled. The training set is

{(x1, y1), . . . , (xNtr , yNtr )} and the test set is {xNtr+1, . . . ,xN}. The prediction is based on the classical RVM regression

model y(x) which employs a kernel k(., .):

y(x) =

Ntr∑
m=0

wmk(x,xm) (1)

Given the training set, we assume that the targets are sample from the model with noise:

∀n ∈ {1, . . . , Ntr}, y(xn) =

Ntr∑
m=0

wmk(xn,xm) + e(n) (2)

In this setting which is analogous to [4], optimization of the kernel corresponds to estimate the kernel matrix K with elements

Kij = k(xi,xj) which can be partitioned has:

K =

(
Ktr Ktr,t

Kt
tr,t Kt

)
(3)

where Ktr defines the so-called ntr × ntr training matrix and Kt the test matrix. Denoting as w the weights vector, the model

response vector is y = Ktrw + e.



The a-priori on the regression model, i.e. on the noise vector and the regression coefficients, is the same as in the RVM [7]

in order to guaranty sparsity on the weights vector.

• The error vector is Gaussian:

y|K,w, σ2 ∼ N (Ktrw, σ2I) (4)

with a a uniform scale prior on σ2.

• The weights wm are independent zero-mean Gaussian distributed:

wm|αm ∼ N (0, α−1
m ) (5)

with independent and uniform scale prior on αm.

According to this model, we have:

p(y|α, σ2,K) = (2π)−N/2|σ2I +KtrA
−1Kt

tr|−1/2etr

(
−1

2
(σ2I +KtrA

−1Kt
tr)
−1yyt

)
(6)

where etr(.) ≡ exp(trace(.)) and A = diag(α).

2.2. Kernel model

We assume that a realization K̃ of the matrix K is available. This realization is obtained applying the “base” kernel k◦(., .)
on X × X where X = {x1, . . . ,xN}. A classical distribution on the cone of positive semidefinite matrices is the Wishart

distribution. We will assume the model K̃|K ∼ WN (ν,K). This choice was justified in the context of kernel learning in

[5]. As proved in [4], every positive semidefinite and symmetric matrix is a kernel matrix. This motivates the choice for the

classical inverse-Wishart prior K|Φ ∼ IWN (η,Φ) wher Φ is assumed to be known. Straightforward computation shows that

these assumptions imply K|K̃ ∼ W−1
N (�,Φ+ K̃) where � = η + ν:

p(K|K̃,Φ) =
|Φ+ K̃| �2 |K|− �+N+1

2

2
�N
2 ΓN ( �2 )

etr

(
−1

2
K−1(Φ + K̃)

)
(7)

2.3. Inference

Combining Eqs. (6) and (7) we obtain the posterior density p(K|α,Y , K̃, σ2,Φ).

p(K|α, σ2,y, K̃) ∝ |K|− �+N+1
2 |σ2I +KtrA

−1Kt
tr|−1/2etr

(
−1

2

(
(σ2I +KtrA

−1Kt
tr)
−1yyt +K−1(Φ + K̃

))
(8)

Marginalization of this density to obtain p(Ktr|α, σ2, .) is straightforward. It is worthy to note that if ∀m, αm → ∞ we

obtain:

p(Ktr|σ2, .) ∝ |Ktr|−
�+N+1

2 etr

(
−1

2
K−1

tr (Φtr + K̃tr)

)
(9)

which is maximised for Ktr = (�+N + 1)−1(Φtr + K̃tr). The same result holds when σ2 → ∞. In all the others cases, the

poster density of Ktr depends also on the “ideal kernel” yyt.

We propose to estimate the parameters using a Metropolis Hasting MCMC procedure.

K [k+1] ∼ p(K|α[k], σ2[k],y, K̃,Φ) (10)

α[k+1] ∼ p(α|K [k], σ2[k],y) (11)

σ2[k+1] ∼ p(σ2[k]|K [k],α[k],y) (12)

(13)

The sampling of the positive definite matrix K [k+1] in (10) is performed using the fact that (8) is the product of an inverse

Wishart distribution on K and an inverse Wishart distribution on σ2I +KtrA
−1Kt

tr.



3. SUMMARY

The final version will present a detailed analysis of the algorithm and a complete description of the MCMC procedure. Exper-

imental results obtained using hyperspectral images of the Multi Unit Spectroscopic Explorer MUSE (see http://muse.
univ-lyon1.fr/) will be presented.
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