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1. ABSTRACT

We propose a new method to measure changes in terrain topography from two optical stereo image pairs acquired at different

dates. The main novelty is in the ability of computing the spatial distribution of uncertainty, thanks to stochastic modeling and

probabilistic inference. Thus, scientists will have access to quantitative error estimates of local surface variation, so they can

check the statistical significance of elevation changes, and make, where changes have occurred, consistent measurements of

volume or shape evolution. The main application area is geomorphology, as the method can help study phenomena such as

coastal cliff erosion, sand dune displacement and various transport mechanisms through the computation of volume changes. It

can also help measure vegetation growth, and virtually any kind of evolution of the surface.

We first start by inferring a dense disparity map from two images, assuming a known viewing geometry. The images

are accurately rectified in order to constrain the deformation on one of the axes, so we only have to infer a one-dimensional

parameter field. The probabilistic approach provides a rigorous framework for parameter estimation and error computation, so

all the disparities are described as random variables. We define a generative model for both images given all model variables.

It mainly consists of warping the scene using B-Splines, and defining a spatially adaptive stochastic model of the radiometric

differences between the two views. The inversion, which is an ill-posed inverse problem, requires regularization, achieved

through a smoothness prior model. Bayesian inference allows us to recover disparities as probability distributions. This is done

on each stereo pair, then disparity maps are transformed into surface models in a common ground frame in order to perform the

comparison. We apply this technique to high resolution digital aerial images of the Portuguese coast to detect cliff erosion and

quantify the effects of weathering.

2. INTRODUCTION AND PROBLEM STATEMENT

Optical images are quite inexpensive compated to other data sources such as LIDAR or SAR, and the recent digital sensors

have reached a signal-to-noise ratio allowing for accurate photogrammetric measurements to be made. The use of image pairs

acquired almost simultaneously strongly reduces the intensity changes due to temporal variations of ground reflectance and

illumination, which provides an increased accuracy with respect to multi-date observations when it comes to surface model

generation. Therefore we use digital aerial stereo image pairs as our main data source. Comparing accurate surface models

derived from data acquired at different dates can help measure the topography variations. But in order to make physical

measurements, one needs to know the error as well. Unfortunately no method exists that is able to provide a quantitative error

estimate, and state of the art methods only propose various ad-hoc indicators of local correlation or matching quality, which

are, in practice, difficult to interpret in terms of elevation uncertainty.

We wish to predict the accuracy, rather than assess it using ground truth, as done usually. Some authors have proposed to

derive predictors based on terrain characteristics such as slope or curvature, however these techniques do not take into account

the data themselves. Instead, we propose to use the image content to determine the local accuracy, since the presence of edges,

textures and noise have an obvious impact on it. We believe that error estimates are consistent only if they carry the uncertainty

arising from the observation noise and the lack of information in the input data. Thus, stochastic modeling allows us to use

the image content to build a probability distribution of the stereo parallax, or disparity, directly related to the topography via a

geometric transform. We describe the relation between small, matching image patches through a Gaussian process. This is the

major assumption made in this work; it is valid only if the camera quality is high (no geometric patterns, few dead pixels, no

compression noise).
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Fig. 1. Left: Bayesian network stating how images Y 1 and Y 2 are stochastically related to each other through the disparity map

Δ and the radiometric variation parameters. Right: band-limiting and sampling of the probability density of the disparity.

In order to measure ground elevation variations and give a consistent measure of their uncertainty, we require a sub-pixel

estimation accuracy for the disparity, and the robustness with respect to local radiometric variations between the images. Usually

in photogrammetry, disparity is measured by maximizing the normalized cross-correlation between two small image patches.

This approach is among the most robust to local radiometric variations, however it produces enough false matches so that a

filtering step is required in order to denoise the result. Numerous approches have been developed [1], some able to perform

sub-pixel estimations, other based on statistics; however no rigorous probabilistic method has ever been devised that meets the

requirements stated above, to our knowledge. The filtering never takes into account the accuracy of each measured disparity

value, it only uses these values. Conversely, in our approach accuracies act like weights, allowing to automatically filter out the

most uncertain measurements.

3. PRINCIPLES OF THE PROPOSED METHOD

For simplicity and without compromising the performance, one of the images is set as a reference. We assume that one of

the images can be derived from the other via a geometric transform, involving accurate resampling using high-order B-Spline

interpolation [2], and a spatially variable uncorrelated additive noise process. This noise accounts for local radiometric changes

due to variations of the viewing geometry and non-Lambertian reflectance properties. A conditional Gaussian distribution is

used to model it. This allows for a simple parametrization using a mean μ1, conditional mean μ21 and conditional variance

v21. All the parameters are spatially adaptive, with one set of parameters every 2 × 2 pixels, and an appropriate small window

size and a fuzzy weighting scheme to avoid blocking artifacts. This Gaussian process can accomodate various image formation

alternatives, such as the local additive and multiplicative change maps from [3]. The deformation field Δ is modeled by a set of

parameters, one every 2×2 pixels, such that for each disparity variable at a specific location, there is a set of Gaussian parameters

describing the relation between the two fuzzy windows centered respectively on this location in image 2, and on this location

shifted by the disparity in image 1. Subpixel shifting is achieved through B-Spline resampling, and a rigid motion is assumed

within each window. This assumption is valid only if we use a multigrid approach, in which the disparity is progressively

estimated from coarse to fine. Thus scaling and rotation effects become negligible, as the disparity map from the coarser scale

is used as an initial estimate and we only have to infer a residual motion.

This helps provide a fast solution to the disparity estimation problem; however, in the end, a continous deformation field

[8] has to be used to refine the result and compute the uncertainties at the optimum rigorously, as the window-based approach

produces biased accuracy estimates due to unrealistic assumptions.

Within the generative model approach, the disparity map is also governed by a probability distribution. We use a first order

Markov Random Field [4] to define a simple smoothness prior, based on the squared differences of neighboring disparity values.

A global parameter ω (to be estimated) controls the amount of smoothness. The full model is illustrated by Fig. 1 (left), where

nodes denote random variables, groups of converging arrows conditional distributions, and terminal nodes prior distributions.

The inversion is carried out through Bayesian inference [5], which merely consists of integrating out the unwanted variables

related to the Gaussian process (this is also known as marginalization), and computing the probability density of Δ given only

Y1 and Y2. In practice it involves several steps, and a few approximations in order to make it tractable.

The main steps of the algorithm can be described as follows:

- Marginalization [6], to compute the local likelihood function P (Y1, Y2 |Δi) for each disparity variable Δi, which involves

the computation of v21 from local statistics;

- Outlier rejection, based on the extreme values of the conditional variance v21, to eliminate spurious matches in areas



dominated by noise;

- Convolution with a band-limiting kernel so that the resulting function can be sampled without aliasing; typically we use

1/2 pixel sampling, as illustrated in Fig. 1 (right);

- Fast Loopy Belief Propagation (LBP) [7] optimization using the sampled likelihood and the smoothness prior, which

provides an optimal disparity map very efficiently;

- Conjugate Gradient optimization (differential method) initialized with the disparity map estimated using the fast LBP

method, using a continuous deformation field (instead of a uniform shift within each window) as defined in [8].

- Computation of the second derivatives of the negative log likelihood function at the optimum, using also a continuous

deformation field, to form the diagonal of the precision matrix (non-diagonal terms come from the smoothness prior);

- Approximate block inversion of the precision matrix to obtain the covariance matrix, as the full matrix is too large to be

inverted directly [9].

The error estimates arise naturally from the probabilistic formulation of the problem. A multivariate Gaussian approxima-

tion [6] enables us to provide a practical, minimal parametrization of the probability distribution of disparities. Then, in the

ground frame, the surface model elevations derived from disparities are also Gaussian variables, and the difference between

two probabilistic elevations is also Gaussian, which simplifies all the subsequent analysis steps. For instance, one can test an

hypothesis such as elevation change by simply comparing the absolute difference with a threshold depending on the confidence

level, fixed beforehand by the user.

4. CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK

The main contributions are: The design of an appropriate image formation model accounting for radiometric variations due

to the difference in viewing angle; The use of high-order B-Spline interpolation to reduce resampling artifacts; An original

disparity likelihood evaluation based on marginalization and local statistics; The use of low-pass filtering to limit the bandwith

of this function before sampling, so a fast LBP algorithm can be used directly to compute the optimal disparity map with

subpixel accuracy; Gaussian approximations, approximate matrix inversion and probabilistic subtraction in order to obtain a

local topography variation and the related uncertainty. Some points are still under investigation, such as a fully automated

regularization, and the effects of the departure from the local Gaussian assumptions which can cause spurious matches difficult

to filter out. In the current version of the method, only two images are used, however the reliability of the measurement

technique could greatly benefit from a larger number of images, as long as they are acquired within a short time interval

to reduce illumination variations. Indeed, redundancy could help detect and better eliminate false matches and the related

likelihood functions.
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