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To use multisource data in remote sensing classifications and to effectively extract 

information, data fusion is the key issue. Data fusion techniques combine data from multiple 

sensors, and related information from associated databases, to take a better decision than from 

one source only, by reducing imprecision and uncertainty and increasing completeness. 

Therefore, it is useful to combine and analyze the multisource data to take advantage or their 

characteristics and improve the information extraction process. 

Data fusion is generally performed at three different levels of information representation; 

these are pixel level, feature level and decision level. Fusing images at pixel level means to 

perform integration at a level where the pixels are least processed. Each pixel in the fused 

image is calculated from pixels in the source images by for-example averaging. Fusion at 

feature level first requires extraction of representative features from the source images 

(through e.g. segmentation); fusion then takes place based on features that match some 

selection criteria. At decision level, the output from the initial object detection and 

classification based on source images is then fed into the fusion algorithm. Every image 

fusion algorithm is performed at one of these three levels or some combination thereof. 

This paper presents a real coded GA strategy and hybrid with a Back Propagation (BP) 

algorithm. The genetic operators are carefully designed to optimize the neural network, to 

evaluate its accuracy. We use the most widely used neural network namely the Multi-Layer 

Perception (MLP), along with sigmoid transfer functions in the hidden layers. Assuming we 

have a three-layer feed-forward neural network with m inputs (channels) and k outputs 

(categories), and l hidden nodes. Each neuron in the hidden layer uses sigmoid function f(x) 



as its threshold function, and each neuron in the output layers uses Purelin function p(x) as its 

threshold function. The neuron output of hidden node h ( ) and output node 

q can be expressd as: 

The surperscript T stands for a vector transpose,  is the 

weight connection vector between the input nodes and hidden node h, 

 is the weight connection vector between the hidden nodes and 

output node q,  is the input vector for each hidden node, and 

 is the output vector of the hidden nodes,  and  are the 

corresponding biases for hidden node h and output node q.  and  are the output neuron 

respectively responses for node h and node q. The sigmoid function f(x) is defined as: 

where . And the purelin function p(x) is defined as: 

where  is a non-zero constant,  is the bias; and .

The back propagation learning algorithm is a popular optimization tool for neural 

network training. However, the gradient descent which serves as one of its essential 

characteristics has several drawbacks. On the one hand, the performance of the network 

learning is strictly dependent on the shape of the error surface, values of the initial connection 

weights, and some further sophisticate parameters. On the other hand, when using steepest 

descent to train a multilayer network with sigmoid functions, the inherent defects of sigmoid 



functions will result in tiny changes in the weights and biases, although they are far from their 

optimal values. In order to compensate for deficiencies in the gradient descent algorithm, this 

paper presents a method which is the integration of genetic algorithm and neural network for 

weight training. It consists of three major phases. The first phase is to decode each genotype 

in the current generation into a set of connection weights. The second phase is to evaluate 

each set of the connection weights by constructing the corresponding neural network through 

decoding each genome and computing its fitness function and mean square error function. 

The third step is applying the evolutionary process such as selection, crossover, and mutation 

operations by a genetic algorithm according to its fitness. The evolution stops when the 

fitness is greater than a predefined value (e.g. the training error is smaller than a designated 

value) or the population has converged. 

The image data used to test our methodology correspond to the region of Greater Beijing, 

China. Two Landsat TM images of this area were used: One collected on October, 1996 and 

the other on October 2004 respectively. The result of land cover classification shows that the 

hybrid GA algorithm-based neural network classifier has the better overall accuracy than back 

propagation neural network classifier. 
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