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Abstract—Root growth and development are critical for plant
survival and productivity. While systems have been developed to
automate the process of extracting root traits using 2D and 3D
imaging under controlled conditions, to date, no systems exist
that can non-destructively and repeatedly provide high-quality
information on roots of field-grown plants. At the same time,
Terahertz (THz) imaging is becoming a valuable tool in many
areas, including medicine, pharmacology, security, etc. and has
the potential for non-destructive, repeated imaging of root systems
growing in pot and eventually field conditions. In this paper, we
present a framework for investigating root growth and function
of plants by analyzing and classifying THz data. The proposed
system can successfully identify organic materials from potting
soil or sand using both THz transmitted and reflected signals.

I. INTRODUCTION

ROOT System Architecture (RSA) is the spatial represen-

tation of a plant root system. It plays a vital role in

determining the life and growth of plants. Many researchers

have long correlated root traits present in the various RSAs

to physiological functions of the plant, such as as drought

tolerance, carbon allocation, nutrient-acquisition capacity, etc.

The key difficulty in measuring and classifying RSAs is the

ability to measure root traits without destroying the plants. In

order to facilitate this, some researchers opt to growing plants

in hydroponic, aeroponic or translucent gel-based media. This

approach allows for the inspection of plant roots while still

inside a cylinder or solution [1], but they do not recapitulate

the nature of RSA in soil while they restrict analyses to young

plants. Others are using X-ray CT or MRI based approaches to

non-destructively image roots in solid non-translucent media.

However, the primary disadvantages of these approaches are

the cost, the scanning times, and their limitation to plants grown

in pots, where translation of these systems to field conditions

does not seem likely. Terahertz (THz) imaging is an emerging

and significant nondestructive evaluation technique used for

analyzing non-conducting materials [2]. THz signals can be

captured at the emitter side (reflection) or on the opposite side

of the object, at the detector side (transmission) [3], [4]. In both

cases, THz signals interact with the different materials in the

object under investigation (e.g. soil, roots, rocks, etc) resulting

in multiple reflections or transmissions that are captured by

the sensor – this is usually referred to as signal crosstalk. We

have developed classification frameworks – Hierarchical Guided

Under-determined Source Signal Separation (HiGUSSS) – for

dealing with problems involving crosstalk [5]. In this paper,

we present the results from applying this framework to Pulsed

Terahertz imaging of plant samples buried in sand and potting

soil.

II. METHODS

A similar problem with crosstalk has been approached in

different contexts: for pattern recognition of Surface Elec-

tromyography (sEMG) signals for the operation of power

wheelchairs [6], [7]; diagnosis of voice dysfunctions [8]; and

even identification of multiple chemical compounds using THz

signals [9]. In all these cases, a classification framework called

Guided Under-determined Source Signal Separation (GUSSS)

and more recently the HiGUSSS [5] were developed and applied

with high indexes of success, with accuracies as high as 97% for

four to ten signatures (also called gestures, in the framework).

The idea behind GUSSS is to inject a sought-out signature

– e.g. a previously learned signal which is typically reflected

off or transmitted through a specific object (root, soil, etc.) –

into the classifier and observe the response obtained in terms

of the statistical independence of the original signal and the

one created by the injected signature. If these two signals

are statistically independent, this indicates that the sought out

signature was not present (crosstalk) in the original signal.

Otherwise, the signature was present and we can classify the

signal as containing the sought-out object.

III. EXPERIMENTS AND RESULTS

Samples including carrots, sweet potatoes, turnip, rocks and

wood pieces were buried in sand and in potting soil and imaged

using both transmission and reflection signals. This allowed us

to compare the two imaging methods in order to determine their

effectiveness at acquiring the shape and size of different buried

organic materials.

A. Results from THz Transmission

For this experiment, a carrot of approximately 18cm in length

was placed in a plastic container filled first with sand and then

potting soil. The total depth of the material in both cases was

approximately 5cm. Figure 1(a) and (b) present photos of the

samples investigated in this experiment with THz transmission

imaging. Figure 1(c) and (d) show the measured THz signal

with the emitter (or detector) located over (or under) dry sand

only and the carrot buried in dry sand, respectively. Figure 1(e)

shows a THz transmission time domain image for carrot buried

in sand, and (f) shows the HiGUSSS classification results. Table

I shows the classification results for the sand and the soil cases.
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Figure 1. Carrot samples in (a) sand and (b) soil; Time domain THz signals
transmitted (c) through sand and (d) through the carrot buried in sand; (e) THz
transmission time domain images for carrot buried in sand; (f) Results of the
HiGUSSS classification (sand).

Table I
CLASSIFICATION ACCURACY FOR THE THZ TRANSMISSION EXPERIMENTS.

Classification Accuracy %

Sand + Carrot 96.04

Soil + Carrot 96.06

B. Results from THz Reflection

To investigate the reflection mode, the THz emitter and detec-

tor were both positioned above the sample at a 30-degree angle

of incidence relative to the surface. The samples investigated

in these experiments included a sweet potato, a turnip, a piece

of dry tree branch and four rocks of different sizes, all covered

by 3−4mm of sand as shown in Figure 2(a). The time-domain

window of the system was set such that both the sand surface

reflection and the reflection from the buried objects could be

measured. This is illustrated in Figure 2(b), which shows the

measured reflected THz signal from both the sand and potato

surfaces when emitter/detector are positioned above the potato.

Similar to the transmission mode, an image can be formed

from the reflected time-domain signals. This is shown in Figure

2(c), which illustrates the amplitude of the subsurface reflection.

Figure 2(d) shows the results of the HiGUSSS framework

applied to the THz reflection signals to identify the multiple

classes of objects buried in the sand.

Comparison between Figure 2(a) and 2(d) demonstrate that

the results are promising. The HiGUSSS achieved an average

accuracy of 91.58% for all five types of objects (potato, turnip,

rocks, tree branch and sand). Table II presents the classification

percentages of each of the four types of objects (potato, turnip,

rocks, and tree branch) against the sand.

IV. CONCLUSION

The results presented in this paper demonstrate the potential

of THz imaging to detect and identify the different objects

buried in sand and potting soil. This system is the first step
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Figure 2. (a) Photo of the samples used for the THz reflection test including a
sweet potato, a turnip, four rocks and a piece of tree branch (uncovered to show
the objects); (b) The time domain reflected signal at a particular point in (c);
(c) Time domain THz reflection image of the objects after being completely
buried by dry sand; (d) Final classification using the HiGUSSS Framework.

Table II
CLASSIFICATION ACCURACY FOR THE THZ REFLECTION EXPERIMENTS.

Classification Accuracy %

Sand + Potato 92.50

Sand + Rock 94.68

Sand + Turnip 91.43

Sand + Wood 87.73

towards revolutionizing root phenotyping in situ, and thus

genetic improvement on the basis of root characteristics.
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