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Abstract—The lecture is devoted to the analysis of the non-
linearity of the refractive index for crystals at terahertz fre-
quencies. We develop a simple analytical model for calculating
the vibrational contribution to the nonlinear refractive index n2

of a crystal in terms of known crystalline parameters such as
the linear refractive index, the coefficient of thermal expansion,
atomic density, and the reduced mass and the natural oscillation
frequency of the vibrational modes of the crystal lattice. Signifi-
cant part of the lecture is devoted to the theoretical methods of
analysis and features of self-action of few-cycle terahertz waves
in various nonlinear media.

I. INTRODUCTION

RESEARCH in the field of terahertz (THz) radiation has
celebrated the beginning of its second decade. Since

their first demonstrations, THz techniques continue to find
new applications from medical diagnostics and therapy to
the detection of hidden substances, including explosives and
drugs [1]. In recent years, pulsed sources of the THz radiation
with sufficient intensity for the observation of nonlinear optical
effects have appeared in a number of laboratories [2], [3].
Investigation of the nonlinear optical effects in the THz
spectral range has now become feasible.

In this lecture, we discuss a method for calculating the
coefficient n2 of crystals in the THz spectral range. It is shown
that the vibrational contribution to the nonlinear response
in the far infrared spectral range can be several orders of
magnitude larger than the electronic nonlinearity, which is the
dominant contribution for ultrashort pulses in the visible and
near-infrared spectral ranges [4], [5].

We analize the benefits of different theoretical methods for
the investigation of intensive few-cycle THz wave propagation
in an optical medium and demonstrate the features of self-
action of such waves with a small number of optical field
oscillations. It is shown that the decrease in the number of
field oscillations in pulse leads to a change of the dominant
effects in the radiation self-action phenomenon. For instance,
the effect of high frequency generation in nonlinear isotropic
media dominates over the self-focusing effect for initially
single-cycle pulse.

II. ESTIMATION OF NONLINEAR REFRACTIVE INDEX FOR
CRYSTALS AT THZ FREQUENCIES

There are different mechanisms contributing to the nonlinear
refractive properties of an optical material. In the visible and
near-infrared spectral ranges, the dominant contribution to the
nonlinear refractive index is of electronic nature [4], [5]. In
the far-infrared range, one expects the dominant mechanism of
the nonlinearity to be associated with anharmonic vibrations
of the crystalline lattice.

Let us analyze the vibrational nonlinearity of a crystalline
material by considering the dynamics of ions in the lattice
resulting from the force induced by the electromagnetic field.
In this analysis, we make use of a classical model of the
anharmonic oscillator:

ẍ+ 2γẋ+ ω2
0x+ ax2 + bx3 = αE. (1)

Here x is the deviation of an ion from its equilibrium position,
E is the applied electric field, ω0 is the central frequency, γ is
the damping coefficient, a and b are the nonlinear coefficients,
α = q/m, where q is the ionic change, and m is the reduced
mass of the vibrational mode.

Within this study, we assume that the electric field inter-
acting with the ions is monochromatic with the frequency
ω E(ω) = Eωe−iωt + c. c. We treat the nonlinear optical
effects that occur without change in the frequency spectrum.
We thus consider the oscillations of the crystalline ions at the
fundamental frequency only: x = xωe−iωt + c. c. Making use
of a classical anharmonic oscillator model (1), we find the
expression for the deviation of an ion from its equilibrium
position xω , and then relate this quantity to the part of the
amplitude of the polarization component, oscillating at the
frequency ω and including both linear and nonlinear contribu-
tions Pω = χ(1)Eω + 3χ(3)|Eω|2Eω to obtain the nonlinear
susceptibility χ(3), and hence to obtain the expression
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for the nonlinear refractive index n2 = 3πχ(3)/n0.



However, it is not always straightforward to make use of
the Eq. (2), because the values of the parameters appearing in
this equation are not well known. We therefore use the model
of Eq. (1) to calculate the values of other properties of the
crystal that are known or easily measurable: linear refractive
index and coefficient of thermal expansion. For instance, we
find the relationship between parameters of Eq. (1) and the
thermal expansion coefficient of the crystal:

αT = − akB
mω4

0al
, (3)

where kB is the Boltzmann constant and al is the lattice
constant. Using these results, we derived the formula for
vibrational contribution to n2 at the terahertz frequency range
(under the approximation ω � ω0) in the form
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Then we found that its value for the crystal quartz n2 =
2.2 × 10−9 esu = 4.4 × 10−16 m2/W is four orders of
magnitude larger than its value in the visible range 3× 10−20

m2/W. Used for above estimation of n2 values of the thermal
expansion coefficient in the case of crystalline quartz are
αT = 7.6 × 10−6 (o C)−1 parallel to the optic axis, and
αT = 14 × 10−6 (o C)−1 perpendicular to the optic axis. We
assumed that the vibrational mode is the Si-O stretch mode.
The value for the fundamental vibrational frequency is 1242
cm−1 or 37.2 THz or 2.34×1014 rad/sec. The lattice constant
of crystalline quartz is 4.91 Å along the c-axis, and is 5.40 Å
along the a and b axes. We can define a mean lattice constant
with the value 5.24 Å or 5.24× 10−8 cm. The reduced mass
m of the stretch mode was calculated as follows. The mass
of the silicon atom is mSi = 28.1 amu, and that of the
oxygen atom is mO = 16 amu. The reduced mass is thus
mSimO/(mSi + mO) = 10.2 amu or 1.69 × 10−23 g. The
number density N of the vibrational units was calculated as
follows. The specific gravity of crystal quartz is 2.65, and the
formula weight of SiO2 is 28+16×2 = 60. Each silicon atom
is thus associated with the total mass of 60×1.67×10−24 g =
1.00×10−22 g. The number of silicon atoms in 1 cm3 of quartz
is thus 2.65/(1.00× 10−22) = 2.65× 1022.

Our model also predicts a large variation of n2 with
frequency in the vicinity of the vibrational resonance, and
the existence of the two-photon resonance in the spectrum
of n2 (see the figure below). It is evident from Fig. 1 that
the resonant value of n2 exhibits more than one order of
magnitude of enhancement compared to its low-frequency
value.

As evident from Fig. 1, for the waves with the spectrum
spanning the frequency range between 0 and 12 THz, the
nonlinear refractive index doubles in value. One cannot neglect
the dispersion of n2 when analyzing the interaction of a broad-
spectrum radiation with an optical medium. In the frequency
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Fig. 1. Dispersion of the nonlinear refractive index in the vicinity of the
two-photon resonance.

range beyond 12 THz the dispersion is significant; the optical
nonlinearity exhibits inertia.

In the lecture we also discuss the applicability of the
presented method of calculation of n2 for the case of isotropic
media.

III. FEATURES OF SELF-ACTION OF FEW-CYCLE THZ
PULSES

Main part of the sourses of intensive THz radiation gener-
ates few or even just one cycle pulses. So we then analyse
the features of propagation of initially single-cycle optical
pulses in isotropic dielectric media with instant cubic (Kerr)
nonlinearity. Because it is evident from the inset in Fig. 1
that one can neglect the dispersion of a wide-spectrum pulse,
as long as the entire pulse spectrum width lies in the range
between 0 and 6 THz.

We consider unidirectional paraxial propagation correspond-
ing to a beam width much larger than the optical wavelength,
and assume that the wavelength spectrum is within the region
of normal group-velocity-dispersion with parameters of crystal
quartz. Under such conditions, the evolution of the electric
field E(z, x, y, t) of an optical wave can be modelled by the
following equation [6], [7]:
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where z is the distance along the propagation direction,
∆⊥ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplace operator, t
is time, c is the speed of light in vacuum. Parameters N0 and
adisp define the medium dispersion as n0(ω) = N0+adispcω

2,
where n0 is the linear refractive index and ω is the opti-
cal frequency. The coefficient g characterizing the Kerr-type
nonlinear optical response is related to the Kerr coefficient
n2 according to g = 2n2/c. We underline that Eq. (5) is
formulated for the electric field E of the optical wave, and it is



suitable for theoretical modeling of ultra-short pulse evolution
with very broad spectrum, including the case of pulses with
single-cycle field oscillation.
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Fig. 2. Spatiotemporal electric output field profiles with initially Gaussian
transverse distribution for (a) weak nonlinear (I = 5.0×108 W/cm2) and (b)
strong nonlinear (I = 5.0×109 W/cm2) medium with the same nonlinearity
as crystal quartz n2 = 4.4× 10−12 cm2/W and (c) corresponding to strong
nonlinear case modulus of the output spectrum at the beam axis. The spectrum
of input single-cycle wave at the beam axis is shown by a dashed line. The
length of medium is 10 mm. r =

√
x2 + y2, τ = t − (c/N0)z is the

retarded time.

In Fig. 2(a,b), we show two-dimensional contour plots
of the axisymmetric electric field of a single-cycle wave
propagation in (a) weak nonlinear medium at the intensity level
I = 5.0 × 108 W/cm2 and (b) strong nonlinear dielectric
medium at the intensity level I = 5.0 × 109 W/cm2 with
the length 10 mm and the same nonlinearity as crystal quartz
n2 = 4.4 × 10−12 cm2/W. Red and blue areas correspond
to maximum positive and negative values, respectively. The
transverse beam width at the input of the medium is 10λ0,
λ0 = 300 µm. In Fig. 2(c), we show the input and output
spectra with the dashed and solid lines, respectively. It is

evident from the graph that, for the higher input intensity,
the combined action of the nonlinearity and dispersion lead to
the formation of the high-frequency tail that spans up to five
times the central frequency.

A part of the lecture will be devoted to the complex
dynamics of the electric field of a single-cycle pulse with the
spectrum at the frequency range of the two-photon resonance.

IV. CONCLUSION

We have deduced the relationship between the vibrational
contribution to n2 and other readily measurable parameters of
a crystal. Using our model, we have performed an estimate
of the value of n2 for crystalline quartz in the THz spectral
range and found that in the low-frequency limit it is four
orders of magnitude larger than the value of n2 in the visible
range. Our model also predicts a large variation of n2 with
frequency. In the calculations of n2, we have assumed that
the THz radiation is quasimonochomatic. Main part THz
experiments are conducted with intensive very short pulses,
which may contain only a few (or even just one) optical cycles.
We demonstrate that the nature of the nonlinear phenomena
under these conditions can differ drastically from the case of
quasimonochromatic radiation.
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