
Abstract—In the theory of self-oscillating systems usually one 
distinguish two different kinds of self-excitation, namely soft and 
hard excitation. In the soft excitation mode, an unstable noise-
level perturbation grows and evolves into a self-sustained 
oscillation. Conversely, in the hard excitation mode, a self-
oscillation is sustained only for a sufficiently intensive initial 
perturbation with amplitude exceeding a certain threshold, while 
a small perturbation decays. In particular, in a gyrotron a 
maximal efficiency is often attained in the hard excitation 
regime. This work is aimed on study of injection-locked 
operation of a gyrotron in the hard excitation mode. 

I. INTRODUCTION 

NJECTION-LOCKING of a gyrotron oscillator by an external 
driving signal provides output radiation frequency and 

phase stability, which is important for continuous-wave 
operation [1]. In addition, a low-power external driving may 
result in the fast frequency step tuning owing to the mode 
switching effect [2]. In a gyrotron, a maximal efficiency is 
often attained in the hard excitation regime [1]. This work 
studies injection-locked operation of two models of a 
gyrotron: the simplified quasi-linear model described by 
equations for slowly varying amplitude and phase [1,3], and 
the non-stationary model of a gyrotron with fixed Gaussian 
structure of the RF field [1]. 

II. INJECTION LOCKING OF A QUASI-LINEAR MODEL OF A 

GYROTRON IN THE HARD EXCITATION MODE 

 At the first stage, we consider a simplified model described 
by the quasilinear equations 
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Derivation of the basic equations of the quasi-linear theory of 
a gyrotron is presented in [1,3]. In (1), a  and   are slowly 

varying amplitude and phase, respectively,   is the mode 
increment,   is the parameter of reactive nonlinearity, f  is 

the driving signal amplitude, and   is the normalized 
detuning between the free-running gyrotron frequency and the 
driving signal frequency. To describe the effect of hard 
excitation, the fifth-order nonlinear term is retained in (1). 
Hard excitation in the free-running oscillator ( 0f  ) occurs 

at 1 4 0    .  

The synchronized mode of oscillation is described by a 
steady-state solution of Eq. (1) with constant amplitude 

0a a , which satisfies the equation 

    2 2 2M M M M f         . (2) 

In Eq. (2) 2
0M a . 

Stability analysis of the steady-state solutions is performed. 

The results are in good agreement with the bifurcation 
analysis of the routes to synchronization given in [4]. Based 
on this analysis, we plot the resonance curves and phase 
diagrams on the (,f) plane for different parameters. An 
example is presented in Fig. 1. On the contrary to the well-
known pattern of synchronization for an oscillator with soft 
self-excitation [5], in Fig. 1(b) one can see two 
synchronization tongues corresponding to locking of the 
stable and unstable limit cycle, respectively. In a hard 
excitation mode, only a sufficiently large perturbation evolves 
into a stable periodic self-oscillation, while a perturbation 
with amplitude below a certain threshold decays [5]. Thus, the 
driven oscillator may operate as a regenerative amplifier of a 
small input signal. In Fig. 1(a), only the states above the upper 
bound correspond to the phase-locked self-oscillation (domain 
1), while the states below the lower one (domain 2) 
correspond to the regenerative amplification. The domain of 
unstable steady states is shaded. There exist a small domain 
where bistability is observed, i.e., both injection locking and 
amplification regimes are stable.  
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Fig. 1. Resonance curves (a) and phase diagram on the driving 
frequency – driving amplitude parameter plane for ,
. 1 — phase-locking domain; 2 — regenerative amplification 
domain. 



III. INJECTION LOCKING OF A GYROTRON WITH FIXED 

GAUSSIAN STRUCTURE OF THE RF FIELD 

At the second stage, the non-stationary model of a gyrotron 
with fixed Gaussian structure of the RF field [1] is considered. 
The basic equations are  
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In Eqs. (3) and (4), p  is the complex normalized electron 

orbital momentum,   2
02 1 H      is the mismatch 

between the cavity mode eigenfrequency 0  and the cyclotron 

frequency H ,  2
02 z c      is the normalized axial 

distance, 0 2t Q    is the normalized time, I  is the 

normalized current parameter, v c   , v c   , and 
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describes the axial Gaussian RF-field structure of the cavity 
mode. 

The equations of motion (4) are integrated with the 
boundary condition 
      0 00 exp , 0;2p i       . (5) 

Form this integration one can find the harmonic of the 
bunched current  
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 The electron orbital efficiency is 
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It is well known [1] that maximal transversal efficiency 
0.7   is attained at 15  , 0.53  , 0.06I   where 

3k    is the normalized cavity length.  

The phase diagram on the driving frequency–driving 
amplitude parameter plane is presented in Fig. 2(a). The 
pattern of the phase diagram is qualitatively similar to the 
quasi-linear model (1) (Fig. 1(b)). The domain of stable 
regenerative amplification is located below the line 2. The 
domain of phase locking of the gyrotron self-oscillation lies 
above the line 1. In Fig. 2(a), in the area where the phase-
locking and regenerative amplification domains overlaps, i.e. 
below the line 1 but above the line 2, there are two stable 
single frequency regimes. In this domain, the oscillator 
exhibits hysteresis as is shown in Fig. 2(b). The initial value 
of the amplitude should be taken large enough to achieve the 
high-amplitude mode. 

IV. SUMMARY 

The results of theoretical analysis of injection-locked 
operation of a gyrotron oscillator in the hard-excitation mode 
reveal several interesting features. Depending on the history 
of parameter values, the oscillator operates either as a 
regenerative amplifier of the input signal, or as an injection-
locked self-oscillator. The results of theoretical analysis for 
the quasi-linear model (1) coincide with numerical simulation 
for the gyrotron with fixed Gaussian structure of the RF field. 
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Fig. 2. (a) Bounds of injection locking (1) and regenerative amplification (2) 
on the injf  plane for 0.06I  , 0.53  , and 15  . (b) Efficiency 

versus normalized injection amplitude at 0.3    . 


