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Abstract—Quantum Capacitance Detectors (QCDs) are
shot noise limited terahertz detectors. Radiation breaks Cooper
pairs, causing quasiparticle poisoning of a charge qubit, read
out by a microwave resonator. We find asymmetry in the
distribution of telegraph transition rates, interpreted as resulting
from discrete single-photon events.

I. INTRODUCTION AND BACKGROUND

THE Quantum Capacitance Detector (QCD) [1], [2] is a

terahertz detector based on a Single Cooper-pair Box

(SCB) charge qubit. Radiation breaks Cooper pairs in a

superconducting absorber, leading to quasiparticle poisoning

of the SCB, which can be read out via a superconducting

microwave coplanar waveguide. QCDs have demonstrated shot

noise limited scaling of noise equivalent power (NEP) from

1 × 10−18 W to below 1 × 10−20 W of absorbed power [3].

Though initially they suffered from poor optical efficiency

(∼ 3.5%) [3], [4], more recent devices have with capacitive

coupling to the antenna have demonstrated efficiencies of order

35% while maintaining photon shot noise-limited scaling [5].

However, despite shot noise-limited scaling of NEP, QCDs

have not previously shown more direct evidence of single-

photon events.

In this work we explore the quasiparticle fluctuations of a

QCD under photon flux at 1.5 THz. As absorptions of such

photons represent ∼ 20-quasiparticle events, these fluctuations

will gradually outweigh generation-recombination noise. We

show this will lead to an asymmetry in the distribution of

quasiparticle occupations Nqp, with a long tail on the higher

side. We then measure telegraph transition rates in real QCDs,

showing qualitatively similar asymmetry in the distribution of

telegraph transition rates. As these rates should be instanta-

neously proportional to the quasiparticle occupation number,

this asymmetry is evidence of single photon events.

II. QUASIPARTICLE FLUCTUATIONS

The mean quasiparticle population in the absorber in QCDs,

can be described by detailed balance equations [1]:

dNqp

dt
=Γphot + Γgen −RNqp(Nqp − 1)

−KNqppeven + Γoutpodd (1)

dpodd

dt
=KNqppeven − Γoutpodd, (2)

where Nqp is the quasiparticle population, Γphot = ǫηPin/∆ is

the rate of quasiparticle generation from pair-breaking by pho-

tons, ǫ is the optical efficiency, η is the quasiparticle conversion

efficiency, Pin is the input power, ∆ is the superconducting

gap energy, Γgen is the quasiparticle generation rate, R is the

recombination rate, K is the rate of tunneling to the island,

Γout is the rate of tunneling out of the island, and peven and

podd are the probability of the island being occupied by an

even and odd number of quasiparticles respectively.

One can consider fluctuations about this mean by construct-

ing a master equation [6]. At first, we will neglect the island

to find the stationary mixture. Generation and recombination

with rates of Γgen/δng-r and RNqp(Nqp−1)/δng-r will alter the

population by a shot size of δng-r = 2 quasiparticles. Photon

arrival with a rate of Γphot/δnphot will alter the population by

a shot size of δnphot = ηhν/∆ ≈ 20 quasiparticles, where h
is Planck’s constant and ν is the optical frequency. Letting pn
represent the probability of n quasiparticles in the reservoir

we arrive at:

dpn
dt

≈
Γphot

20

[

p(n−20) − pn
]

+
Γgen

2

[

p(n−2) − pn
]

+
R

2

[

(n+ 2)(n+ 1)p(n+2) − n(n− 1)pn
]

, (3)

where we have assumed pn = 0 for n < 0.

Previous works have solved similar master equations by

linearizing the recombination term and finding a Fokker-

Planck equation [6]. However, because of the large photon

shot size and the small volume of our reservoirs (∼ 0.005
µm3), our fluctuations will not necessarily be smaller than the

mean population. Thus linearizing is not possible and we will

solve the full master equation numerically.

In Fig. 1 we plot example solutions {pn} for the stationary

mixture for several different photon arrival rates Γphot. As the

photon rate increases, an asymmetry in population distribution

is clearly visible, with a long tail on the higher population side.

We must now consider the term −KNqppeven describing

tunneling to the island. Most generally, we can treat this master

equation as a continuous-time Markov chain giving a phase-

type distribution. However, if we assume that tunneling is

fast compared to the generation-recombination dynamics, then

measured over long times this will reduce to a hyperexpo-

nential distribution,
∑

∞

n=0 pnKn exp(−Knt), a mixture of
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Fig. 1. Stationary mixtures {pn} of the master equation, Eqn. 3, at selected
photon arrival rates. Note that initially significant asymmetry appears before
the peak begins to shift, with a long tail on the right side. Values of R =

2000 Hz and Γgen = 100 Hz have been selected.

exponential distributions weighted by the stationary mixture

{pn}.

What if we measure the tunneling rate over shorter times? If

we measure the tunneling rate in time windows that are short

compared to the timescale of the generation-recombination dy-

namics, then in any given window we will tend to see a single

state of the reservoir n rather than the stationary mixture, with

dwell times distributed exponentially: Kn exp(−Knt). Then

the fraction of windows in each state will be given by the

values {pn}. Plotting the tunneling rate Kn measured in each

window on a histogram, the result will be proportional to the

stationary mixture {pn}.

III. EXPERIMENT

Fig. 2 shows an optical microscope image of a single QCD

pixel. The outer spiral structure is the coplanar waveguide

resonator with a frequency of order 3 GHz. At its center is an

antenna capacitively coupled to the SCB. Incoming radiation

breaks Cooper pairs in the reservoir, leading to quasiparticles

which can tunnel to the island, causing quasiparticle poisoning

of the SCB.

A 5x5 array of QCDs was operated in a 3He/4He dilution

refrigerator, and illuminated with a filtered blackbody source

(see [3] for details). The applied gate voltage was tuned to

the degeneracy point of a single SCB qubit, at which the

telegraph signal due to qubit transitions was measured in

the response of a microwave tone applied to the coplanar

waveguide resonator [4], [7]. The even and odd quasiparticle

states were distinguished by a Schmitt trigger, providing a

measurement of what state the SCB was in at a given time.

This time stream measurement was taken and divided into

windows. In each window, a histogram of the dwell times in

each state can be plotted. Assuming that the distribution of

events is Poissonian (memoryless), this will yield an expo-

nential distribution of dwell times [4]. After correcting for the

Fig. 2. Optical micrograph of a single QCD pixel.
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Fig. 3. Histogram of measured transition rates in 10 ms windows for selected
photon arrival rates Γphot, as measured by the temperature of the black body
source [3]. Rates are corrected for finite measurement bandwidth [7].

finite bandwidth of the measurement [7], we obtain a measure

of the even-to-odd transition rate, or rather the rate at which

quasiparticles tunneled from the reservoir to the island in that

window. For a sufficiently short window length, shorter than

the rate of recombination dynamics, this would be proportional

to the KNqppeven term in Eqn. 2. For longer window lengths,

though, there will be contributions from multiple occupation

states Nqp as the quasiparticles in the reservoir recombine.

IV. TELEGRAPH RATE DISTRIBUTION ASYMMETRY

Fig. 3 shows a histogram of observed transition rates during

10 ms intervals. Increasing asymmetry is visible towards

the highest power (black). This asymmetry is evidence of

temporary excursions to states with a higher number of

quasiparticles, and thus with a higher average transition rate

(Eqn. 2.)

Unfortunately, the simple model discussed in Sec. II is

not adequate for fits of the data presented here. First, the

10 ms windows are too long compared to the recombination

dynamics, so any given window samples from multiple occu-

pation states Nqp. In addition, this model does not account



for the interaction of quasiparticles with phonons [6]; this

can effectively trap quasiparticles and provide access to the

odd states of the master equation. However, the data shows

qualitative agreement, with the predicted tail extending to very

high rates, as well as the shift of the most likely rate.

V. CONCLUSION

In this work, we observe qualitative agreement between

the predicted asymmetry in the distribution of quasiparticles

and our measured distribution of telegraph rates (predicted in

Eqn. 2 to be proportional).

Coupled with our earlier demonstration of photon shot

noise limited scaling of noise equivalent power in QCDs [3],

this telegraph rate asymmetry provides compelling statistical

evidence of single photon events. However, we can not cleanly

isolate individual photon events because we are not able at this

time to observe the transition rate on a timescale faster than

the recombination dynamics.

This will require some combination of devices with slower

recombination dynamics (larger reservoirs) and higher mea-

surement bandwidth. Another path forward might be full

simulation of the system as a continuous time Markov chain.

In the future we aim to develop algorithms using sequential

analysis changepoint detection [8] to identify single photon

events.

While QCDs are not a natural candidate for operation as

an array of photon-counters (due to difficulty in tuning all

qubits to the degeneracy point simultaneously), this observed

asymmetry provides useful confirmation of the earlier photon

shot noise result [3].
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