
Abstract— We demonstrate that dispersive compensation can be 

achieved for the communication channels within the atmospheric 

THz windows using the long-path THz-TDS system. However, the 

THz pulse broadening cannot be eliminated due to the bandwidth 

reduction of the propagating THz pulse due to the frequency 

dependent absorption of the channels. 

  

There are many applications for relatively short-length, high 

bit-rate THz links in the atmosphere [1-5].  A recent study 

presented an experimental and theoretical characterization of 

short-length, high bit-rate links for the seven THz 

communication channels in the atmosphere below 1 THz [4]. 

Here, using the complete theoretical approach for the 

absorption and dispersion of water vapor [4-6], we show the 

potential to increase the bit-rate distance product, by 

dispersion compensation.  However, we also show that the 

frequency dependent absorption within the channel 

significantly reduces the bandwidth of the transmitted signal.  

This reduction also broadens the THz data pulses, and 

consequently dispersion compensation cannot eliminate all of 

the observed pulse broadening with propagation. THz pulses 

experience distortion and broadening when they propagate 

through the dispersive atmosphere, which leads to overlapping 

of adjacent pulses in the bit sequence. Here, we analyze the 

increase of the performance of the Channel 7 at 852 GHz, with 

dispersion-compensation to demonstrate achievable high data 

rates of the future THz wireless network. 

 Dispersion management compensates phase dispersion in 

communication channels. Such compensation has been studied 

since 1980, and is used in optical fibers to significantly 

increase the data rates in optical communications. It is also 

important to understand the full capacity of the THz channels 

without being limited by dispersion and to be able to estimate 

the dispersion tolerance of the THz channels. 

When the electric field of the input THz pulse, E(0,ω),  

(expressed as a function of frequency) passes through the 

dispersive  atmosphere, the phase changes due to the 

resonance lines of water vapor.  The output complex spectrum 

E (z,ω), is given by the product of the input field with the 

phase function and the attenuation, as  

 

 

Here, β(ω) is the propagation vector, α(ω) is the attenuation 

coefficient, Φ(ω) is the spectral phase function and z is the 

propagation distance. For communication channels, β(ω) is 

approximated by a Taylor series with respect to the carrier 

(center) angular frequency ωo, as shown below 

 

for Eq. (2) of [4], for which Δω = (ω – ωo). The term β(ω0) 

adds a constant phase. β1 , β2  and β3 are  the first, second and 

third derivatives of β(ω) with respect to ω, respectively. The 

term, β1 is equal to 1/νg, , for which νg is the group velocity, 

adds delay to the pulse. Neither of these terms affects the 

pulseshape. β2 is known as the group velocity dispersion 

(GVD) and is proportional to d(1/vg)/dω.  β2 introduces a 

linear transit time variation with frequency for the spectral 

components, thereby creating temporal broadening. β3 causes 

cubic phase dispersion with respect to the center frequency.  

Here we provide dispersion compensation not only for the    

second order group delay dispersion, but also for the third-

order dispersion. Higher order terms are negligible in our 

calculations. In order to compensate the dispersion over a 

large frequency range, it is helpful to rewrite the approximate 

phase equation ΦA(ω,z) =  βA(ω)z, in the form 
 

    ΦA = Φ0 + A1 Δω + A2 Δω
2
 + A3 Δω

3
.        (4a) 

 

    Φc =   A2 Δω
2
 + A3 Δω

3
.                (4b) 

 

The THz- bit pulse reshaping and broadening are due to the A2 

and the A3 terms, while Φ0 = β(ω0)z and A1 determine the 

speed of undistorted pulse propagation. The compensating 

phase modulation is given by Φc. Specifying this dependence, 

the curve fitting tool of MATLAB was used to optimize the 3-

A coefficients to fit the calculated phase ΦA over the 

bandwidth.  

The phase fitting is very sensitive to the water vapor 

resonant line structure within and near the THz communication 

channel under study, and the best dispersion compensation 

may require center frequency adjustment and bandwidth 

reduction. The optimal performance is obtained, when the 

phase fitting process to determine the A parameters is done 

within the output FWHM amplitude spectral range. These A 

parameters are then used to calculate ΦA(ω,z) and Φc over the 

entire spectrum. The dispersion compensation is performed by 

multiplying the complex output spectrum by exp(-iΦc).  

Our approach is equivalent to fitting the frequency 

dependent phase Φ(ω,z) of the propagated pulse, due to the 

refractivity (n(ω) – 1), where n(ω)  is the index of refraction. 

For our case, we remove the strong linear phase ramp as 

follows: Φ(ω,z) = (ω/c) (n(ω) – n(0) – 2)z = β(ω)z, for which 

(n(0) – 1) = (61.06 x 10
-6

) [6].  

 Figure 1 shows the recently studied input THz bit sequence 

(011010) for the 852 GHz channel and the measured and 

calculated output THz bit sequence [4]. The dispersion 

compensated bit sequence is shown as the bottom sequence in 

the figure.  Clearly, the transmitted bit sequence has been 

improved by the compensation, but the clarity of the input 

sequence has not been obtained. 
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Fig. 1. Comparison of experiment and theory for Channel 7, 852 GHz, 56.8 

Gb/s, (15 cycles), 108 GHz BW, for 137-m path propagation with RH 65% 

(11.2 g/m3) and 21 oC  [4].The black vertical lines mark the centers of the bit 

slots. Upper (red) input pulses, divided by 4 for better display. Middle (red) 

simulated output pulses, together with overlapping middle (black) measured 

output pulses [4].  Lower (black) dispersion compensated IFFT output pulses. 

 

Fig. 2 shows a single THz input pulse, the transmitted 

output pulse, a completely dispersion compensated output 

pulse, and the corresponding amplitude spectra.  The output 

spectrum is shown with reduced amplitude due to the 

frequency-dependent absorption of the channel. The FWHM 

bandwidth of the output spectrum is 76 GHz compared to the 

input bandwidth of 108 GHz.  This reduction in bandwidth 

increases the width of the completely dispersion compensated 

output pulse shown in Fig. 2(a), compared to the input pulse.  

The compensated output pulse is simply obtained by the 

Inverse Fast Fourier Transform (IFFT) of the output amplitude 

spectrum.  The increased transform limited output pulsewidth  

is inversely proportional to the reduced bandwidth of the 

output spectrum. 

It is a mathematical fact, that the IFFT of the amplitude 

spectrum of an arbitrary phase modulated pulse will give the 

transform limited, dispersion compensated, pulseshape.  The 

technical question is whether this can be achieved with 

physically realizable linear filters or phase modulators.  

Figure 3 compares the IFFT compensated pulse with the (A2  

and A3), dispersion compensated pulse, which shows excellent 

compensation.   

 
Fig. 2. (a). Upper (red) input pulse, middle (black) transmitted  output pulse 

and lower (green) IFFT dispersion compensated output pulse, both  multiplied 

by 3.5. Pulses are shown from 100 to 180 ps. (b). Input amplitude spectrum 

upper (red) line and output amplitude spectrum lowest (black) high-lighted 

line, also shown with multiplication as the middle (black) line.                        

             
Fig. 3. Upper (green) IFFT dispersion compensated output pulse.  Lower 

(black) output pulse with (A2 and A3), dispersion compensation.  

 

Figure 4a shows the complete phase calculation of β(ω)z 

without the constant (zero frequency) refractivity term [3-6], 

compared to the 3-A parameter fit of ΦA, with (ωo/2π) = 852 

GHz, marked by the vertical line. The difference between the 

two plots (residuals) is shown in Fig. 4b, indicating a good, 

fitting precision of the order of 0.05 rad.  Figure 4c shows the 

compensating phase modulation Φc, which could be applied to 

the local oscillator for phase compensated, coherent detection. 
 

 
Fig. 4. All curves are shown in radians. (a). Calculated phase angle Φ for the 

conditions of Fig. 1 [2] (black line) and the 3-A parameter ΦA  result of Eq. 

(2a) (purple line). (b). Residual plot between the two (a) curves. (c). 

Compensating phase modulation Φc.  
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