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Abstract—This paper presents a novel orientation algorithm
designed to support a computationally efficient, wearable inertial
human motion tracking system for rehabilitation applications. It
is applicable to inertial measurement units (IMUs) consisting of
tri-axis gyroscopes and accelerometers, and magnetic angular
rate and gravity (MARG) sensor arrays that also include tri-axis
magnetometers. The MARG implementation incorporates mag-
netic distortion compensation. The algorithm uses a quaternion
representation, allowing accelerometer and magnetometer data to
be used in an analytically derived and optimised gradient descent
algorithm to compute the direction of the gyroscope measurement
error as a quaternion derivative. Performance has been evaluated
empirically using a commercially available orientation sensor
and reference measurements of orientation obtained using an
optical measurement system. Performance was also benchmarked
against the propriety Kalman-based algorithm of orientation
sensor. Results indicate the algorithm achieves levels of accuracy
matching that of the Kalman based algorithm; < 0.8◦ static
RMS error, < 1.7◦ dynamic RMS error. The implications of the
low computational load and ability to operate at small sampling
rates significantly reduces the hardware and power necessary
for wearable inertial movement tracking, enabling the creation
of lightweight, inexpensive systems capable of functioning for
extended periods of time.

I. INTRODUCTION

The accurate measurement of orientation plays a critical
role in a range of fields including: aerospace [1], robotics [2],
[3], navigation [4], [5] and human motion analysis [6], [7]
and machine interaction [8]. In rehabilitation, motion tracking
is vital enabling technology, in particular for monitoring
outside clinical environs; ideally, a patient’s activities could
be continuously monitored, and subsequently corrected. While
extensive work has been performed for motion tracking for
rehabilitation, an unobtrusive, wearable system capable of
logging data for extended periods of time has yet to be
realized. Existing systems often require a laptop or handheld
PC to be carried by the subject due to the processing, data
storage, and power requirements of the sensory equipment.
This is not practical outside of a laboratory environment, thus
detailed data may only be obtained for short periods of time
for a limited range of subject’s motion. More precise data
representative of a subject’s natural behaviour over extended
periods of time (e.g. an entire day or even a week) would be
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of significant utility in this realm. In a recent survey, Zhoua
[7], cited real time operation, wireless properties, correctness
of data, and portability as major deficiencies that must be
addressed to realize a clinically viable system.

A. Inertial Motion Tracking Systems

Whilst a variety of technologies enable the measurement of
orientation, inertial based sensory systems have the advantage
of being completely self contained such that the measurement
entity is constrained neither in motion nor to any specific
environment or location. An IMU (Inertial Measurement Unit)
consists of gyroscopes and accelerometers enabling the track-
ing of rotational and translational movements. In order to
measure in three dimensions, tri-axis sensors consisting of 3
mutually orthogonal sensitive axes are required. A MARG
(Magnetic, Angular Rate, and Gravity) sensor is a hybrid
IMU which incorporates a tri-axis magnetometer. An IMU
alone can only measure an attitude relative to the direction of
gravity which is sufficient for many applications [2], [1], [6].
MARG systems, also known as AHRS (Attitude and Heading
Reference Systems) are able to provide a complete measure-
ment of orientation relative to the direction of gravity and the
earth’s magnetic field. An orientation estimation algorithm is
a fundamental component of any IMU or MARG system. It is
required to fuse together the separate sensor data into a single,
optimal estimate of orientation.

The Kalman filter [9] has become the accepted basis for
the majority of orientation algorithms [2], [10], [11], [12]
and commercial inertial orientation sensors; xsens [13], micro-
strain [14], VectorNav [15], Intersense [16], PNI [17] and
Crossbow [18] all produce systems founded on its use. The
widespread use of Kalman-based solutions are a testament
to their accuracy and effectiveness, however, they have a
number of disadvantages. They can be complicated to im-
plement which is reflected by the numerous solutions seen
in the subject literature [2], [10], [11], [12], [19], [20], [21],
[22], [23]. The linear regression iterations, fundamental to the
Kalman process, demand sampling rates which can far exceed
the subject bandwidth (e.g. a sampling rate between 512 Hz
[13] and 30 kHz [14] may be necessary for human motion
capture applications where system portability is critical). The
state relationships describing rotational kinematics in three-
dimensions typically require large state vectors and an ex-
tended Kalman filter implementation [2], [12], [19] to linearise
the problem.

These challenges demand a large computational load for
implementation of Kalman-based solutions and provide a clear
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motivation for alternative approaches. Previous approaches
to address these issues have implemented either fuzzy pro-
cessing [1], [3] or frequency domain filters [24] to favour
accelerometer measurements of orientation at low angular
velocities and the integrated gyroscope measurements at high
angular velocities. Such an approach is simple but may only
be effective under limited operating conditions. Bachman et al
[25] and Mahony et al [26] present separate algorithms which
both employ a complementary filter process. This algorithm
structure has been shown to provide effective performance at
relatively little computational expense.

This paper introduces orientation estimation algorithm that
is applicable to both IMU and MARG systems. The algorithm
employs a quaternion representation of orientation (as in:
[25], [12], [19]) to describe the coupled nature of orientations
in three-dimensions and is not subject to the problematic
singularities associated with an Euler angle representation.
A complete derivation and empirical evaluation of the new
algorithm is presented. Its performance is benchmarked against
existing commercial filters and verified with optical tracking
system.

II. ORGANISATION OF PAPER

Section III delineates the mathematical derivation of the
orientation estimation algorithm, including a description of the
parameterization and compensation for magnetic distortion.
Section IV describes the experimental equipment used to test
and verify the performance of the algorithm. Section V quanti-
fies the experimental testing and accuracy of the algorithm and
compares it to existing systems. Section VII expands briefly
gives details on implementations of the system underway
currently in our laboratory in human motion tracking while
Section VI summarizes conclusions and contributions of this
work. Throughout the paper, a notation system of leading
superscripts and subscripts adopted from Craig [27] is used
to denote the relative frames of orientations and vectors. A
leading subscript denotes the frame being described and a
leading superscript denotes the frame this is with reference
to. For example, For example, AB q̂ describes the orientation of
frame B relative to frame A and Av̂ is a vector described in
frame A.

III. ALGORITHM DERIVATION

A. Orientation from angular rate

A tri-axis gyroscope will measure the angular rate about
the x, y and z axes of the senor frame, termed ωx, ωy and
ωz respectively. If these parameters (in rads−1) are arranged
into the vector Sω defined by equation (1), the quaternion
derivative describing rate of change of the earth frame relative
to the sensor frame S

E q̇ can be calculated [28] as equation (2).
The ⊗ operate denotes a quaternion product and the ˆ accent
denotes a normalised vector of unit length.

Sω =
[
0 ωx ωy ωz

]
(1)

S
E q̇ =

1

2
S
E q̂ ⊗ Sω (2)

The orientation of the earth frame relative to the sensor
frame at time t, E

S qω,t, can be computed by numerically
integrating the quaternion derivative S

E q̇ω,t as described by
equations (3) and (4), provided that initial conditions are
known. In these equations, Sωt is the angular rate measured
at time t, ∆t is the sampling period and S

E q̂est,t−1 is the
previous estimate of orientation. The subscript ω indicates that
the quaternion is calculated from angular rates.

S
E q̇ω,t =

1

2
S
E q̂est,t−1 ⊗ Sωt (3)

S
Eqω,t = S

E q̂est,t−1 + S
E q̇ω,t∆t (4)

B. Orientation from a homogenous field

In the context of an orientation estimation algorithm, it will
initially be assumed that an accelerometer will measure only
gravity and a magnetometer will measure only the earth’s
magnetic field. If the direction of an earth’s field is known
in the earth frame, a measurement of the field’s direction
within the sensor frame will allow an orientation of the
sensor frame relative to the earth frame to be calculated.
However, for any given measurement there will not be a unique
sensor orientation solution, instead there will infinite solutions
represented by all those orientations achieved by the rotation
the true orientation around an axis parallel with the field.
A quaternion representation requires a single solution to be
found. This may be achieved through the formulation of an
optimisation problem where an orientation of the sensor, SE q̂,
is found as that which aligns a predefined reference direction
of the field in the earth frame, Ed̂, with the measured field
in the sensor frame, S ŝ; thus solving (5) where equation (6)
defines the objective function.

min
S
E q̂∈<4

f(SE q̂,
Ed̂, S ŝ) (5)

f(SE q̂,
Ed̂, S ŝ) = S

E q̂
∗ ⊗ Ed̂⊗ S

E q̂ − S ŝ (6)

Many optimisation algorithms exist but the gradient descent
algorithm is one of the simplest to both implement and
compute. Equation (7) describes the gradient descent algorithm
for n iterations resulting in an orientation estimation of SE q̂n+1

based on an ‘initial guess’ orientation S
E q̂0 and a variable

step-size µ. Equation (8) computes an error direction on the
solution surface defined by the objective function, f , and its
Jacobian, J .

S
Eqk+1 = S

E q̂k − µ
∇f(SE q̂k,

Ed̂, S ŝ)∥∥∥∇f(SE q̂k,
Ed̂, S ŝ)

∥∥∥
, k = 0, 1, 2...n (7)

∇f(SE q̂k,
Ed̂, S ŝ) = JT (SE q̂k,

Ed̂)f(SE q̂k,
Ed̂, S ŝ) (8)

Equations (7) and (8) describe the general form of the
algorithm applicable to a field predefined in any direction.
However, if the reference direction of the field is defined to
only have components within 1 or 2 of the principle axis of
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the earth coordinate frame then the equations simplify. An
appropriate convention would be to assume that the direction
of gravity defines the vertical, z axis as shown in equation (10).
Substituting E ĝ and normalised accelerometer measurement
Sâ for Ed̂ and S ŝ respectively, yields the simplified objective
function and Jacobian defined by equations (12) and (13).

S
E q̂ =

[
q1 q2 q3 q4

]
(9)

E ĝ =
[
0 0 0 1

]
(10)

Sâ =
[
0 ax ay az

]
(11)

fg(
S
E q̂,

Sâ) =




2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay
2( 1

2 − q2
2 − q2

3)− az


 (12)

Jg(
S
E q̂) =



−2q3 2q4 −2q1 2q2

2q2 2q1 2q4 2q3

0 −4q2 −4q3 0


 (13)

The earth’s magnetic field can be considered to have com-
ponents in one horizontal axis and the vertical axis; the vertical
component due to the inclination of the field which is between
65◦ and 70◦ to the horizontal in the UK [29]. This can be
represented by equation (14). Substituting E b̂ and normalised
magnetometer measurement Sm̂ for Ed̂ and S ŝ respectively,
yields the simplified objective function and Jacobian defined
by equations (16) and (17).

E b̂ =
[
0 bx 0 bz

]
(14)

Sm̂ =
[
0 mx my mz

]
(15)

fb(
S
E q̂,

E b̂, Sm̂) =




2bx(0.5− q2
3 − q2

4)+
2bx(q2q3 − q1q4)+
2bx(q1q3 + q2q4)+

2bz(q2q4 − q1q3)−mx

2bz(q1q2 + q3q4)−my

2bz(0.5− q2
2 − q2

3)−mz




(16)

Jb(
S
E q̂,

E b̂) =




−2bzq3 2bzq4

−2bxq4 + 2bzq2 2bxq3 + 2bzq1

2bxq3 2bxq4 − 4bzq2

−4bxq3 − 2bzq1 −4bxq4 + 2bzq2

2bxq2 + 2bzq4 −2bxq1 + 2bzq3

2bxq1 − 4bzq3 2bxq2




(17)

As has already been discussed, the measurement of gravity
or the earth’s magnetic field alone will not provide a unique
orientation of the sensor. To do so, the measurements and refer-
ence directions of both fields may be combined as described by
equations (18) and (19). Whereas the solution surface created
by the objective functions in equations (12) and (16) have a
global minimum defined by a line, the solution surface define

by equation (18) has a minimum define by a single point,
provided that bx 6= 0.

fg,b(
S
E q̂,

Sâ,E b̂, Sm̂) =

[
fg(

S
E q̂,

Sâ)

fb(
S
E q̂,

E b̂, Sm̂)

]
(18)

Jg,b(
S
E q̂,

E b̂) =

[
JTg (SE q̂)

JTb (SE q̂,
E b̂)

]
(19)

A conventional approach to optimisation would require
multiple iterations of equation (7) to be computed for each new
orientation and corresponding senor measurements. However,
it is acceptable to compute one iteration per time sample
provided that the convergence rate of the estimated orientation
governed by µt is equal or greater than the rate of change
of physical orientation. Equation (20) calculates the estimated
orientation S

Eq∇,t computed at time t based on a previous
estimate of orientation S

E q̂est,t−1 and the objective function
error ∇f defined by sensor measurements Sât and Sm̂t

sampled at time t. The form of ∇f is chosen according to
the sensors in use, as shown in equation (21). The subscript
∇ indicates that the quaternion is calculated using the gradient
descent algorithm.

S
Eq∇,t = S

E q̂est,t−1 − µt
∇f
‖∇f‖ (20)

∇f =

{
JTg (SE q̂est,t−1)fg(

S
E q̂est,t−1,

Sât)

JTg,b(
S
E q̂est,t−1,

E b̂)fg,b(
S
E q̂est,t−1,

Sât,
E b̂, Sm̂t)

(21)
An appropriate value of µt is that which ensures the

convergence rate of SEq∇,t is limited to the physical orientation
rate as this avoids overshooting due an unnecessarily large step
size. Therefore µt can be calculated as equation (22) where
∆t is the sampling period, S

E q̇ω,t is the rate of change of
orientation measured by gyroscopes and α is an augmentation
of µ to account for noise in accelerometer and magnetometer
measurements.

µt = α
∥∥S
E q̇ω,t

∥∥∆t, α > 1 (22)

C. Algorithm fusion process

In practice, SEqω,t may start from incorrect initial conditions
and acclimate errors due to gyroscope measurement noise
and S

Eq∇,t will provide an incorrect estimate when the ac-
celerometer is not stationary or the magnetometer exposed to
interferences. The goal of the fusion algorithm is to provide
an orientation estimate where S

Eqω,t is used to filter out high
frequency errors in S

Eq∇,t, and S
Eq∇,t is used both to com-

pensate for integral drift in S
Eqω,t and to provide convergence

from initial conditions.
An estimated orientation of the earth frame relative to the

sensor frame, SEqest,t, is obtained through the fusion of the two
separate orientation calculations, SEqω,t and S

Eq∇,t as described
by equation (23) where γt and (1 − γt) are weights applied
to each orientation calculation.

S
Eqest,t = γt

S
Eq∇,t + (1− γt)SEqω,t, 0 ≤ γt ≤ 1 (23)
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An optimal value of γt is therefore that which ensures the
weighted rate of divergence of S

Eqω due to integral drift is
equal to the weighted rate of convergence of S

Eq∇. This is
represented by equation (24) where µt

∆t is the convergence
rate of SEq∇ and β is the divergence rate of SEqω expressed as
the magnitude of a quaternion derivative corresponding to the
gyroscope measurement error. Equation (24) can be rearranged
to define γt as equation (25).

(1− γt)β = γt
µt
∆t

(24)

γt =
β

µt

∆t + β
(25)

The fusion process ensures the optimal fusion of SEqω,t and
S
Eq∇,t assuming that the convergence rate of S

Eq∇ governed
by α is equal or greater than the physical rate of change of
orientation. Therefore α has no upper bound. If α is assumed
to be very large then µt, defined by equation (22), also
becomes very large and the equations simplify. A large value
of µt used in equation (20) means that S

E q̂est,t−1 becomes
negligible and the equation can be re-written as equation (26).

S
Eq∇,t ≈ −µt

∇f
‖∇f‖ (26)

The definition of γt in equation (25) also simplifies if the β
term in the denominator becomes negligible and the equation
can be rewritten as equation (27). It is possible from equation
(27) to also assume that γt ≈ 0.

γt ≈
β∆t

µt
(27)

Substituting equations (4), (26) and (27) into equation (23)
directly yields equation (28). It is important to note that in
equation (28), γt has been substituted as both as equation (26)
and 0.

S
Eqest,t =

β∆t

µt

(
−µt

∇f
‖∇f‖

)
+(1−0)

(
S
E q̂est,t−1 + S

E q̇ω,t∆t
)

(28)
Equation (28) can be simplified to equation (29) where

S
E q̇est,t is the estimated orientation rate defined by equation
(30).

S
Eqest,t = S

E q̂est,t−1 + S
E q̇est,t∆t (29)

S
E q̇est,t = S

E q̇ω,t − β
∇f
‖∇f‖ (30)

It can be seen from equations (29) and (30) that the
algorithm calculates the orientation S

Eqest by numerically inte-
grating the estimated rate of change of orientation S

E q̇est. The
algorithm computes SE q̇est as the rate of change of orientation
measured by the gyroscopes, S

E q̇ω , with the magnitude of
the gyroscope measurement error, β, removed in a direction
based on accelerometer and magnetometer measurements.
Fig.1 shows a block diagram representation of the complete
orientation estimation algorithm implementation for an IMU.

Accelerometer Sât

Gyroscope Sωt
S
E q̂est,t

S
E q̇est,t

1

2
S
E q̂est,t−1 ⊗ Sωt

∫
.dt

q

‖q‖

JT
g (

S
E q̂est,t−1)fg(

S
E q̂est,t−1,

Sât)

z−1

z−1

∇f

‖∇f‖

β

Fig. 1. Block diagram representation of the complete orientation estimation
algorithm for an IMU implementation

D. Magnetic distortion compensation

Investigations into the effect of magnetic distortions on an
orientation sensor’s performance have shown that substantial
errors may be introduced by sources including electrical appli-
ances, metal furniture and metal structures within a buildings
construction [30], [31]. Sources of interference fixed in the
sensor frame, termed hard iron biases, can be removed through
calibration [32], [33], [34], [35]. Sources of interference in the
earth frame, termed soft iron errors, may only be removed
if an additional reference of orientation is available. An
accelerometer provides a reference of attitude and so may
be used to compensate for inclination errors in the measured
earth’s magnetic field.

The measured direction of the earth’s magnetic field in the
earth frame at time t, Eĥt, can be computed as equation
(31). The effect of an erroneous inclination of the measured
direction earth’s magnetic field, Eĥt, can be corrected if the
algorithm’s reference direction of the earth’s magnetic field,
E b̂t, is of the same inclination. This is achieved by computing
E b̂t as Eĥt normalised to have only components in the earth
frame x and z axes; as described by equation (32).

Eĥt =
[
0 hx hy hz

]
= S
E q̂est,t−1 ⊗ Sm̂t ⊗ S

E q̂
∗
est,t−1

(31)

E b̂t =
[
0
√
h2
x + h2

y 0 hz

]
(32)

Compensating for magnetic distortions in this way ensures
that magnetic disturbances are limited to only affect the
estimated heading component of orientation. The approach
also eliminates the need for the reference direction of the
earth’s magnetic field to be predefined; a potential disad-
vantage of other orientation estimation algorithm [12], [19].
Fig.2 shows a block diagram representation of the complete
algorithm implementation for a MARG sensor array, including
the magnetic distortion compensation.

E. Algorithm adjustable parameter

The orientation estimation algorithm requires 1 adjustable
parameter, β, representing the gyroscope measurement error
expressed as the magnitude of a quaternion derivative. It
is convenient to define β using the angular quantity ω̃max
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Accelerometer Sât

Magnetometer Sm̂t

Gyroscope Sωt
S
E q̂est,t

S
E q̇est,t

Eĥt

E b̂t

1

2
S
E q̂est,t−1 ⊗ Sωt

∫
.dt

q

‖q‖

JT
g,b(

S
E q̂est,t−1,

E b̂t)fg,b(
S
E q̂est,t−1,

Sâ,E b̂t,
Sm̂)

z−1

z−1

∇f

‖∇f‖

S
E q̂est,t−1 ⊗ Sm̂t ⊗ S

E q̂
∗
est,t−1

[
0

√
h2x + h2y 0 hz

]

β

Fig. 2. Block diagram representation of the complete orientation estima-
tion algorithm for an MARG implementation including magnetic distortion
compensation

representing the maximum gyroscope measurement error of
each axis. Using the relationship described by equation (2),
β may be defined by equation (33) where q̂ is any unit
quaternion.

β =

∥∥∥∥
1

2
q̂ ⊗

[
0 ω̃max ω̃max ω̃max

]∥∥∥∥ =

√
3

4
ω̃max (33)

IV. EXPERIMENTAL EQUIPMENT

The algorithm was tested using the xsens MTx orientation
sensor [13] containing 16 bit resolution tri-axis gyroscopes,
accelerometers and magnetometers. Raw sensor data was
logged to a PC at 512 Hz and imported accompanying software
to provide calibrated sensor measurements which were then
processed by the proposed orientation estimation algorithm.
The software also incorporates a propriety Kalman-based
orientation estimation algorithm. As both the Kalman-based
algorithm and proposed algorithm’s estimates of orientation
were computed using identical sensor data, the performance
of each algorithm could be evaluated relative to one-another,
independent of sensor performance.

A Vicon system, consisting of 8 MX3+ cameras connected
to an MXultranet server [36] and Nexus [37] software, was
used to provide reference measurements of the orientation
sensor’s actual orientation. To do so, the sensor was fixed to
an orientation measurement platform. The positions of optical
markers attached to the platform were logged at 120 Hz and
then post-processed to compute the orientation of the measure-
ment platform and sensor. In order for the measurements of an
orientation in the camera coordinate frame to be comparable
to the algorithm estimate of orientation in the earth frame, an
initial calibration procedure was required where the direction
of the earth’s magnetic and gravitational fields in the camera
coordinate frame were measured using a magnetic compass
and pendulum with attached optical markers.

V. EXPERIMENTAL RESULTS

It is common [19], [21], [13], [14], [15], [16] to quantify
orientation sensor performance as the static and dynamic RMS
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Fig. 3. Typical results for measured and estimated angle θ (top) and error
(bottom)

TABLE I
STATIC AND DYNAMIC RMS ERROR OF KALMAN-BASED ALGORITHM

AND PROPOSED ALGORITHM IMU AND MARG IMPLEMENTATIONS

Euler parameter Kalman-based MARG IMU
algorithm algorithm algorithm

RMS[φε] static 0.789◦ 0.581◦ 0.594◦

RMS[φε] dynamic 0.769◦ 0.625◦ 0.623◦

RMS[θε] static 0.819◦ 0.502◦ 0.497◦

RMS[θε] dynamic 0.847◦ 0.668◦ 0.668◦

RMS[ψε] static 1.150◦ 1.073◦ N/A
RMS[ψε] dynamic 1.344◦ 1.110◦ N/A

(Root-Mean-Square) errors in the decoupled Euler parameters
describing the pitch, φ, roll, θ and heading, ψ components of
an orientation, corresponding to rotations around the sensor
frame x, y, and z axis respectively. A total of 4 sets of Euler
parameters were computed, corresponding to the calibrated op-
tical measurements of orientation, the Kalman-based algorithm
estimated orientation and the proposed algorithm estimates
orientation for both the MARG and IMU implementations.
The errors of estimated Euler parameters, φε, θε and ψε, were
computed as the difference between estimated values and the
calibrated optical measurements. Results were obtained for a
sequence of rotations around each axis preformed by hand.
The experiment was repeated 8 times to compile a dataset rep-
resentative of system performance. The proposed algorithm’s
adjustable parameter, β, was set to 0.033 for the MARG
implementation and 0.041 for the IMU implementation. Trials
summarised in Fig.4, found these values to provide optimal
performance. Fig.3 shows the Kalman-based algorithm and
proposed algorithm MARG implementation results, typical of
the 8 experiments.

The static and dynamic RMS values of φε, θε, and ψε
were calculated assuming a static state when the measured
corresponding angular rate was < 5◦/s, and a dynamic when
≥ 5◦/s. This threshold was chosen to be sufficiently greater
than the noise floor of the data. The results are summarised
in Table I where each value, represents the mean of all 8
experiments.

The results of an investigation into the effect of the ad-
justable parameter β on algorithm performance are sum-
marised in Fig.4. The experimental data was processed though
the separate proposed algorithm IMU and MARG implanta-
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Fig. 5. The effect of sampling rate on the performance of the proposed
algorithm IMU (left) and MARG (right) implementations

tions, using fixed values of β between 0 to 0.5. There is a
clear optimal value of β high enough to minimises errors due
to integral drift but sufficiently low enough that unnecessary
noise is not introduced by large steps of gradient descent
iterations.

The results of an investigation into the effect of sampling
rate on algorithm performance is summarised in Fig.5. The
experimental data was processed though the separate proposed
algorithm IMU and MARG implantations, using the previously
defined, optimal values β. Experimental data was decimated
to simulate sampling rates between 1Hz and 512 Hz. It can be
seen from Fig.5 that the proposed algorithm achieves similar
levels of performance at 50 Hz as at 512 Hz. Both algorithm
implementations are able to achieve a static error < 2◦ and
dynamic error < 7◦ while sampling at 10 Hz. This level of
accuracy may be sufficient for human motion applications
though the sampling rate will limit the bandwidth of the
motion that may be measured.

VI. CONCLUSIONS

Orientation estimation algorithms for inertial/magnetic sen-
sors is a is a mature field of research. Modern techniques
[25], [26], [38] have focused on simpler algorithms that ame-
liorate the computational load and parameter tuning burdens
associated with conventional Kalman-based approaches. The
algorithm presented in this paper employs processes similar
to others but through a novel derivation, is able to offer some
key advantages:
• Computing an error based on an analytically derived Jaco-

bian results in a significant reduction in the computation
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Fig. 6. Recovered foot position plotted at 20 samples per second

load relative to a Gauss-Newton method [25]; quantified
as 109 and 248 scalar arithmetic operations per update
for C code implementations of the IMU and MARG
implementations respectively.

• Normalisation of the feedback error permits optimal gains
to be defined based on observable system characteristics.

• Magnetic distortion compensation algorithm eliminates
the need for a direction of magnetic field to be predefined
by the designer.

The elimination of a predefined direction of magnetic field
is an advantage over all other algorithms cited by this paper;
though this component may be easily incorporated to other
algorithms. Experimental studies have been presented for an
off-the-shelf, leading commercial unit with reference mea-
surements obtained via precision optical measurement system.
These studies enabled the algorithm to be benchmarked and
have indicated that the algorithm performs as well as the
proprietary Kalman-based system; even with a full order of
magnitude in reduction of sampling rate.

VII. FUTURE WORK

Research is presently underway to incorporate the orienta-
tion estimation algorithm into a self-contained human motion
tracking system for rehabilitative applications. As stated ear-
lier, Zhoua [7] cited real time operation, wireless properties,
correctness of data, and portability as major challenges to be
addressed. The reduction in computational load and relative
ease in tuning provided by the algorithm introduced in this
work addresses all of these issues; its efficiency allows im-
plementation on low power, low performance, hardware for
significant reduction in size, while its sampling rates permits
longer periods of data storage and simpler implementation for
wireless data transfer.

The algorithm is currently being implemented as the core
of a self-contained system with a MARG suite, data storage
unit, and power supply that will be small enough to fit within
the sole of a sports shoe for lower extremity motion tracking.
Fig.6 shows data obtained using a prototype unit for tracking
of the right foot of a test subject as they walked in a straight
line. Translational position data was recovered using methods
similar to [39], [40], [41], [42], [43]. The measured distance of
the 3 steps was 3.0 m, while the recovered displacement was
3.00 m. A complete system is currently under development to
allow long-term (1 week +) motion tracking in unstructured
environments.
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