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Abstract—In this work we investigate a nonlinear approach
for feature extraction of Electroencephalogram (EEG) signals in
order to classify motor imagery for Brain Computer Interface
(BCI). This approach is based on theEmpirical Mode Decom-
position (EMD) and band power (BP). The EMD method is a
data-driven technique to analyze non-stationary and nonlinear
signals. It generates a set of stationary time series calledIntrinsic
Mode Functions (IMF) to represent the original data. TheseIMFs
are analyzed with the power spectral density (PSD) to study the
active frequency range correspond to the motor imagery for each
subject. Then, the band power is computed within a certain
frequency range in the channels. Finally, the data is reconstructed
with only the specificIMFs and then the band power is employed
on the new database. The classification of motor imagery was
performed by using two classifiers,Linear Discriminant Analysis
(LDA) and Hidden Markov Models (HMMs). The results obtained
show that the EMD method allows the most reliable features to
be extracted from EEG and that the classification rate obtained
is higher and better than using only the directBP approach.

I. I NTRODUCTION

Brain Computer Interfaces(BCI) is a direct communication
pathway between a brain and an external device. The major
goal of theBCI research is to develop systems which help
disabled users to communicate with other people in order to
control artificial limbs or their environment [1], [2]. ABCI
system is represented as a system in a continuous closed loop,
generally composed of six steps, Figure 1: 1. Brain activity
measurement, 2. Preprocessing, 3. Feature Extraction, 4. Clas-
sification, 5. Translation into a command and Feedback [3].

One major challenge ofBCI is thus to extract reliable
information (features) from noisyEEGdata, i.e. step 3. These
features can then be used in step 4 in order to classify the
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Fig. 1. General functional model of aBCI System.

user’s mental state. Physiological studies [4], [5], showed
that the rhythms mu (8-12 Hz) and beta (13-30 Hz) are the
main relevant information for discriminating motor activity.
A common approach inBCI is thus to extract theband
powers of the rhythms mu and beta from theEEG signal
and use them as a classification features. Several common
band powertechniques were employed in theBCI literature.
Herman et al. [6] demonstrated that the Yule and WelchPSD
approaches, mainly dominate the other studied approaches.
These approaches are based essentially on some linearity and
stationarity hypothesis such as the use offast Fourier trans-
form (FFT) spectrum in short time of a segment of data. The
accuracy of theFFT calculation is closely related to the choice
of the duration of the signal segment [7]. However, the nature
of the EEG signal is nonstationary and nonlinear [8]. The
main nonstationary and nonlinear feature extraction technique
is theWavelet Transform(WT) [9]. Although this approach is
more effective than theFFT, it shows at the same time much
bigger ambiguity in signal decomposition. Huang et al. [10]
proposed a more fairly recent technique called theempirical
mode decomposition(EMD) for nonlinear and nonstationary
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time series data. TheEMD is a data driven approach (i.e. one
does not need to define a mother wavelet beforehand) that can
be used to decompose adaptively a signal into a finite number
of mono-component signals, which are known asintrinsic
mode functions(IMFs) or modes. It considers signals at their
local oscillations, but they are not necessarily considered in
the sense of Fourier harmonics. Their extraction is non-linear,
but their recombination for exact reconstruction of the signal
is linear. TheIMFs admit well-behavedHilbert transforms
(HT) [11] and they satisfy the following properties: they are
symmetric, differentIMFs yield different instantaneous local
frequencies as functions of time that give sharp identifications
of embedded structures. The decomposition is done linearly or
non-linearly depending on the data. This complete and almost
orthogonal decomposition is empirically realized by identify-
ing the physical local characteristic time scales intrinsic to
these data, which is the lapse between successive extrema.

TheEMD was recently applied toEEGanalysis such as de-
tection of synchronisation [12] and motor imagery, [13], [14]
where the Fourier spectra corresponding to the the rhythms
mu and beta were constructed by theEMD.

Transient neural assemblies mediated by synchrony in par-
ticular frequency ranges are thought to underlie cognition. We
propose a new approach to the detection of synchronisation in
EEG

In this work, we apply first theEMD on theEEG signals
and then we apply the Welch-basedband powerfor feature
extraction in order to extract the reliable information of
EEG corresponding to some motor imagery tasks. Based on
these features, the classification of the mental tasks was done
using two classifiers: linear discriminate classifier (LDC) based
on linear discriminant analysis (LDA) [15] and a nonlinear
classifier known ashidden Markov models(HMMs) [16].

II. DATA BASES & M ETHODS

A. EEG Data

Two motor imageryEEGdata corresponding to two subjects
were used in this work.

• For subject 1, theEEGdata corresponds to an experiment
with four sessions “run1234” acquired by Guger Tech-
nologies [17]. Each session contains 40 trials: 20 trails for
of right hand movement imagination and 20 trials for left
hand movement imagination, where each trial contains
2048 samples. The timing of this experiment is shown in
Figure 2. The mechanism is described as follows: after
two seconds a warning stimulus was given of a ‘beep’.
From second 3 until second 4.25 an arrow pointing left
or right hand was shown on the monitor after that the
subjects were instructed to imagine a left or right hand
movement depending on the direction of the arrow.

• For subject 2, theEEGdata is recorded in our Department
using the biosignal amplifier “g.USBamp-Gtec” [18]. One
subject (female aged 24 years) was instructed to imagine
a left or right hand movement depending on the direction
of the arrow. The same preceding experiment and data
structure were obtained.

Left or right hand imagery


imagination


beep


Fixation cross


time
[S]


Fig. 2. Paradigm: Timing of one trial in the experiment.

The experiment data were sampled at 256 Hz and filtered in
the range of 0.5 and 30Hz. A notch filter was used to suppress
the 50Hz power line interference. Two bipolar recordings
overlying the left and right sensorimotor area were obtained by
two electrodes C3 and C4 placed according to the international
10/20 system [19].

B. Feature extraction

In brain-computer interface, feature extraction has an im-
portant role. In order to extract the relevant features of the
EEG signal, we employed a feature extraction method based
on EMD andBP in order to recognize the left or right motor
imageries. The new feature extraction scheme is presented in
Figure 3.

Fig. 3. Our feature extraction scheme.

1) Empirical mode decomposition(EMD) approach: The
traditional EMD was recently proposed [10] as an adaptive
time-frequency data analysis method. It is defined by an
algorithm based on an empirical framework. In most cases,
the studies (performance, analysis,...) carried out on theEMD
are done with extensive digital simulations in controlled con-
ditions [10]. Despite the lack of theoretical formalism, this
algorithm showed its capacity to analyze the signals. Using a
new formulation forEMD based on constrained optimization,
the results of [20] were very similar to those obtained with
the traditionalEMD algorithm.

The basicEMD is defined by a process calledsifting to
break down any multimodal signal to a sum of basis com-
ponents calledintrinsic mode functions(IMFs). The IMFs are
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zero-mean AM-FM signals which must satisfy two conditions:
the first one is that the number of extrema and that of zero-
crossing must differ at most by one; the second one is that the
mean value between the upper and lower envelopes are equal
to zero at any point. Conceptually, the establishment of this
method is quite simple: one needs to consider a signal at its
local oscillation level, remove the fastest oscillation and iterate
the process on the residue considered as a new signal. At the
end of the sifting processes, a given signalx(t) can be written
as a sum of a finite number ofIMFs, Im(t),m = 1, 2, ...,M ,
and a final residuerM (t):

x(t) =
M∑

m=1

Im(t) + rM (t).

The decomposition is stopped at step M, if either the
residuerM (t) is a mono-component signal or has only 2
extrema [10]. Thestopping criterionmust be set to ensure
that the obtained signal satisfies the properties of anIMF while
limiting the number of iterations. For more details about the
different steps of thesifting process for the calculation of the
IMFi as well as thestopping criteriondefinition see [10].
Since the decomposition intoIMFs is based on the local
characteristic time scale of the data, it applies to nonlinear
and non-stationary processes.

2) Band powers(BP): The features may be extracted from
the EEG signals by estimating the power distribution of the
EEG in predefined frequency bands. In general, the band
power is estimated by digitally bandpass filtering the data,
squaring and averaging over consecutive samples according
to a given window size. Pfurtscheller et al. [21] used theBP
and demonstrated that for each subject, different frequency
components in the mu and beta bands were found which
provided best discrimination between left and right hand
movement imagination. These frequency bands varied between
9 and 14 Hz and between 18 and 26 Hz.

In this work, we propose a direct nonlinear approach to
extract the more relevantIMFs corresponding to the different
frequency components in the mu and beta bands and then
obtain the Welch-basedBPand use them as features for mental
task classification.

We applied theEMD method on theEEG data defined in
section II-A. TheEEG data for each subject are composed of
80 trials corresponding to left hand movement imaginations
(C4) and 80 trials corresponding to right hand movement
imaginations (C3). Figure 4 shows the result of one-trialEMD
decomposition for subject 2. Each channel is decomposed into
10 IMFs and one residue.

To analyze the different characteristics of eachIMF, we
applied the Welch’s method [22]. This method estimates the
PSD, it was applied to eachIMF to calculate and find the active
frequency bands such as the mu and beta rhythms. Figure 5
shows thePSD in eachIMF in the two channels C3 and C4.

We can notice that the characteristics of the active frequency
bands corresponding to mu and beta are located only in
IMF1, IMF2 on C3 and C4. Concerning subject 1, the active
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Fig. 4. (a) From top-left to down-right: the raw signal, the tenIMFs and the
residue in channel C4 of subject 2 as a function of sample index. (b) from
top-left to down-right: the raw signal, the tenIMFs and the residue in channel
C3 of subject 2 as a function of sample index.
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Fig. 5. (a) PSD (dB/Hz) vs. frequency (Hz) of eachIMF in (a) channel C4
and (b) channel C3 of subject 2.

frequency bands are located only inIMF1, IMF2 and IMF3
on C3 and C4. Therefore, the new signal is reconstructed by
keeping only the two firstIMFs for subject 2 and only three
first IMFs for subject 1. Then, band power was applied for the
new signal.

C. Classification

Two different classifiers were implemented to classify the
different motor imagery (imagination of right or left hand
movement):
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1) LDC: The LDC is a linear discriminant classifier based
on LDA. It has been used with success in many ofBCIs
such as motor imagery [4], [5]. The idea ofLDA [15] is
to find a weight vectorW so that two projected clusters
c1 and c2 of N1 and N2 training feature vectors onW
can be well separated from each other by hyperplanes
while keeping small variance of each cluster. The param-
eters are obtained with a learning algorithm from a set
of training data. Fisher introduced a method that reduces
the dimensionality before classification [15], [23]. The
dimension reduction is done by projecting the input data
X onto a valuey with adjustable weights vectorW:

y = W
T
X.

The separating hyperplane is obtained by seeking the
projection that maximizes the distance between the two
classes’ means and minimizes the between variance.

2) HMMs: This method is very efficient nonlinear tech-
nique used for the classification of time series [16].
it necessitates two stages: a training stage where the
stochastic process models are estimated through exten-
sive observation corpus and decoding or detection stage
where the model may be used off/on-line to obtain the
likelihoods of the given test sequence evaluated by each
model [24], [25]. A HMM is defined by the following
compact notation to indicate the complete parameter set
of the modelλ = (Π,A,B), whereΠ, A andB are the
initial state distribution vector, matrix of state transition
probabilities and the set of the observation probability
distribution in each state, respectively [16]. This set of
parameters is defined by

Π = [π1, π2, ..., πN ], πi = P (q1 = si),

A = [aij ], aij = P (qt+1 = sj |qt = si).

Where 1 ≤ i, j ≤ N, si, sj ∈ S, S =
{s1, s2, ..., sN}, t ∈ {1, 2, ..., T }. The observation at
time (or index) t,Ot, is considered in this paper as
continuousOt ∈ R

K . For a continuous observation, the
state conditional probability of the observationbi(Ot)
may be defined by a finite mixture of any log-concave
or elliptically symmetric probability density function
(pdf), e.g. Gaussian pdf, with state conditional obser-
vation mean vectorµi and state conditional observa-
tion covariance matrixΣi. In this paper we consider
only a single Gaussian pdf, soB may be defined as
B = {µi, Σi}, i = 1, 2, ..., N . At each instant of time
t, the model is in one of the statesi, 1 ≤ i ≤ N . It
outputsOt according to a density functionbi(Ot) and
then jumps to statej, 1 ≤ j ≤ N with probability
aij . The state transition matrix defines the structure of
the HMM [16]. The modelλ may be obtained off-line
by a given training procedure. In practice, given the
observation sequenceO = {O1,O2, ...,OT }, and a
modelλ, the HMMs need three fundamental problems
to be solved:

a) How to calculate the likelihoodP (O|λ)? The so-
lution to this problem provides a score of howO
belongs toλ.

b) How to determine the most likely state sequence
that corresponds toO? The solution to this problem
provides the sequence of the hidden states corre-
sponding to the given observation sequenceO.

c) How to adjust the modelλ in order to maximize
P (O|λ)? This is the problem of estimating the
model parameters given a corpus of training ob-
servations sequences.

Problems 1 and 2 are solved in the decoding or detection
stage using the forward or the Viterbi algorithms [16],
while problem 3 is solved during the training phase
using either a conventional algorithm such as the Baum-
Welch algorithm [16].
Our training scheme is based on Baum-Welch algorithm
and theBayesian Inference Criterion(BIC) [26] [27].
This scheme makes the training procedure independent
of the initialization problem and the a priori knowledge
of the number of states in eachHMM needed in the
Baum-Welch training algorithm.

D. Results

Table I shows the classification results based on the two
feature extraction methods (BP and EMD + BP) and by
using the two classification approachesHMMs andLDA. For

TABLE I
RECOGNITION PERCENTAGE RATES USINGHMMs AND LDA

CLASSIFICATION (%) OF MOTOR IMAGERY (LEFT AND RIGHT HAND

MOUVEMENT).

Subject subject 1 subject 2
Feature extraction BP EMD + BP BP EMD+BP
method
HMMs classifier 87.7% 91.25% 62.5% 76.25%
LDA classifier 69.76% 73.1% 78.29% 83.12%

each subject, theEEG data contains 160 trials and each trial
lasts 8 seconds as shown in Figure 2 (a set of 80 trials for
left hand movement imaginations and a set of 80 trials for
right hand movement imaginations). Each set of movement
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Fig. 6. Classification rate as a function of time (sec.) for right and left hand
movement imagery usingLDA and feature extraction :BP and EMD+BP of
subject 2.
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imagination data was divided into two subsets for each mental
task movement (40 trials forLDA/HMMs training and 40 trials
for test). In these subsets, we considered only the imagination
period: 4 seconds to 8 seconds (see Figure 2).

For the LDA, the recognition percentage rates shown in
Table I represent the average recognition rates between 4s
and 8s calculated on the 40 test trials. Figure 6 shows an
example of one test-trial classification rate as a function of
time (sec.) for right and left hand movement imagery using
the feature extraction methodsBP and EMD+BP of subject
2. In this example, the classification results show that at the
beginning of the trial the error is around 50%. After second
4 (arrow is shown to the subject on the screen at second 3,
see Figure 2) the error drops down. In Figure 6, the averages
of classification error for subject 2 in the imagination phase
are around 21,71% and 16,88% by usingBP and EMD+BP
respectly. This means that the data set can be classified with
an accuracy of about 78,29% and 83,12% respectively (see
Table I).

For the HMMs, the recognition percentage rates hown in
Table I correspond to the average of recognition percentage
rates in the diagonal of confusion matrices shown in Table II. It
can be seen that the classification results with the new feature
extraction method combiningEMD andBP is better than using
only BP method. It can be seen also that theHMMs give better
results than theLDA in all the cases.

TABLE II
CONFUSIONMATRICES FOR LEFT AND RIGHT HAND MOVEMENTS USING

HMMs. FROM TOP TO DOWN: USING BP METHOD FOR SUBJECT1, USING
BP+EMD METHOD FOR SUBJECT1, USING BP METHOD FOR SUBJECT2

AND USING BP+EMD METHOD FOR SUBJECT2.

Right Left
Right 85.0% 15.0%
Left 10.0% 90.0%

Right Left
Right 85.0% 15.0%
Left 2.50% 97.5%

Right Left
Right 72.5% 27.5%
Left 47.5% 52.5%

Right Left
Right 72.5% 27.5%
Left 20.0% 80.0%

III. C ONCLUSION

In this work, a feature extraction method based on the
Empirical Mode Decomposition (EMD) and theband power
(BP) is proposed to keep only the active frequency band
powers corresponding to mu and beta rhythms inBCI-related
mental taskEEG signals. The feature extraction process is
done in three-stages: in the first stage applies theEMD on the
rawEEGsignals to obtain theIntrinsic Mode Functions(IMF).
The second stage reconstructs the relevant signal by keeping
only the IMFs which contain the active frequency bands. The
third stage calculates theBP of the active frequencies in the

relevant signal. To evaluate this approach, two classifiers were
employed: a linear classifier based onlinear discriminant anal-
ysis (LDA) and nonlinear classifier based onhidden Markov
models(HMMs). The proposed feature extraction approach
gives better classification results for the two classifiers and
seems promising. However, to use theHMMs classifier, some
care should be taken into account such as the necessity use of a
large data base for training or the use of a good discriminative
training algorithm to train theHMMs [28].
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