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Abstract—In this work we investigate a nonlinear approach ' Conirol nerface (dispty)
for feature extraction of Electroencephalogram (EEG) signals in A Cerebral —
order to classify motor imagery for Brain Computer Interface messurement] | pre. | o fdut:) pevce
(BCI). This approach is based on theEmpirical Mode Decom- ety | [ mensioni ¥ LC RS
position (EMD) and band power (BP). The EMD method is a User bran sgnal
data-driven technique to analyze non-stationary and nonlinear sequisiton
signals. It generates a set of stationary time series calldatrinsic
Mode Functions (IMF) to represent the original data. Thesd MFs
are analyzed with the power spectral density (PSD) to study the
active frequency range correspond to the motor imagery for each
subject. Then, the band power is computed within a certain ) . )
frequency range in the channels. Finally, the data is reconstructed User's mental state. Physiological studies [4], [5], showed
with only the specificl MFs and then the band power is employed that the rhythms mu (8-12 Hz) and beta (13-30 Hz) are the
on the new database. The classification of motor imagery was main relevant information for discriminating motor activity.

performed by using two classifiers,Linear Discriminant Analysis ; i extract theband
(LDA) and Hidden Markov Models (HMMs). The results obtained A Comm?r:happr:‘o;ch IrBCl Isdtfgu? t? tHEEG si |
show that the EMD method allows the most reliable features to POWES 0 e rhythms ml‘_' _an_ eta irom signa
be extracted from EEG and that the classification rate obtained and use them as a classification features. Several common

is higher and better than using only the directBP approach. band powertechniques were employed in tiBCI literature.
Herman et al. [6] demonstrated that the Yule and W&l&D
approaches, mainly dominate the other studied approaches.
Brain Computer Interface@BCl) is a direct communication These approaches are based essentially on some linearity and
pathway between a brain and an external device. The magtationarity hypothesis such as the usefast Fourier trans-
goal of theBCI research is to develop systems which helfprm (FFT) spectrum in short time of a segment of data. The
disabled users to communicate with other people in order docuracy of thé-FT calculation is closely related to the choice
control artificial limbs or their environment [1], [2]. BCl of the duration of the signal segment [7]. However, the nature
system is represented as a system in a continuous closed ladpthe EEG signal is nonstationary and nonlinear [8]. The
generally composed of six steps, Figure 1: 1. Brain activityain nonstationary and nonlinear feature extraction technique
measurement, 2. Preprocessing, 3. Feature Extraction, 4. Claghe Wavelet TransfornfWT) [9]. Although this approach is
sification, 5. Translation into a command and Feedback [3]more effective than th€FT, it shows at the same time much
One major challenge 0oBCl is thus to extract reliable bigger ambiguity in signal decomposition. Huang et al. [10]
information (features) from nois¥EG data, i.e. step 3. Theseproposed a more fairly recent technique called engpirical
features can then be used in step 4 in order to classify ttnde decompositio(EMD) for nonlinear and nonstationary

Fig. 1. General functional model of BCl System.

I. INTRODUCTION
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time series data. ThEMD is a data driven approach (i.e. one R By
does not need to define a mother wavelet beforehand) that can 1 T Fixation cross
be used to decompose adaptively a signal into a finite number
of mono-component signals, which are known iaginsic !
mode functiongIMFs) or modes It considers signals at their 38—
local oscillations, but they are not necessarily considered in Left or right hand imagery
the sense of Fourier harmonics. Their extraction is non-linear, —
but their recombination for exact reconstruction of the signal 5
is linear. ThelIMFs admit well-behavedilbert transforms -
(HT) [11] and they satisfy the following properties: they are
symmetric, differeniMFs yield different instantaneous local !
frequencies as functions of time that give sharp identifications )
of embedded structures. The decomposition is done linearly or
non-linearly depending on the data. This complete and almost
orthogonal decomposition is empirically realized by identify-
ing the physical local characteristic time scales intrinsic to
these data, which is the lapse between successive extrema.
The EMD was recently applied tBEG analysis such as de-
tection of synchronisation [12] and motor imagery, [13], [14

B — beep

time [S]

Fig. 2. Paradigm: Timing of one trial in the experiment.

he experiment data were sampled at 256 Hz and filtered in

where the Fourier spectra corresponding to the the rhyth hg range of 0.5 an_d SO.HZ' A noteh filter was used to suppress
the 50Hz power line interference. Two bipolar recordings

mu and beta were constructed by tB&ID. Vina the left and right ot btained b
Transient neural assemblies mediated by synchrony in pg}/_er ying the feft and right sensormotor aréa were obtained by

ticular frequency ranges are thought to underlie cognition. \ﬁ%c() electrodes C3 and C4 placed according to the international

propose a new approach to the detection of synchronisatiorii 20 system [19].

EEG _ _ B. Feature extraction
In this work, we apply first th&EMD on the EEG signals . . . .
In brain-computer interface, feature extraction has an im-

and then we apply the Welch-basbdnd powerfor feature
ortant role. In order to extract the relevant features of the

extraction in order to extract the reliable information o ; .
X . EG signal, we employed a feature extraction method based
EEG corresponding to some motor imagery tasks. Based an . : .
e on EMD andBP in order to recognize the left or right motor
these features, the classification of the mental tasks was done

using two classifiers: linear discriminate classifiebC) based imageries. The new feature extraction scheme is presented in

on linear discriminant analysid.DA) [15] and a nonlinear Figure 3.
classifier known asidden Markov model§HMMs) [16].
Il. DATA BASES & M ETHODS
A. EEG Data a2 °’ e : :
Two motor imagerfeEGdata corresponding to two subjects ran actty 5 g §
were used in this work. measurement
« For subject 1, th&EEGdata corresponds to an experiment Featre Braction
with four sessions “run1234” acquired by Guger Tech- '
nologies [17]. Each session contains 40 trials: 20 trails for Fig. 3. Our feature extraction scheme.

of right hand movement imagination and 20 trials for left

hand movement imagination, where each trial contains1) Empirical mode decompositio(EMD) approach: The

2048 samples. The timing of this experiment is shown imaditional EMD was recently proposed [10] as an adaptive

Figure 2. The mechanism is described as follows: aftdme-frequency data analysis method. It is defined by an

two seconds a warning stimulus was given of a ‘beepalgorithm based on an empirical framework. In most cases,

From second 3 until second 4.25 an arrow pointing lefhe studies (performance, analysis,...) carried out oreEt®

or right hand was shown on the monitor after that thare done with extensive digital simulations in controlled con-

subjects were instructed to imagine a left or right handitions [10]. Despite the lack of theoretical formalism, this

movement depending on the direction of the arrow.  algorithm showed its capacity to analyze the signals. Using a
« Forsubject 2, th&EGdata is recorded in our Departmentew formulation forEMD based on constrained optimization,

using the biosignal amplifier “g.USBamp-Gtec” [18]. Onghe results of [20] were very similar to those obtained with

subject (female aged 24 years) was instructed to imagitine traditionalEMD algorithm.

a left or right hand movement depending on the direction The basicEMD is defined by a process callegifting to

of the arrow. The same preceding experiment and ddieeak down any multimodal signal to a sum of basis com-

structure were obtained. ponents calledntrinsic mode function§IMFs). The IMFs are
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zero-mean AM-FM signals which must satisfy two conditions: .

. R WM OHMWW"""‘
the first one is that the number of extrema and that of zero- { 25 w0 wow w0700 {
crossing must differ at most by one; the second one is that the f’ﬁo””““"“’””“m e *
mean value between the upper and lower envelopes are eque AN~ ] 0
to zero at any point. Conceptually, the establishment of this AV e I et
method is quite simple: one needs to consider a signal at its b o wm w0 oz Chyprse w0 wm aw {
local oscillation level, remove the fastest oscillation and iterate I S ]
the process on the residue considered as a new signal. At the L ] g

. . . . . 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
end of the sifting processes, a given signél) can be written @
as a sum of a finite number t¥IFs, I,,,(t),m =1, 2,..., M, = | : |
and a. flnal resldue[\/I (t). 7200 500 1000 1500 2000 2500 ) 500 1000 1500 2000 2500
1\/[ 7:}0 500 1000 1500 2000 2500 o UO 500 1000 1500 2000 2500
D FANANAAAASAA~—
Z(t) = Z Im (t) + T.IVI (t)' 700 500 1000 1500 2000 2100 ;Uﬂ 500 1000 1500 2000 2100
m=1 E ‘U-o
0 500 1000 1500 2000 2500 ‘Q(m—z 500 1000 1500 2000 2500
The decomposition is stopped at step M, if either the ~ _— — | ;
. . . 72{10—1 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
residuer,/(t) is a mono-component signal or has only 2 ] ;
extrema [10]. Thestopping criterionmust be set to ensure T e Oy P e e e

that the obtained signal satisfies the properties divén while
limiting the number of iterations. For more details about theg 4. (a) From top-left to down-right: the raw signal, the tbtFs and the
different steps of thaifting process for the calculation of theresidue in channel C4 of subject 2 as a function of sample index. (b) from
IMF; as well as thestopping criterion definition see [10]. top-left to _down-right: the raw signal, the t_dnﬂFs and the residue in channel

. .. . . C3 of subject 2 as a function of sample index.
Since the decomposition inttMFs is based on the local
characteristic time scale of the data, it applies to nonlinear
and non-stationary processes.

2) Band powergBP): The features may be extracted from
the EEG signals by estimating the power distribution of the
EEG in predefined frequency bands. In general, the band
power is estimated by digitally bandpass filtering the data,
squaring and averaging over consecutive samples according
to a given window size. Pfurtscheller et al. [21] used Bfe
and demonstrated that for each subject, different frequency
components in the mu and beta bands were found which
provided best discrimination between left and right hand of A ] ]
movement imagination. These frequency bands varied betweer g @ w g m wm o
9 and 14 Hz and between 18 and 26 Hz. i SS—

In this work, we propose a direct nonlinear approach to ii% ]
extract the more relevaimiFs corresponding to the different
frequency components in the mu and beta bands and ther
obtain the Welch-basd8P and use them as features for mental
task classification.

We applied theeMD method on theEEG data defined in
secti(_)n I-A. TheEEQ data for each subject are cpmpqseq of 5. (a) PSD (dBiHz) vs. frequency (Hz) of ea in (a) channel C4
80 trials correspondmg to left hand mqvement magmatmniﬁ’d (b) channel C3 of subje.ct 5 y
(C4) and 80 trials corresponding to right hand movement
imaginations (C3). Figure 4 shows the result of one-tsID
decomposition for subject 2. Each channel is decomposed ifi@quency bands are located only liMF1, IMF2 and IMF3
10 IMFs and one residue. on C3 and C4. Therefore, the new signal is reconstructed by

To analyze the different characteristics of edbh, we keeping only the two firstMFs for subject 2 and only three
applied the Welch's method [22]. This method estimates thigst IMFs for subject 1. Then, band power was applied for the
PSD it was applied to eachMF to calculate and find the activenew signal.
frequency bands such as the mu and beta rhythms. Figure 5 o
shows thePSDin eachIMF in the two channels C3 and C4.C. Classification

We can notice that the characteristics of the active frequencyTwo different classifiers were implemented to classify the
bands corresponding to mu and beta are located only different motor imagery (imagination of right or left hand
IMF1, IMF2 on C3 and C4. Concerning subject 1, the activ@movement):
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1)

2)

LDC: TheLDC is a linear discriminant classifier based
on LDA. It has been used with success in manB@fis
such as motor imagery [4], [5]. The idealoDA [15] is

to find a weight vectokV so that two projected clusters
cl and c2 of N1 and N2 training feature vectors\wh
can be well separated from each other by hyperplanes
while keeping small variance of each cluster. The param-
eters are obtained with a learning algorithm from a set
of training data. Fisher introduced a method that reduces
the dimensionality before classification [15], [23]. The
dimension reduction is done by projecting the input data
X onto a valuey with adjustable weights vectow:

y=WTX.

The separating hyperplane is obtained by seeking the
projection that maximizes the distance between the two
classes’ means and minimizes the between variance.
HMMs. This method is very efficient nonlinear tech-
nigue used for the classification of time series [16].
it necessitates two stages: a training stage where the
stochastic process models are estimated through exten-
sive observation corpus and decoding or detection stage
where the model may be used off/on-line to obtain the

a) How to calculate the likelihoo@®(O|\)? The so-
lution to this problem provides a score of haw
belongs to\.

b) How to determine the most likely state sequence
that corresponds t©? The solution to this problem
provides the sequence of the hidden states corre-
sponding to the given observation sequente

¢) How to adjust the modek in order to maximize
P(O|N\)? This is the problem of estimating the
model parameters given a corpus of training ob-
servations sequences.

Problems 1 and 2 are solved in the decoding or detection
stage using the forward or the Viterbi algorithms [16],
while problem 3 is solved during the training phase
using either a conventional algorithm such as the Baum-
Welch algorithm [16].

Our training scheme is based on Baum-Welch algorithm
and theBayesian Inference CriterioBIC) [26] [27].
This scheme makes the training procedure independent
of the initialization problem and the a priori knowledge
of the number of states in eadhiMM needed in the
Baum-Welch training algorithm.

likelihoods of the given test sequence evaluated by eabh Results

model [24], [25]. AHMM is defined by the following

Table | shows the classification results based on the two

compact notation to indicate the complete parameter $€Lture extraction methodsBP and EMD + BP) and by

of the model\ = (I1, A, B), wherell, A andB are the
initial state distribution vector, matrix of state transition
probabilities and the set of the observation probability
distribution in each state, respectively [16]. This set of
parameters is defined by

using the two classification approachdkiMs and LDA. For

TABLE |
RECOGNITION PERCENTAGE RATES USIN&IMMs AND LDA

CLASSIFICATION (%) OF MOTOR IMAGERY (LEFT AND RIGHT HAND

MOUVEMENT).
II=|m,m, ...,m = Plqg = s; i _ _
[r1,m2, oy ], (@1 i), Subject subject 1 subject 2
Feature extraction | BP | EMD+BP | BP | EMD+BP
A = [a], ai; = P(ge1 = sjlqe = s:).- method
. HMMs classifier | 87.7% | 91.25% | 625% | 76.25%
Where 1 < 4,5 < N, s, s; € 5 5 = LDA classifier 69.76% | 73.1% | 78.09% | 83.12%

{s1,82, -.,sn},t € {1,2, ...,T}. The observation at
time (or index) t, O, is considered in this paper as

continuousO, € R¥. For a continuous observation, theeach subject, thEEG data contains 160 trials and each trial

state conditional probability of the observatiof{O;)

lasts 8 seconds as shown in Figure 2 (a set of 80 trials for

may be defined by a finite mixture of any log-concavieft hand movement imaginations and a set of 80 trials for
or elliptically symmetric probability density functionright hand movement imaginations). Each set of movement

(pdf), e.g. Gaussian pdf, with state conditional obser-
vation mean vectoy,; and state conditional observa-
tion covariance matrix®;. In this paper we consider
only a single Gaussian pdf, sB may be defined as
B ={u,;, ¥;}, i=1,2, ..., N. At each instant of time

t, the model is in one of the statés 1 < i < N. It
outputsO; according to a density functioly(O;) and
then jumps to statg, 1 < j < N with probability
a;;. The state transition matrix defines the structure of
the HMM [16]. The model\ may be obtained off-line
by a given training procedure. In practice, given the
observation sequenc® = {0;,0,, ...,Or}, and a

Classification error for subject 2

---BP
—EMD+BP

Error rate [%)]

4. 5
time [sec]

Fig. 6. Classification rate as a function of time (sec.) for right and left hand

model A\, the HMMs need three fundamental problemsngvement imagery usingDA and feature extraction BP and EMD+BP of

to be solved:
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imagination data was divided into two subsets for each mentalevant signal. To evaluate this approach, two classifiers were

task movement (40 trials f&tDA/HMMs training and 40 trials employed: a linear classifier basedloear discriminant anal-

for test). In these subsets, we considered only the imaginatigsis (LDA) and nonlinear classifier based aidden Markov

period: 4 seconds to 8 seconds (see Figure 2). models (HMMs). The proposed feature extraction approach
For the LDA, the recognition percentage rates shown igives better classification results for the two classifiers and

Table | represent the average recognition rates betweensésms promising. However, to use tH®IMs classifier, some

and 8s calculated on the 40 test trials. Figure 6 shows eare should be taken into account such as the necessity use of a

example of one test-trial classification rate as a function &rge data base for training or the use of a good discriminative

time (sec.) for right and left hand movement imagery usintgaining algorithm to train th&iMMs [28].

the feature extraction method& and EMD+BP of subject

2. In this example, the classification results show that at the

beginning of the trial the error is around 50%. After seconid J. R- Wolpaw, N. Birbaumer, J. McFarland D., G. Pfurtscheller, and T.

. . M. Vaughan, “Brain-computer interfaces for communication and control”,

4 (arrow is shown to the subject on the screen at second 3, cjinical Neurophys vol. 113, 2002, pp. 767-791.

see Figure 2) the error drops down. In Figure 6, the averag#sJ. R. Wolpaw, “Brain-computer interfaces (BCI's) for communication and

of classification error for subject 2 in the imagination phase contor Current stats2nd nt. BCI Workshop Training Cours@004,

are around 21,71% and 16,88% by usié§ and EMD+BP [3] ng Maéon and G.E. Birch, “A general framework for brain-computer

respectly. This means that the data set can be classified withinterface design,IEEE Transactions on Neural Systems and Rehabilita-

an accuracy of about 78,29% and 83,12% respectively (see fion Engineeringl1(1):70-85, 2003. o
Table I) 4] G. Pfurtscheller, EEG Event-related Desynchronisation (ERD) and Event-

» . related Synchronisation (ERS). In Niedermeyer, pp. 958-967, E., Lopes
For the HMMs, the recognition percentage rates hown in da Silva, F.H. (Eds.), Electroencephalography. Basic Principles, Clinical

Table | correspond to the average of recognition percentageﬁnrgilications, and Related Fields, forth ed., Williams and Wilkins, Balti-
rates in the diagonal of confl_Jsm_n matrices ShOWﬂ in Table II'[H] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain-
can be seen that the classification results with the new featurecomputer communicatiorProceedings of the IEEEvol. 89, no. 7, pp.
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