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Abstract

To study the regularity and complexity of autonomous behavior, the flow of sensory information obtained in autonomous mobile robots

under various conditions was analyzed as a complex system. Sensory information time series Xn was collected from a miniature mobile robot

during free navigation, and plotted on the return map, the graph of XnCt vs. Xn. The plot exhibited a characteristic trajectory, representing the

regularity of the time series. Correlation integral and Lyapunov exponent analysis also showed properties of deterministic chaos; the

presence of fractal dimension and positive Lyapunov exponent. Analysis of sensory information obtained in the robot with three different

neural controllers revealed that the autonomous robot behaves in such a way that the flow of sensory information is governed by a

deterministic rule, and this pattern is unique to each controller. Furthermore, the analysis in various environments exhibited that transitions

from one trajectory to another on the return map occur during the course of autonomous behavior. The fractal and Lyapunov dimensions

calculated in various conditions indicate that these dimension could be utilized to quantify the complexity of autonomous behavior and the

relative difficulty of tasks. Analyses at different evolutionary stage revealed that behavioral performance correlates with fractal dimension.

These studies using a miniature mobile robot that allowed to idealize the experimental conditions demonstrated firmly that the complex

analysis could be utilized in evaluation and optimization of autonomous systems and the behavior.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The sensory information perceived by an autonomous

robot, as well as by living creatures, reflects dynamic

interactions between the robot and the environment in which

the robot is situated (Biro & Ziemke, 1998; Brooks, 1991;

Degn, Holden, & Olsen, 1997; Pfeiffer, 1995, Pfeiffer &

Scheier, 1997). Even in a static environment, the sensory

information received through sensory organs is dynamic

because of the behavior of the robot itself. In the behavior-

based robotics (Brooks, 1986, 1991), motor control signals

are generated by the flow of sensory information, which is

a function of the robot’s own behavior. Therefore,

during autonomous behavior, which is goal-directed
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and/or self-organized, the sensory information flow should

have an organization, or a hidden regularity (Odagiri,

Monirul Islam, Okura, Asai, & Murase, 1999; Odagiri, Wei,

Asai, & Murase, 1998a; Odagiri, Wei, Asai, Yamakawa, &

Murase, 1998b; Ziemke, 1996a,b). That is, although

fluctuation in the time series of sensory signals looks as if

random, there should exist a hidden regularity underlying it.

Although, the internal representation generating organized

behavior of the autonomous robot has been the target of

intensive research (e.g. Pfeiffer, 1995; Pfeiffer & Scheier,

1997) and the robot’s internal states have been investigated

(e.g. Ziemke, 1996a,b, 1998), further understanding of the

hidden regularity in their behavior as well as that of internal

states is needed.

The phenomenon that appears random but is regulated

under a deterministic rule is called deterministic chaos, and

its nature can be analyzed mathematically (Holden, 1986;

Jackson, 1989; Parker & Chua, 1987). Chaos has been found
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in living organs such as in brain activity (Babloyantz,

Salazar, & Nicolis, 1985; Babloyantz & Destexhe, 1986),

neurons (Hayashi, Ishizuka, & Nicolis; 1985) and axons

(Matsumoto, Aihara, Hanyu, Takahashi, Yoshizawa, &

Nagumo, 1987), as well as artificial neural networks (Aihara,

Aihara, Takabe, & Toyota, 1990; Ikeguchi, Aihara, Ito, &

Utsunomiya, 1990) and others (Degn et al., 1997; Ott, 1993).

In the brain, spontaneous neuronal activity exhibits some

properties of deterministic chaos, and an alteration in its

profile occurs when a change in sensory information takes

place (Degn et al., 1997; Freeman, 1991, 1994a). It has been

thus considered that this chaos and transition might be the

underlying concept of perception and goal-directed, orga-

nized behavior (Freeman, 1994b; Kay, Lancaster, & Free-

man, 1996).

The regularity in the sensory information during

autonomous behavior is also found in artificial life. In an

autonomous mobile robot, the time series of sensory data

obtained during free navigation exhibits regularity on a

phase-plane plot called the return map (Smithers, 1995). It

has a fractal dimension of non-integer value, an important

property of deterministic chaos (Holden, 1986; Lorenz,

1994; Ott, 1993; Parker, & Chua, 1987). It is even suggested

that the regularity could be used as a performance measure

of autonomous robots. However, it is yet to be shown how

the regularity of a robot is altered when its environment

changes, and how it differs among robots with various

controllers. In such analysis, it is necessary to collect

sensory data sets of long period during free navigation of

robots in various conditions and it has been difficult to

perform the reliable experiments.

The purpose of this study is thus two folds. Firstly, we

intended to reveal whether or not phenomena similar to that

which takes place in the brain also takes place in artificial

life. We used a miniature autonomous mobile robot suitable

for rigorous, reproducible experiments. We obtained results

showing that the time series of sensory information obtained

during free navigation exhibits regularity, and that it has the

nature of deterministic chaos. We also investigated whether

or not the regularity changes in accordance with the

environmental alterations.

Secondly, we tried to reveal how the regularity differs

among individuals. This is essential for understanding the

nature of autonomy, as well as for testing whether or not it can

be utilized in practice as a performance measure of

autonomous robots. A given task could be difficult for a

particular robot but not for the others depending upon their

controlscheme,andthequantificationofthehardnessishighly

desirable.Wethusinvestigatedhowtheregularityvarieswhen

various neural controllers were loaded in the robot and

compared the regularity and performance among them.

This paper consists of five sections. In Section 2, we

describe the robot we used, and the way we collected and

constructed sensory information. In Section 3, methods and

results of analysis with the return map, the correlation

integral, Lyapunov exponent and the relation with
behavioral performance we used are described. In Section

4, we discuss the analyzed data in terms of individual

differences of regularity, the effect of environment on

regularity, transition of autonomous behavior, and the

fractal dimensions. Section 5 is Summary and Conclusion.
2. Experiments

This section describes the three types of autonomous

mobile robots used in this study, and the collection of the

sensory information during free movement in four different

environments. Three types of robots were modeled by three

different controllers loaded in a miniature mobile robot. In

order to perform reliable analysis, it is necessary to obtain

sensory time series of long duration with minimal noise. We

therefore, utilized a miniature mobile robot. It allowed long-

term recordings on a desk-top environment where external

noise could be maintained minimal. The robot was designed

as simple as possible, just sufficient to perform the desired

task. We used a simple neural network as a controller with

the minimal number of sensors, so that the results of

analysis became clear enough to exhibit the essence of

findings. Genetic evolution was used to determine the

parameters of the robot controllers so that the robot was

optimized for a given environment. Sensory information

time series were collected in four environments including

the evolved one for the analysis described in Section 3.

2.1. Experiments with three types of autonomous

mobile robots

Three types of robots were constructed by loading

different neural networks into a miniature mobile robot. The

neural network was intended to produce motor control

signals based on the proximity sensor signals. The

connection weights of each neural network were determined

by the genetic evolution for navigation and obstacle

avoidance in a field called the Maze environment.

2.1.1. Miniature mobile robot

We used a real mobile robot Khepera, whose structure

and function have been well described elsewhere (Mondada,

Franzi, & Ienne 1993). In short, its size is small: 55 cm in

diameter, 30 mm in height, and 70 g in weight. It consists of

two boards: the CPU board and the sensory-motor board.

The CPU board contains a microprocessor (Motorola

MC68311) with 128 Kbytes of EEPROM and 256 Kbytes

of static RAM, an A/D converter for the acquisition of

analogue signals coming from the sensory-motor board, a

proportional-integral–differential (PID) controller for the

motor control, and a RS232C serial port together

with power-supply terminals which is used for data

transmission to and from an external computer system and

for providing electricity from an external power-supply unit.

The microprocessor can execute programs downloaded



Fig. 1. Three types of autonomous mobile robots.
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from the external workstation. In addition, multiple

processes can be executed in parallel by time-sharing on

the on-board microprocessor.

The motor system uses two lateral wheels and supporting

pivots in front and back. Each wheel is controlled by a DC

motor and is equipped with an incremental encoder. The

motor can rotate in both directions by the output from the

CPU to the PID controller. There are eight infrared (IR)

proximity sensors: six on the front side and two on the back

(see Fig. 1). These sensors can detect objects within 3 cm or

so by emitting infrared light and measuring its reflection.

The values can be utilized by the microprocessor through

the A/D converter for such functions as generating motor
Fig. 2. Experimental set-up, the evolved environmen
control signals and analyzing the scenery perceived by the

robot.

The use of this type of miniature robot was suitable for

this study. Evolutionary processes and data collection are

quite time consuming in general. The desk-top set-up

allowed us trials and errors in experiment without

significant changes in the environments and in the

mechanics of the robot throughout the duration of

experiment.
2.1.2. Experimental set-up

As shown in Fig. 2, an aerial cable from the RS232C port

of the robot was attached to a serial port of a UNIX
t, and the directional sensitivity of the sensors.
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workstation SUN SPARCstation 2 via a miniature rotating

contact. The generation of autonomous behavior by

calculating motor outputs from sensor readings, and

monitoring and storing sensor, motor and encoder values

were performed by the on-board microprocessor and

memory, while other processes such as constructing neural

networks, executing genetic operations, and detailed

analysis of sensory signals were managed by the external

workstation.
2.1.3. Three types of robots

Fig. 1 shows the three types of two-layered neural

networks loaded on the on-board microprocessor to produce

motor control signals from sensor signals. These robots with

different neural networks were designated as robots A, B,

and C. The neural networks of robots A, B, and C were

characterized by the presence of lateral connections,

symmetric recurrent connections, and asymmetric recurrent

connections, respectively. The connection weights were

symmetric except for the asymmetric recurrent connection

of robot C. There existed, so to speak, a structural difference

of the network between robot B and C, and a topological

difference in robot C to robots A and B.

Unlike most of the previous works regarding obstacle

avoidance (e.g. Floreano & Mondada, 1994, 1996; Naito,

Odagiri, Matsunaga, Tanifuji, & Murase, 1997; Nolfi,

Floreano, Miglino, & Mondada, 1994), the input signals

coming from only two front sensors, 1 and 4, were fed to the

neural network. It has been reported that two front sensors

are sufficient for navigation in simple environments such as

that shown in Fig. 2, and the use of two sensors simplifies

the following analysis of the sensory information as well

(Odagiri et al., 1998a,b). The sights of both sensors

illustrated are in Fig. 2. The robot was placed at the center

of circles, and the sensor readings were measured when a

white paper wall was placed at various positions against the

robot. The sensor could detect the wall within 60 mm from

the center of the robot or 37.5 mm away from each sensor.

Since the sensor value increased sharply from near zero to

near maximum for the wall at 30–20 mm from the sensor, a

several mm change in the distance within this range could

produce a large change in the sensor value on an order of

several hundred. Each sensor covered approximately 90

degrees of the field, and thus by using both sensors 1 and 4,

the wall located in the entire front area of the robot could be

detected.

Each output of the neural network was produced as a

weighted sum of two sensor signals and one lateral or

recurrent input as follows

Sp Z Sb CG
X

wixi (1)

where Sp, Sb, G, wi, and xi represent the output for the motor,

the base navigation speed of the motor, the global gain, the

connection weights from sensors and output cell, and the

signals from corresponding sensors and output cell,
respectively. The values for Sb and G were set to 5 cm/s

and 1/800, respectively.
2.1.4. Genetic evolution

For each of the robots, A, B, and C, a simple genetic

algorithm (Holland, 1975) was used to determine the values

of connection weights in the neural network The robots

were evolved in the field called the Maze environment

shown in Fig. 2. Each individual in a population had the

same constant length of chromosome corresponding to the

number of connections in the neural network. Each weight

was encoded on a gene of five bits. The first bit determined

the sign of the weight and the remaining four bits its

strength. The length of a chromosome thus became 15 bits

in robots A and B, and 20 bits in robot C.

Each chromosome corresponding to an individual in a

population was generated by the external workstation, and

loaded down to the on-board microprocessor. After decod-

ing into the corresponding neural network, the robot was

allowed to move in the environment shown in Fig. 2 with the

neural network’s input and output values as well as encoder

values sampled every 0.1 s. These values were then up-

loaded to the workstation for fitness evaluation. Between

individuals, the robot changed its position randomly by

Braitenberg algorithm (Braitenberg, 1984) in order to avoid

the effect of the previous individual’s action. This procedure

was repeated for all individuals. When all individuals had

been tested, three genetic operators-selective reproduction,

crossover, and mutation-were applied to create a completely

new population of the same size. The fitness function F used

to evaluate each individual in a population was expressed as

follows

F Z Dð1 KvÞð1 KsÞ (2)

Here D, v, and s were the normalized values of the total

mileage of both motors, the difference mileage between the

two motors, and the total of two sensor values, respectively,

which were acquired every 0.1 s for an individual life-time

period of 5 s. The fitness function has been a standard for

developing the obstacle-avoidance and navigation capa-

bility (e.g. Floreano & Mondada, 1994, 1996; Nolfi et al.,

1994). One population of 10 individuals was evolved for 50

generations of each robot. The cross-over rate, the mutation

rate, and the elite preservation rate in the roulette selection

used in the genetic operation were 0.7, 0.02, and 0.5,

respectively.

Fig. 3 shows examples of the evolution processes for

robots A, B, and C. Some individuals who faced against

walls with slipping wheels got high scores at the initial stage

of evolution, but the behavior improved steadily after

generations. Due to the short length of chromosomes, the

robots learned to navigate and avoid obstacles very quickly,

often within 30 generations. The best individuals in

generations 35–50, having fitness scores of 0.12–0.2,

could navigate the whole environment very smoothly.



Fig. 3. Evolution processes of three robots.
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They never bumped into walls and corners, and rather

maintained a straight trajectory when possible. Connection

weights of the best individuals were as follows: For

Robot A, w1ZC8, w2ZK14, and w3ZC9. For Robot B

w1ZC4, w2ZK12, and w3ZC11. For robot C, w1ZC4,

w2ZK16, w3ZC5, and w4ZC12. We used these best

individuals throughout the following studies.

Through visual observation of behavior, distinguishing

the three robots from each other was very difficult. This was

evidenced by the sensory information obtained in the Maze

environment as shown in Fig. 4. Sensory signals exhibited

periodical peaks in a similar manner in all three robots, but

the magnitudes varied among them. This indicates that all of

them rotated in the path of the field very well, but the

distance from the walls, especially at the corners, varied

among them by several millimeters.
2.2. Sensory information in four different environments

Each of the best robots A, B, and C obtained by genetic

evolution was placed in four different fields called the Maze,

Square, Dynamic, and the Straight-Corridor environments.

During free navigation in each environment, the proximity

sensor values of a robot were continuously sampled.

Using the sampled sensory signal, a time series representing

the proximity of the robot to the front obstacle, which we

call sensory information, was constructed. For each robot,
Fig. 4. Examples of signals det
four time series, each for one environment, were con-

structed. Thus, a total of twelve time series were constructed

for three robots in this study.
2.2.1. Environments

The four environments in which sensory information was

collected are shown in Fig. 5. White non-glossy card board

was pasted on straight wooden bars and they were used to

make the walls of the path and obstacles in the field. The Maze

environment was identical to the one wherein robots evolved.

Notice that the Maze environment consisted of straight paths

and right-angled corners. The Square environment also

consisted of straight paths of the same width and right-angled

corners as those of the Maze environment, but contained only

one-directional turns. In the Dynamic environment, an

obstacle was placed manually at 6–8 cm in front of the robot

navigating. The robot had to turn to avoid a head-on collision,

and after turning the robot again faced another obstacle in front

placed manually. This was repeated during its entire life. The

Straight-Corridor environment had the same width as the

straight paths of the Maze and Square environments. The robot

was placed in the field to go along the path, but not to face the

wall. The path was sufficiently long to allow the sensory

information to be collected for approximately 20 s because the

robot’s navigation speed was about 5 cm/s.

In order to avoid environmental noise, a number of

precautions were taken in this study. Experiments were done
ected by sensors 1 and 4.
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in complete darkness. Records of sensor signals were taken

mostly in the late night in order to avoid unexpected exposure

of light during the course of recording. As apparent from

Fig. 2, the proximity sensors generated output signals when

the obstacles were within 3 cm or so. Any obstacles away

from it, or any movements occurred far from it were unlikely

to produce any signal. Therefore, the output of the sensors

contained only the information from walls and/or obstacles

within c.a. 3 cm with minimal noise from environment.

2.2.2. Proximity of the robot to the front obstacle

For each robot, the values of sensors 1 and 4 were

continuously sampled every 0.1 for 3072 s during free

navigation in the Square, Maze, and Dynamic environ-

ments, and Straight-Corridor environment. Since the size of

on-board memory of the robot was limited, it was not

possible to take 30720 (i.e. 3072/0.1) points of data

continuously. Therefore, we made intermissions during

the course of recording and transmitted the data to the host

computer during the period.

In this study, robots moved for a period collecting 512

points of data, and stopped until the transmission of the

collected data was completed. And then robots again started

moving from the position. This was repeated until 30720

points of data were collected for all environments. Since

data was sampled at every 0.1 sec, collecting 512 points

took 51.2 s. During the period, robots could moved a

considerable portion of the path in the environment. For

example, the entire path of the Maze and Square

environments could be gone through since the navigation

speed of robots was about 5 cm/s and the size of the

environments was 54 cm square. No human intervention

was introduced during the course of data collection.

Thus the data was continuous, although the navigation

was intermittent.

Since the robot was stopped during the transmission of

data, the problem of inertia might take place when stopping

or starting its movement. We therefore performed a set

of preliminary experiments with various speeds (5, 10,

20 cm/s) of robots to see whether any discontinuity of

the sensory values took place. At the speed of 20 cm/s there
observed an discontinuity in the sensor values due to

slipping. However, no such phenomena was observed at

slower speeds. Therefore, we concluded that a quasi-steady

state could be achieved when the navigation speed was less

than 10 cm/s. However, as mentioned previously, actual

speeds of robots after evolution were far slower, about

5 cm/s. We thus assured that the experiments were free from

the problem of inertia.

Portions of the time series obtained from sensors 1 and 4

in Maze environment are illustrated in Fig. 4. As mentioned

previously, the signals in three robots were nearly cyclic and

the periods were almost identical among the robots. This

indicates that all three robots navigated well along the path

of the field in a manner similar to each other. Fig. 6

illustrates the relations between signals from sensor 1 and 4

obtained in Robot A. It is apparent from this figure that,

although the robot looked as if it was symmetrically made,

there exists delicate differences between left and right sides

of sensors, motors, locations of parts, electrical circuit

properties, and so on, resulting an asymmetry in the sensory

signals. This representation of sensory signals was thus too

sensitive to the residual asymmetry of the robot itself. And

also, although the robot indeed generated organized

behavior (i.e. avoiding obstacles to navigate), it was difficult

to perceive the organization in this form of plots, especially

in those obtained in Dynamic environment. We then tried to

find another measure that clearly described the dynamics of

the data as follows:

The values from sensors 1 and 4 could be analyzed as a

two dimensional time series. For mobile robot whose task is

to avoid obstacles and navigate, however, one of the most

essential information is the time series of the distance to

front object. Since left front sensor we used covered nearly

left half of the robot’s front sight, and right sensor covered

another half, the root square of both sensor values represents

well this information. By focusing on this particular

information, we intended to avoid mixing up with other

information, such as the relation between left and right,

which would behave like noise when the length of time

series is limited. Thus, the two-dimensional sensory-signal

time series consisted of values from sensors 1 and 4 were
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reduced down to one-dimensional sensory information by

calculating the root square as follows

Xn Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1ðnÞ

2 CS4ðnÞ
2

q
n Z 1; 2;. (3)

where S1(n) and S4(n), nZ1, 2,., are the time series from

sensors 1 and 4, respectively. Although the smooth behavior

of time series indicates that the amount of observational noise

is small (Fig. 4), we calculated Xn as real values by filtering

the root square of two sensors value with a 7-point moving

average (MA) filter. It has been known that a MA filter with

an adequate time span does not change the structure of the

attractor in the time series (Sauer, Yorke, Casdagli, &

Embedology, 1991). In order to find the appropriate time

span, we did several trials with various time spans. We found

that the return map with a particular time span, in our study it

was 7, was very much similar with the return map without it.

We took that time span for filtering.

Original quantum error of each sensor value is approxi-

mately 1/(2!1023)y5!10K4 of the maximum value of
1023 since an analogue-to-digital converter of 10 bits was

used. Therefore, the actual error associated with the analogue

to digital conversion should be less than, for example, 5!
10K4=

ffiffiffiffiffiffiffiffiffiffiffi
2!7

p
ðhK78 dbÞ of the maximum value.

In this study, we call the time series Xn the sensory

information. Parts of the sensory information were illus-

trated in Fig. 7. It is apparent that all the robots navigated

well in the Maze and Square environments as evidenced by

the periodical peaks. As well, in the Dynamic environment,

all robots responded well to the obstacle by reflective

movements. In the Straight-Corridor environment, each of

the robots maintained themselves at the center of the path or

along a side wall during navigation, as apparent in Fig. 7.
3. Analysis

Twelve sets of the sensory information, obtained in

four different environments by three robots, were analyzed

by plotting them on the return map, and calculating
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the correlation integrals and Lyapunov exponents Each

sensory information exhibited a characteristic trajectory on

the phase plane, indicating the presence of hidden regularity

in the time series. One of the most important characteristics

of the deterministic chaos in a time series is the presence of

the fractal dimension (Holden, 1986; Jackson, 1989;

Lorenz, 1994; Ott, 1993). We estimated this by means of

correlation integral analysis.
3.1. Regularity on return map

Embedding the time series is one of the methods to

reconstruct the hidden background dynamics (Takens,

1981) The m-dimensional phase space Yn is constructed

from the observed one-dimensional time series Xn as
follows:

Yn Z ðXn;XnCt;.;Xn C ðm K1ÞtÞ (4)

where the parameter t is known as the delay parameter. If

the time series Xn is a part of the system variables which

obeys some deterministic dynamics, the embedded trajec-

tory Yn in the reconstructed phase space represents

the structure of such dynamics (Yamaguchi, Watanabe,

Mikami, & Wada, 1999). The 2-dimensional phase space

plot XnCt vs. Xn, known as the return map, has been widely

used to reveal the dynamics of time series (Aihara et al.,

1990; Degn et al., 1997; Freeman, 1991; Hayashi et al.,

1985; Holden, 1986; Ikeguchi et al., 1990).

The return maps for robots A, B, and C in the Maze

environment, and the return maps for robot A in other three



Fig. 8. Return maps for three robots in the Maze environment.
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environments, for different values of t ranging from 1 to 6,

are shown in Figs. 8 and 9, respectively. The pattern of the

return map was very consistent among fifteen trials for each

robot in any of the test environments. Here, each return map

was drawn without lines between points for clarity. However,

the data traveled along the oval shape of the trajectory in any

sensory information, and never jumped across the center part

of the oval shape such as from the lower limb of the oval

shape to the upper.

The dynamic structure of each neighboring data point is

revealed by the return map. This structure was almost unique

for each robot, as was seen in Fig. 8. For example, the

trajectories for robot A exhibited two components: an outer

oval shape and the inner gathering of points. The shapes of

both components differ from each other among the robots.

The presence of a unique trajectory on the return map

indicates the existence of the deterministic dynamics behind

each of the measured time series (Holden, 1986; Jackson,

1989; Lorenz, 1994; Ott, 1993; Yamaguchi et al., 1999).

Fig. 10 shows the return maps obtained in four different

environments by the three robots, which were plotted by using

selected values of t. Each return map exhibited a unique

trajectory, indicating the presence of the deterministic rule

behind the time series. The pattern of the return map was very

consistent among fifteen trials for each robot in any of the test

environments. The choice of delay parameter t plays an

important role for describing the dynamics of return maps. If

the delay is too short, then Xn is similar to XnCt, and when they

are plotted, all of the data stay near the line of XnZXnCt. If the

delay is too long, then the coordinates are essentially

independent and no information can be gained from the plot.

In this study, the method of mutual information I was used to

determine the delay parameter t for plotting the return map

(Fraser, 1989; Fraser & Swinney, 1986). It represents the

amount of uncertainty of XnCt reduced by the measurement of

Xn, or the amount of information on the average predicted about

XnCt given a measurement of Xn (Fraser & Swinney, 1986).

That is, by making the assignment [s,q]Z[Xn,XnCt],

ItZ
Ð

Psqðs; qÞ log½Psqðs; qÞ=PsðsÞPqðqÞ� ds dq, where Ps, Pq

and Psq, are the probability distributions of s and q, and their joint

probability distributions, respectively. In practice, It for a given

time series starts very high, and as t increases, it decreases and

then usually rises again. It has been suggested that the value of t

for first minimum of It is suitable for describing the dynamics of

the return map (Fraser & Swinney, 1986). The value of It for the

first minimum was almost the same value of the third minimum

for robot A, and the return map with the value of t for the latter

gave a clear picture. Therefore, we chose the third minimum to

select t for the robot A, which was 5. For the same reason,

the second minimums of It were chosen to select t for robots B

and C, which was 3 for both.

3.2. Fractal dimension estimated with correlation integral

Deterministic chaos is characterized by the inability to

predict future consequences, a high sensitivity to the initial
values, a non-integer fractal dimension, and other features

(Jackson, 1989; Kay et al., 1996). Whether or not a time

series has the nature of deterministic chaos can be

distinguished by various factors. The power spectrum

should be continuous, the largest Lyapunov exponent be

positive, the autocorrelation function be converged to zero

at the infinite time, points in Poincare map be limited within

a certain finite space, and so on. Among them, the presence

of the fractal dimension of a non-integer value has been

considered as the strong evidence for the presence of the

deterministic chaos.

The fractal dimension estimated with correlation integral

has been proved to give the most accurate estimate from a

time series with a limited length (Grassberger & Procaccia,

1983a,b, 1984). In this study, the correlation integral Cm(r)

of one-dimensional time series is calculated according to

sphere counting method proposed by Grassberger and

Procaccia (Grassberger & Procaccia, 1983b). In this

method, the Cm(r) is calculated by constructing spheres

around fixed points Xi and counting the number of points Xj

in the spheres. The m-dimensional correlation integral Cm(r)

is defined by the following equation.

CmðrÞ Z lim
N/N

1

N2

XN

i;jZ1;isj

Qðr K jXi KXjjÞ (5)

where Q is the Heavy-side function. QZ0 if the argument is

less than zero, otherwise QZ1. X is the m-dimensional

vector constructed by the embedding of the time series.

When the Cm(r) is in proportional to rd, the scaling factor d,

which is a function of m, is called the correlation factor. In

practice, the value of d is obtained as a slope of a log Cm(r)

vs. log r plot. If d converges to a certain value when m is

increased, the value is called the correlation dimension (D),

which gives an estimate of the fractal dimension of the time

series (Timmer, Haussler, Lauk, & Lucking, 2000).

Figs. 11–13 illustrate examples of log Cm(r) vs. log r plot

and d vs. m plot for each of twelve sensory information time

series, obtained in four different environments by three

robots. Each sensory information consisted of 30720 points

of data sampled every 0.1 s. It has been shown that the

minimum number of data points (Nmin) required to obtain a

reliable estimate of D is Nmin O
ffiffiffi
2

p
ð

ffiffiffiffiffiffiffiffiffi
27:5

p
ÞD (Hong & Hong,

1994). That is, NZ204 for DZ3, NZ1069 for DZ4 and

NZ5609 for DZ5. In fact, our preliminary experiments to

estimate dimension from various lengths of data (NZ500,

1000, 2000, 5000, 10,000) have shown that data length over

5000 gave similar estimates of the dimension. Smithers

(1995) has used the data length of about 1600 points for

DZ4.2 in a similar study. Therefore, we think that the

length of data (30720 points) used in this study for

calculating fractal dimension was sufficient.

The dynamic range of the sensory information was 0 to

1447 ðZ1023!
ffiffiffi
2

p
Þ, but the actual peak magnitude ranged

from approximately 200 to 950 (see Fig. 7), with

environmental noise of several bits. Therefore, the range



Fig. 9. Return maps for robot A in three different environments.

Md. Monirul Islam, K. Murase / Neural Networks 18 (2005) 123–144 133



Fig. 10. Return maps for three robots in four different environments.
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of log r was set as 0.5 (zlog 3) to 2.5 (zlog 300). The

embedding dimension m was chosen to be 2 to 8, i.e. 0.2

to 0.8 s, because less than 1 s seemed to be reasonable for

the robot to induce a reflective behavior, considering

a navigation speed of approximately 5 cm/s. The graphs
were very consistent among fifteen trials for each robot in

any of the environments.

In all the graphs of correlation integrals, there were some

regions where log Cm(r) increased linearly against log r.

That is, there existed scaling region of r for any m.



Fig. 11. Correlation integrals of the time series and their slopes for robot A in (a) Maze, (b) Square, (c) Dynamic, and (d) Straight Corridor environments.
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Fig. 12. Correlation integrals of the time series and their slopes for robot B in (a) Maze, (b) Square, (c) Dynamic, and (d) Straight Corridor environments.
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Fig. 13. Correlation integrals of the time series and their slopes for robot C in (a) Maze, (b) Square, (c) Dynamic, and (d) Straight Corridor environments.
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The range of log r in which the linearity was held varied

among sensory information. The scaling regions were

selected by visual observation of plots, as wide as possible

within the signal’s dynamic range (0.5%log r%2.5). For

example, the range was approximated to be 0.5–2.5 for

robot A in Maze, 1.0 to 2.5 for robot B in Square, and so on.

In most cases, it was linear at least for one log scale of r, i.e.

a 10-times range of r, as seen in Figs. 11–13.

The slope, i.e. the scaling factor d, was calculated by fitting

a straight line on the log Cm(r) vs. log r plot by the least-mean-

square method within the linear range. The scaling factor d

converged to a certain value when m increased. For example, d

converged to 2.37, 2.57, and 1.88 in the Maze environment for

robots A, B, and C, respectively. In order to assure the

convergence of d, we calculated the values of d at mZ12.

These values were 2.41, 2.95 and 1.89, respectively, for robot

A, B and C in the Maze environment. The values at mZ12 for

Square, Dynamic and Straight-corridor environments were

also similar to the ones at mZ8. These results strongly indicate

that these time series have self-similarity in a certain range of r,

and there exist the fractal dimensions of non-integer, non-

negative values. The presence of the scaling range and

the convergence of the slopes have been considered strong

evidence for the existence of chaos in a time series (Aihara et

al., 1990; Grassberger & Procaccia, 1983a,b; Holden, 1986;

Ikeguchi et al., 1990; Jackson, 1989; Lorenz, 1994; Ott, 1993).

In order to assure the estimation of fractal dimension, we

did 15 trials for each robot in each environment. Table 1

summarizes the fractal dimensions of three robots in four

different environments. For each case, the average of 15

experimental trials as well as the maximum and minimum

values were presented. As apparent in the results shown in

Table 1, the variations among trials were very small.

Therefore, we believe that the estimated dimension reflects

well the physical chaotic phenomena, not too much

contaminated with environmental and quantum noise.
3.3. Lyapunov exponent

Another common tool for detecting chaos in experimen-

tal data is the Lyapunov exponent (l) l is a quantitative
Table 1

Correlation dimensions for three robots in four different environments

Robot Environment

Maze Square Dynamic Straight-

Corridor

A Min 2.35 2.40 0.81 5.54

Avg 2.41 2.49 0.87 5.70

Max 2.52 2.60 0.95 5.85

B Min 2.90 2.96 0.90 5.87

Avg 3.01 3.07 0.94 5.96

Max 3.14 3.20 1.03 6.07

C Min 1.86 1.88 1.10 5.23

Avg 1.92 1.95 1.16 5.29

Max 2.03 2.05 1.23 5.35

The results were averaged over 15 independent runs.
measure of the sensitivity to the initial condition. It is

calculated as the average rate of divergence or convergence

of two neighboring trajectories. Actually, there is a whole

spectrum of ls; for a system with N variables, there are Nls.

To obtain the Lyapunov spectra, imagine an infinitesimal

small ball with radius dr sitting on the initial state of the

trajectory. The flow will deform this ball into an ellipsoid.

That is, after a finite time t all orbits, which have started in

that ball, will be in the ellipsoid. The ith l is defined by

li Z lim
t/N

1

t

dliðtÞ

ðdrÞ
(6)

where dli is the radius of the ellipsoid along its ith principal

axis.

For a conservative (Hamiltonian) system, this quantity is

zero. For a dissipative system, the quantity is negative and

there exists an attractor for the dynamics toward which

initial conditions in the basin of attraction are drawn. If the

system is chaotic, at least one of the ls must be positive, and

a strange attractor will exist. This means that the local

exponential divergence of nearby trajectories in chaotic

systems lead to sensitivity of the trajectories against small

changes in the initial values.

The usual convention of ordering the ls is from the largest

(most positive) to the smallest (most negative). For a chaotic

system, the largest Lyapunov exponent l1 must be positive. If

one speaks about the Lyapunov exponent, generally the largest

one is meant. Different algorithms have been proposed to

estimate the largest Lyapunov exponent or even their complete

spectrum from measured data. In this study, we calculate ls of

the sensory information according to Kaplan & York (1997);

Oseledec (1968); Shimada & Nagashima (1979), and Wolf,

Swift, Swinney, & Vastano (1985).

Kaplan and York (1997) have conjectured that the

dimension of a strange attractor can be approximated from

the spectrum of ls. Such a dimension has been called the

Kaplan–Yorke (or Lyapunov) dimension, and it has been

shown that this dimension is close to other dimensions such

as the boxcounting, information, and correlation dimensions

for typical strange attractors.

If S(D) represent the sum of the exponents from 1 to D

where D!N, then it is evident that for a strange attractor,

there is some maximum integer DZj for which S is positive

and an integer j C1 for which S is negative. The attractor

must then have a fractal dimension that lies between j and j

C1. The essence of the Kaplan–Yorke conjecture is simply

to interpolate the function S(D) and evaluate the value of D

for which SZ0. That is, we seek the hypothetical fractional

dimension in which there is neither expansion nor contrac-

tion. Using a linear interpolation, this value is

DKY Z
j KSðjÞ

ljC1

(7)

where DKY is known as Kaplan–Yorke or Lyapunov

dimension.



Table 2

Examples of Lyapunov spectra and Kaplan–York dimension for robots A, B and C in four different environments

Lyapunov spectra/

dimension

Maze Square Dynamic Straight-Corridor

A B C A B C A B C A B C

l1 0.47 0.48 0.31 0.39 0.46 0.25 0.15 0.13 0.12 1.48 1.56 1.29

l2 0.00 0.09 0.00 0.00 0.11 0.00 K7.69 K4.37 K6.67 0.95 0.98 0.97

l3 K2.10 0.00 K9.74 K1.33 0.00 K8.87 0.38 0.67 0.41

l4 K5.72 K16.32 0.12 0.33 0.19

l5 0.00 0.14 0.00

l6 K3.89 0.00 K8.58

l7 K6.19

DKY 2.22 3.10 2.03 2.29 3.03 2.03 1.02 1.03 1.02 5.75 6.59 5.33

Table 3

Largest Lyapunov exponents and Kaplan–York dimensions for robots A, B

and C in four different environments
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Numerical experiments to determine Lyapunov expo-

nents were performed around the regions where correlation

dimensions were obtained. Embedding dimensions of

reconstructed state space were chosen within the ranges

where the slope d of correlation integral, such as Fig. 11–13,

converged. They were; 3–4 for Maze and Square environ-

ments, 1–2 for Dynamic environment, and 5–7 for Straight-

Corridor environment. Reconstruction time delay was

chosen to be 5–7 for robot A and 3 for robots B and C in

accordance with the results on mutual information described

in Section 3.1. The mean number of replacement points

located in a region of length and the angular size were 5–7

and 0.2–0.5 radians, respectively. These parameter values

were used after some preliminary experiments for each time

series to make sure that small changes in the parameter

values did not make significant changes in estimated values

of Lyapunov exponents. To locate the nearest neighbor to

the first point (the fiducial point), the replacement strategy

as suggested by Wolf et al. (1985) was used.

In order to estimate reliable Lyapunov exponents, fifteen

sets of numerical experiments were performed in each of

twelve conditions, in four different environments for three

robot types. Table 2 shows examples of Lyapunov spectra

obtained in one set of experiments as well as of Kaplan–

Yorke dimensions DKY calculated from the Lyapunov

spectra. In any of the conditions, Lyapunov exponents were

converged and l1s were positive, which is an indication of

chaos. Lyapunov spectra were fairly consistent in fifteen

trials, possibly owing to sufficiently long data length (NZ
30720 points) of each time series. Average values of the

largest Lyapunov exponents and DKYs over fifteen sets of

experiments are presented in Table 3.

Robot Environment

Maze Square Dynamic Straight-

Corridor

A l1 0.35 0.32 0.10 1.41

DKY 2.43 2.46 1.03 5.65

B l1 0.41 0.39 0.13 1.48

DKY 3.05 3.09 1.07 6.01

C l1 0.26 0.28 0.11 1.37

DKY 1.96 2.02 1.12 5.25

The results were averaged over 15 independent runs.
3.4. Behavioral performance and fractal dimension

Analysis of sensory information by dynamical system

perspective has been introduced to the robotics community

for nearly a decade. However, the aim of the most analysis is

to determine the chaotic property in the sensory information

of autonomous robots. It has been not known whether this

property correlate to the performance of robots. The aim
of this subsection is to find out the relation between the

fractal dimension and the performance measure of robots.

A new set of experiments has been carried out to

calculate fractal dimensions at various stages of evolution-

ary process in three different robots. In these experiments,

robots A, B and C were evolved in the maze environment for

50 generations, and their performances, measured by the

fitness function (Eq. (2)), were recorded during the course of

evolution. Evolved robots in different generations were then

tested in the same environment for collecting sensory

information. Fractal dimension estimated with correlation

integral, described in Section 3.2, was then used to

determine the degree of chaos generated for evolved robots

at different generations.

Fig. 14 shows fitness values and fractal dimensions of

robot A, B and C at different generations. It can be observed

from Figs. 14(a) and (b) that the degree of chaos generated

as well as the performance of robots were increased along

the course of evolution. For robot A, for example, the fitness

value and fractal dimension at generation 10 were 0.05 and

0.25, respectively, while the fitness values and fractal

dimension were 0.10 and 0.57, respectively, at generation

20. This indicates that the performance of robots increases

when the degree of chaos increases. In other words, higher

degree of chaos helps to produce behavior that fits better to

the given environment.



Fig. 14. (a) Fitness value and (b) Fractal dimension, for robots A, B and C at

different generations in the Maze environment.
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4. Discussion

There have been a number of studies to describe the

interaction between an autonomous robot and its environ-

ment as a dynamical system (e g., Beer, 1995; Smithers,

1995; Tani, 1996). Some studies have aimed to exhibit the

presence of deterministic chaos in the internal state(s) of an

autonomous robot navigating in an environment (e.g.

Smithers, 1995). It has been shown that the return map of

sensory information obtained during a free navigation in an

environment, as well as fractal dimension and Lyapunov

exponent calculated from it, is consistent in 15 trials.

However, as of our knowledge, none so far has actually

exhibited how the environment affects the dynamics,

specifically the chaos dynamics, of an autonomous robot

interacting with the environment. This is, we believe,

important because it will help to understand how the

autonomous robot solve problems associated with environ-

mental changes. And also, it has not been demonstrated well

how the control architecture and the chaotic property of the

robot affect the behavioral dynamics and performance. This

is essential in practice for the optimal design of autonomous
robots as well as for understanding the autonomy. In order

to obtain good estimates of fractal dimensions of time series,

it is necessary to have a certain long period of recording. We

utilized a miniature mobile robot that allowed reproducible

experiments with a sufficiently long duration.

In this study, we analyzed the sensory information

perceived by a mobile robot having different controller in

four different environments as complex systems. In Section

4.1, the implications of the analysis described in Section 3.4

are discussed from four points of view: (1) how the

regularity in the sensory information differs among

individuals, (2) how the environment affects regularity,

(3) how behavioral changes are induced by sensory

information, and (4) the degree of complexity of the task

given to the robot.

4.1. Individual differences revealed by trajectory

of return map

While the behavior of robots in any of the tested

environments appeared much alike in terms of visual

observation, there were clear differences in trajectory on

the return map That is, all three types of robots navigated

well at a similar speed in any environment, and with a

similar capability to avoid obstacles. This was evidenced by

the results showing that the patterns of sensory information

were quite alike among the robots, except that the

magnitudes of sensory signals differed from each other

(Figs. 4 and 5), reflecting the possible difference in the

distance of several millimeters from the wall. Their fitness

values as well as their evolution processes were also similar

to each other (Fig. 3). Thus, these conventional measures are

incapable to distinguish these robots. However, as apparent

in Fig. 8, there were considerable differences among

the robots in regard to the trajectory pattern on the return

map, though they were genetically evolved in an identical

environment (Fig. 2). Environmental changes given to each

robot made much less difference in the trajectory pattern in

contrast (Figs. 9 and 10).

As was seen in Fig. 10, the difference on the return maps

obtained in two environments, the Maze and Square, was

marginal for each of the robots; at least the difference

caused by the environmental change was far less than the

differences among robots. These results indicate that the

perception, or the way the world is seen through the sensory

organs of the autonomous robot, is characteristic to each

robot, and the return map of the sensory information can

exhibit the characteristics as the change in the trajectory

pattern.

It might be appropriate to emphasize here that the mobile

robot used two front sensors 1 and 4 to generate the motor

outputs and thus its behavior, and that the sensory

information was also constructed from the values form

sensors 1 and 4. In other words, the behavior was monitored

by the sensors, which were located on the robot, i.e. from the

coordinate of the robot. Therefore, one could argue that
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the sensory information was not the cause for the behavior,

but the result. In fact, we could have used all of eight

proximity sensors all around the robot’s body to generate

motor outputs, and observed the behavior with two front

sensors. However, in the behavior-based robotics, the sensor

signals are also the cause of behavior (Brooks, 1986). In this

study especially, exactly the same sensory signals were used

for both generating and observing behavior. Thus, the flow

of information through the sensory organs of the robot used

in this study should contain all the information necessary to

generate the behavior.

We reduced the two-dimensional sensory information

down to a one-dimensional time series that represents the

distance to the front obstacle, and that sensory information

exhibited a characteristic dynamics on the phase plane.

Therefore, we may say conversely that the robot has evolved

to behave so as to maintain the sensory information on the

trajectory. The intelligence of the robot necessary to

perform the task of navigating with obstacle avoidance is

expressed by the regularity of the trajectory at least in part.

In other words, a portion of the behavior-based intelligence

of the robot is present in the flow of sensory information

expressed as the trajectory’s regularity.

4.2. Trajectories specific to certain environments

The next question we asked was how the perception of

each individual changes in various environments We placed

three robots in four different environments, the Maze,

Square, Dynamic and Straight-Corridor, with the return

maps of the sensory information illustrated in Fig. 10. In all

the maps, characteristic patterns in the trajectory could be

seen; that is, a unique regularity was present in each of the

sensory information.

In case of robot A, an outer and inner component can be

seen in the trajectory on the return maps obtained in the Maze

and Square environments. While the inner component was

composed during navigation in the environments’ straight

paths, the outer component was due to the avoidance of the

head-on collision at the corners, where larger sensor signals

and dynamical moves were elicited than in the straight path.

On the return map, thus, transitions from the inner part to the

outer occurred when the robot encountered every corner after

navigating the straight path. In the Dynamic and Straight-

Corridor environments, only the outer and inner components

could be seen, respectively. This is reasonable because the

former elicited only obstacle avoidance behavior, while the

latter elicited navigation in a straight path.

In case of robot B, the outer component on the return map

was smaller than that obtained in robot A. That is, robot B

behaved in a manner similar to robot A except that it was a

bit far from any obstacles, probably by several millimeters,

as evidenced by the smaller magnitude of sensory

information (Fig. 4).

In case of robot C, there is an inner component in the

Square environment, while in the Maze environment there
seems to exist another, larger inner component in addition to

the one observed in the Square environment. This is

probably due to the asymmetry of connection weights.

That is, in the Maze environment, the robot had to make

both left and right turns. In contrast, in the Square

environment it needed only one of them because it had to

make only one directional turn. Therefore, robot C has three

different trajectories, one for moving straight corridor and

two for avoidance of front obstacles.

These results could indicate that each robot behaves in

such way that the flow of sensory information becomes

constant even when the environment changes. In other

words, each robot might see the world in its own way

irrespective of environmental differences. This hypothesis is

argued further in Section 4.3.

4.3. Transition in trajectory induced by environmental

change

If the robot behaves in such a way that it maintains a

constant flow of sensory information, what would happen

when the sensory information is insufficient to maintain the

consistency of the flow? This condition is certainly possible

when the surrounding environment of the robot changes

drastically so that the sensor signals can no longer contain the

information necessary to maintain the regularity of the flow

In the Straight-Corridor and Dynamic environments,

which shared no similarity, the trajectories on the return

map obtained in these environments were totally different

each other (Fig. 10). In the Maze and Square environments,

which contain straight paths and right-angled corners, the

trajectory was similar in both of the environments: The

trajectory consisted of inner and outer components. Fig. 10

shows that these two components were similar to the ones

obtained in the Straight-Corridor and Dynamic environ-

ments, respectively.

These results can be interpreted as follows. The behavior-

based robot is behaving in such a way as to maintain a

consistency in the flow of sensory information. But when the

environment changes drastically and the flow of sensory

information can no longer maintain this consistency, a

transition to another trajectory that is sufficient to maintain

another consistency takes place. Both of the environments, the

Square and the Maze, consisted of two sub-components,

straight paths and corners. For when the robot traveling along a

straight path suddenly encounters a corner, wherein the

previous strategy to maintain the flow of sensory information

constant is no longer valid, another strategy should be used to

avoid a head-on collision. In other words, a transition of the

sensory information flow should occur when the robot

encounters a new environment. A new strategy or new pattern

of sensory information flow should already have been acquired

within the network during the evolutionary process. There

should be thus at least two components in the sensory

information flow, and they are the ones apparent on the return

map; they are the inner and outer components.
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In summary of Sections 4.1–4.3, we have analyzed the

sensory information regarding freely moving real auton-

omous robots in environments. This is, of our knowledge,

the first clean demonstration showing the effects of

environment and controller on the internal state dynamics

of fully autonomous robots. We demonstrated that regularity

is present in the return map of the sensory information, and

that it can be divided into substructures, each of which

corresponds to a specific behavioral pattern. In the

environment in which one of the behaviors is predominant,

the return map exhibited only the corresponding substruc-

ture; that is, transitions from one state to other are occurring

during the autonomous behavior in response to sensory

information. Such transitions of the internal state seem

analogous to the phenomena reported in the brain that has

been considered as the source of the intelligence (Degn et

al., 1997; Freeman, 1991, 1994; Kay et al., 1996). In the

brain, chaos, however, the state tends to transits from one

local attractor to another rather autonomously in various

ways. The robots in this series of experiments do not exhibit

such autonomy of generating diversity since the mapping

between the environment situation and the internal dynamic

structure is simply one to one mapping. In this study, robot

transits one chaotic state to the other in response to

environmental changes. This is a good contrast to the

Tani’s work (Tani, 1996), where robot is made to transit one

non-chaotic state to the other and chaos takes place at the

transition, i.e. at the time of decision making.

4.4. Complexity of tasks

The fractal and Lyapunov dimensions obtained for

various sets of sensory information are shown in Tables 1

and 2, respectively. The values of fractal dimension that was

estimated with correlation integral are quite similar to the

ones of Lyapunov dimensions. For all the types of robots

used in the present study, the fractal dimensions in the Maze

environment is quite similar to that in the Square environ-

ment. This is reasonable because the Square environment

consists of parts similar to those of the Maze environment,

i.e. straight paths and right-angled corners. The small

variations might be done to the fact that the locations of

obstacles in environments varied by at most G3 mm, and

the Square environment could not be exactly the sub-

environment of the Maze environment. In the Dynamic

environment, the dimension is much lower. It is also

reasonable because the robot’s task is only to avoid front

obstacles by generating reactive rotation, which is much

easier than other tasks.

It is most interesting that the dimension is highest in the

Straight-Corridor environment. This was common to all the

robot types. We interpreted this as follows. In Straight-

corridor environment, there is a tight coupling between

environment and robot. The behavior of the robot is

generated by the sensory information from sensors 1 and

4, and the sensors are always sensing the walls of both sides
in environment. By using the sensory information, the robot

has to generate behavior that is sufficient to maintain itself at

the center of the corridor and to move forward through the

narrow corridor. In contrast, in Dynamic environment, the

task for the robot is to avoid head-on collision by simply

generating rotating behavior. After avoiding the obstacle in

front, there is no obstacle for a moment and it is allowed to

move any direction freely. The coupling with the environ-

ment thus only occurs at the time when the robot faces an

obstacle in front. On first glance, the navigation in the

straight path appears the easiest to perform. It is, however,

very difficult for the robot to maintain itself at the center of

the corridor or to follow the wall along a side, much like

walking on a log bridge.

Furthermore, as evidenced in Table 3, robot with higher

fractal dimension tends to exhibit higher fitness value. This

suggests that higher order of chaos helps the robot to

become more adaptive to environmental changes encoun-

tered during the course of behavior.

In summary of Section 4.4, we have estimated the

correlation and Lyapunov dimensions of sensory infor-

mation obtained in a robot with three different controllers.

This is the first attempt to actually exhibit the effect of

controllers, environments and performance on the dimen-

sion in real robot as of our knowledge. The estimated values

of the dimensions seem to correspond well to the tasks given

to the robot and the performance. The dimension value

could be used as a measure of the difficulty of the task for

the robot. It should be kept in mind that the measure is only

from the view point of the specific individual. The

evaluation might vary among individuals with different

experiences, such as those who have evolved in different

environments.
5. Summary and conclusion

In order to study the regularity and complexity of

autonomous behavior, the flow of sensory information in

autonomous mobile robots was analyzed as a complex

system. We used a miniature mobile robot, in which motor

outputs were generated by proximity-sensor signals by

means of a two-layered artificial neural network. The

weights were determined by the genetic evolution necessary

to navigate and avoid obstacles in the ”Maze” environment,

which consisted of straight corridors and right-angled

corners. During the autonomous navigation of the best

individual, sensor signals were collected, and one-dimen-

sional sensory time series representing the proximity to

obstacles in front of the robot was constructed.

The sensory time series Xn, which appeared random, was

plotted on the return map, the plot of XnCt vs. Xn.

The trajectory exhibited a unique structure, representing

the underlying regularity of the time series. Correlation

integral analysis further confirmed that the sensory

time series expressed some properties of deterministic
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chaos—the presence of scaling regions and a finite

embedding dimension. The same analysis was performed

on two other robots having different network topologies or

structures. Trajectories on return maps differed among

robots. In contrast, when each robot was placed in a simple

square-shape path, the trajectories were identical to those

obtained in the Maze environment. These results indicate

that an autonomous robot behaves in such a way that the

flow of sensory information becomes constant, and that the

pattern is characteristic to each robot.

For all the robots, there existed two trajectory com-

ponents corresponding to the navigation of a straight

corridor and corners. Experiments conducted in the Straight

Corridor, and in the Dynamic environment where only

head-on collisions were manually given, confirmed that

transitions from one trajectory to another occur during the

course of autonomous behavior. This observation suggests

that the autonomous robot under no constraints behaves in a

such a way that the sensory information flow travels on a

chaotic attractor having multiple substructures. Jumping

from one sub-attractor to another allows adaptation to new

environments. Such transitions might be the source of

intelligence in generating adaptive behavior as was found

(Degn et al., 1997; Freeman, 1991, 1994a) and analyzed in

the brain (Freeman, 1994b; Kay et al., 1996).

The fractal dimension is used in this study to quantify the

complexity of autonomous behavior and the relative

difficulty of tasks for three types of robots in four different

environments. For all robots, the fractal dimension in the

evolved (i.e. Maze) environment is similar to that obtained

the unknown (i.e. Square) environment consisted of the

same sub-environments. However, the highest and lowest

fractal dimensions were obtain for the Straight-Corridor and

Dynamic environments, respectively. This was common for

all the types of robots. This is also reasonable because

robots need to avoid only head-on collisions in Dynamic

environment, while they have to continuously maintain

themselves at the center of the narrow path in the Straight-

corridor environments by keeping a tight coupling with

environment through the sensory information. Therefore,

the fractal dimension could be utilized to quantify the

difficulty of the task given to the robot, and to compare

the controllers of the robot. In addition, we have shown that

the dimension could be utilized as the performance measure.

These studies raise many questions for future works. For

example, how the return map and the fractal dimension

would be if the robot uses more sensor, how they differ

among physically different robots, how robustness corre-

lates with fractal dimension, etc. One of the largest

questions would be how we can utilize these results in

designing autonomous robot. We are currently working on

limiting the robot behaviors in phase space during

evolution, so that the unexpected dangerous behavior may

not occur and also we are trying to introduce an algorithm

that develop a robot with a smaller fractal dimension.
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