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Abstract

This paper presents a parallel hardware implementation of
a well-known navigation control method on reconfigurable
digital circuits. Trajectories are estimated after an iterated
computation of the harmonic functions, given the goal and
obstacle positions of the navigation problem. The proposed
massively distributed implementation locally computes the
direction to choose to get to the goal position at any point of
the environment. Changes in this environment may be im-
mediately taken into account, for example when obstacles
are discovered during an on-line exploration. The imple-
mentation results show that the proposed architecture si-
multaneously improves speed, power consumption, preci-
sion, and environment size.

1 Introduction

Trajectory planning consists in finding a way to get from a
starting position to a goal position while avoiding obstacles
within a given environment or navigation space.

Harmonic functions have been proposed as potential
fields for trajectory planning in [4] and [1]. This “harmonic
control” approach was mainly motivated by the fact that
harmonic functions do not have local extrema (unlike other
potential based methods as in [10]). In this approach, ob-
stacles correspond to maxima of the potential, while goals
correspond to minima. Control algorithms then reduce to
locally descend the potential until they reach theglobal
minimum.

Harmonic control has had some impact on the
robotics community [12, 18, 2, 6, 8, 9, 14, 16]. Neverthe-
less, very few hardware implementations have been pro-
posed, and they are usually analog, so that they suffer from
a very long and complex design process, and a lack of flexi-
bility (environment size, precision). The aim of this work is
to propose a embeddable digital implementation that uses
reconfigurable circuits, so as to reduce design time and to
improve flexibility.

The proposed implementation maps the massively
distributed structure of the space-discretized estimation of
the harmonic function onto the circuit. An area-saving se-
rial arithmetic is used, within a global scheme that simul-
taneously ensures pipelining and parallelism of the itera-
tive computations. The decision process is also taken into

account, through local estimations of the direction to take
from any point.

Though the speed performance reported in this paper
outperform software implementations, the main advantages
of the described architecture is to provide low-power and
scalable solutions that are able to handle the very large pre-
cisions required by harmonic control within large naviga-
tion environments.

Section 2 describes the principles of harmonic func-
tions and of their use for trajectory planning. Section 3
summarizes the advantages of hardware parallel implemen-
tations on FPGAs for embedded navigation in autonomous
systems, and it justifies the choice of serial arithmetics, es-
pecially with respect to the precision requirements of har-
monic control. The proposed hardware architecture and its
implementation results are described in section 4.

2 Harmonic control

In this part, we begin by a brief reminder of harmonic func-
tions and some of their properties after which we will dis-
cuss their application to the navigation problem.

2.1 Harmonic functions

Let Ω be an open subset of IRn, ∂Ω its boundary and̄Ω its
closure such that̄Ω = Ω ∪ ∂Ω.

Definition Let u : Ω̄ → IR be a real function, twice con-
tinuously differentiable, andΩ ⊆ IRn with n > 1. The
functionu is harmonic iff∆u =

∑n

i=1

∂2u
∂x2

i

= 0.

This equation is known as Laplace’s equation. Harmonic
functions satisfy interesting properties:

• The maximum principle states that: ifu is a non-
constant continuous function on̄Ω that is harmonic on
Ω, thenu attains its maximum and minimum values
overΩ̄ on∂Ω.

• Applying the divergence theorem on harmonic func-
tions, the following equation holds:

∫

s

~∇u · ~ndS = 0



wheres is the boundary of a closed region strictly in
Ω and~n is a normal vector ofs. This equation ex-
presses that the normal flux of the gradient vector field
through the region bounded bys is zero. It follows
that there can be no local minimum or maximum of
the potential inside a bounded region ofΩ.

2.2 Application to navigation

To solve the navigation problem using harmonic functions,
we consider the problem as a Dirichlet problem: its solu-
tion is to find the functionu that is harmonic onΩ (the
navigation space) and that satisfies boundary conditions on
∂Ω (obstacles and navigation goal), in other words, findu

such that:
{

∀x ∈ Ω, ∆u (x) = 0
∀x ∈ ∂Ω, u (x) = g (x)

where the functiong : ∂Ω → IR represents boundary con-
ditions on∂Ω. These conditions define the values of the
navigation function on obstacle and goal positions. With-
out loss of generality we chooseg(x) = 1 for obstacles and
g(x) = 0 for goals. Therefore solving the Dirichlet prob-
lem consists in finding the functionu that is harmonic on
Ω and that has value 1 on obstacle positions and value 0 on
goal positions.

The navigation problem is then solved as follows: a
simple descent along the gradient ofu provides a trajectory
towards a given goal from any starting position. Properties
of harmonic functions ensure that such a path exists and it
is free of local optima.

2.2.1 Numerical method to solve Laplace’s equation

In this part we consider the case whereΩ = IR2. Tradi-
tionally, Laplace’s equation is solved using methods from
finite differences on a regular grid (discrete sampling ofΩ).
Using a Taylor approximation of the second derivatives we
obtain the following discrete form ofu (x1, x2):

∆δu (x1, x2) =
1

δ2
[u(x1 + δ, x2) + u(x1 − δ, y1)

+u(x1, x2 + δ) + u(x1, x2 − δ) − 4u (x1, x2)]

whereδ is the sampling of the grid that representsΩ. In this
form, the equation can be solved using relaxation methods
such as Jacobi or Gauss-Seidel whose principle is to itera-
tively replace each grid point value with the simple average
of its four neighbors. Figure 1 shows different trajectories
generated by simulations using this numerical scheme.

2.2.2 Properties of harmonic navigation functions

Harmonic navigation functions have many interesting
properties which motivated their use in numerous applica-
tions especially in robotics [1, 15, 11, 5, 8, 6, 18, 16, 12,
14, 2, 9]:

Figure 1. Trajectories generated by harmonic control, start-
ing at equally spread points on a100 × 100 grid (two goal
positions).

Global navigation: Complete trajectories may be gener-
ated towards a goal position from anywhere in the environ-
ment, since there are no local minima.

Dynamic trajectory planning: Unexpected updates of
the environment may be taken into account, since harmonic
functions are computed by iterative relaxation methods.
Therefore newly detected obstacles may be integrated in
the model as new boundary conditions during computation,
so that harmonic control is available in dynamic environ-
ments or in environments explored on-line [18, 3].

Parallel computation: An interesting property of the
computations described above is their massively parallel
distribution. Computing grid point values only requires lo-
cal information of the neighboring cells. Fine-grain parallel
implementations appear as an opportunity, as discussed in
the next section.

3 Towards an embedded implementation

The results shown in figure 1 were obtained from software
simulations carried out on a PC. The aim of our work is
to design an embedded system for robot navigation. Com-
putation speed is not the only criterion (trajectory decision
must be performed in real time). Power consumption is
also essential for autonomous systems. Moreover, compu-
tation precision and scalability appear as critical issuesfor
harmonic control, as discussed below. These combined as-
pects motivate the design of a parallel hardware implemen-
tation. In such a work, the number of inputs/outputs and
above all the level of parallelism have a direct influence
on the obtained implementation consumption and speed. A
massively parallel implementation is a real challenge, tak-



ing into account constraints such as precision, grid size,
dynamic updates, etc.

3.1 Implementation environment

Since the appearance of programmable hardware devices,
such asfield programmable gate arrays(FPGAs), algo-
rithms may be implemented on very fast integrated circuits
with software-like design principles. Usual VLSI designs
lead to very high performances. But the time needed to
realize an ASIC (application specific integrated circuit) is
too long, especially when different configurations must be
tested. The chip production time is usually very long (up to
6 months).

FPGAs, such as Xilinx FGPA ([17]), are based on a
matrix of configurable logic blocks(CLBs). Each CLB is
able to implement small logical functions (4 or 5 inputs
functions) with a few elementary memory devices (flip-
flops or latches) and somes multiplexors. Depending on
the CLB capabilites, some operators can lead to small or
large solutions in the FPGA. The Xilinx Virtex series are
well-suited for the implementation of serial arithmetic op-
erators. The CLBs can be connected using a configurable
routing structure.

An FPGA approach simply adapts to the handled ap-
plication, whereas a usual VLSI implementation requires
costly rebuildings of the whole circuit when changing some
characteristics. A design on FPGAs requires the descrip-
tion of several operating blocks. Then the control and the
communication schemes are added to the description, and
an automatic “compiling” tool maps the described circuit
onto the chip.

3.2 Technological choices

The main issues when a massively distributed model is
mapped onto a FPGA are the huge number of operators,
and the routing problems due to the dense interconnections
of these models. A first standard technological choice to
solve these problems is to use serial arithmetics: smaller
operators may be implemented, and they require less con-
nection wires. Another essential technological choice is to
estimate the minimum precision required to keep satisfac-
tory results, so as to use as small as possible operators and
memory resources.

3.2.1 Serial arithmetics

Serial arithmetics correspond to computation architectures
where digits are provided in a serial way, i.e. digit after
digit. Serial arithmetics lead to operators that need small
implementation areas and less inputs/outputs, and that eas-
ily handle different precisions, without an excessive in-
crease of the implementation area. Serial systems are char-
acterised by their delay, i.e, the numberδ such thatp digits
of the result are deduced fromp + δ digits of the input val-
ues.

Two main kinds of serial arithmetics are available:
LSBF (least significant bit first), and MSBF (most signif-
icant bit first). Standard serial operators work in a LSBF
mode (for example to propagate the carry in serial adders).
Though our model requires the computation of a minimum
value (gradient descent), that may only be computed in a
MSBF mode, we have chosen to use standard serial opera-
tors to optimize the required space1.

3.2.2 Computation precision

Software simulation are usually performed to study the pre-
cision that is required by an application before its hard-
ware implementation. Precision issues appear as critical
for harmonic control. This problem has already been men-
tioned as a major limitation for analog implementations
[15]. Computing a harmonic potential over a large grid
may result in gradients that are too small to use because
the allowable precision is easily reached. Connolly [5]
presents a relationship between the precision required for
floating point representation on a computer and the num-
ber of nodes on the grid. He argues that the precision
should at least represent1

N
, whereN is the total number

of grid points, to circumvent precision problems. This fur-
ther modivates the use of an embeded implementation in
which we can allow very high precisions (see 4.3).

We have carried out experimental simulations with
different navigation spaces. They have shown that for some
50 × 50 grids, a 22-bit precision is required at least to en-
sure significant differences between neighboring grid point
values so as to generate correct trajectories. Other simu-
lations have shown that very large grids may require more
than 64-bit precision numbers. It should be pointed out that
in case of insufficient precision, large areas of the grid may
share the same value, which results in wrong trajectories.

It must be mentioned that implementations based on
serial arithmetics may be more easily extended to larger
precisions than implementations based on parallel arith-
metics. Since the size of serial adders and comparators
does not depend on precision (unlike multipliers and ele-
mentary functions), our implementation may handle large
precisions by means of rather simple changes in the control
modules.

4 Hardware implementation of harmonic
control

Though harmonic control has been widely used in robotics,
few hardware implementations have been proposed. Their
technological choices are very different. Most works are
motivated by the fact that analog resistive grids may easily
compute the harmonic function as in 2.2.1. For example

1The only existing radix-2 MSBF serial arithmetics is calledon-line
arithmetics. It uses a redundant number representations system, which
induces less area-saving operators.
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in [13] an analog implementation of a16 × 16 grid is pro-
posed. The main limitation of this work is the precision (as
for most analog implementations). To our knowledge, dig-
ital FPGA-based implementations have not yet been pro-
posed.

In this work, the discretized computation of the har-
monic function is performed to make navigation decisions
for a robot in an environment that may be explored on-line.
Navigation orders are also discretized: at each position, the
robot is ordered to move north, east, west or south. This
simplification implies that the optimal trajectory along the
gradient is only roughly estimated by elementary move-
ments along the axis’. It still results in global trajectories
towards the goal position from any starting point.

4.1 General architecture

The fine grain pipelined internal structure of the proposed
digital architecture was implemented using fixed point
arithmetic. Since grid point values range from 0 to 1, an
unsigned representation with 25 bits is chosen, with a 24-
bit fractional part. As mentioned above, larger wordlengths
may easily be handled.

Figure 2 illustrates the general architecture of the im-
plementation of harmonic control for an × n grid. It con-
sists of a grid ofn × n identical node modules (gathered
16 by 16 to handle on-chip data storage and access) sur-

rounded by border node modules, a control module, a de-
cision module, and a module to interact with the robot.

The role of each component is the following:

• Each node computes its corresponding grid point
value, as well as the direction (north, east, west or
south) to follow to get to the goal position. All nodes
use loop computations within an internal pipeline
scheme. This scheme is particularly efficient for serial
implementations of iterated computations within mas-
sively distributed models ([7]). The control of these
computations are synchronized in the whole grid so
that nodes may serially communicate their grid point
values to their neighbors. In order to simplify the
block-diagram of figure 2, only few buses and wires
are shown: the signals that carry the grid point values
from and to any neighboring node.

• The nodes are split in groups of 4×4 nodes that share
common storage resources: a single dual port SRAM
block stores the values of the 16 grid points, and its
R/W accesses are controlled by a single set of counters
(see 4.2).

• The node modules are very simple. They serially
generate the grid point value of obstacles (see the
Counters module in 4.2).

• The interaction with the robot has not yet been imple-
mented. It strongly depends on the exact configuration
of the robot and of the FPGA board. It includes a po-
sition modules, which role is mainly to compute the
coordinates(X,Y) of the closest grid point around
the real coordinates(x,y) of the robot in its envi-
ronment.

• The control module generates the enable signals that
are sent to all nodes to control their individual be-
haviour when a non-synchronized event occurs:

– convergence of the computation of the harmonic
function (it depends on the local convergence
signals computed by all nodes, see 4.2)

– detection of an unknown obstacle (at node
(X,Y))

• The decision modules collects the navigation direc-
tions locally indicated by each node, and it forwards
the selected direction of node(X,Y) to the robot.

In the following subsections, the hardware architec-
ture for the node model and its main components will be
described in some detail.

4.2 Node implementation

The architecture for the node model is shown in the simpli-
fied block diagram of figure 3. It uses 1-bit inputs and out-
puts to exchange data among nodes and with global mod-
ules. Inputs are mainly used to receive the neighboring grid
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point values (signalsh_N,h_E,h_W,h_S) and global
control signals (standard signalsclk,reset,enable,
signalssel,sat to indicate obstacle/goal changes, and
SRAM controlsEN,R,W). Outputs are twofold: the local
valueh of the harmonic function is sent to all 4 neighbors
(signalsto_N,to_E,to_W,to_S) and signalsNE and
WS code the 4 possible directions to which a robot located
around this grid point should move.

The proposed hardware node model is constituted by
five main modules: the iterative computation of the har-
monic function is performed by theUpdate module, the
local convergence of this computation is detected by the
Cvg module, the local navigation decision is performed by
theDecisionmodule, the node receives orders to behave
as an obstacle or a goal through theSaturationmodule,
and communication with the dual port SRAM block that
stores the grid point value is controled by theMem module.
Figure 3 shows this architecture, as well as its interaction
with shared resources (the localCounters andRAMmod-
ules are shared by a group of4×4 nodes, and theEnable
module is part of the global control module). The function-
ality of the main modules and their implementation details
are described below.

Update: This module performs the iterated computation
of the harmonic function valuehi,j where(i, j) are
the coordinates of the node in the grid. As described

in 2.2.1, each iteration computes:

hi,j(t + 1) =
hi−1,j(t) + hi,j−1(t) + hi+1,j(t) + hi,j+1(t)

4

Three standard Full-Adder cells are sufficient to com-
pute this average, without any shift or division opera-
tor, since the output value is sent to the RAM with a
write address that is delayed by 2 clock cycles (divi-
sion by 4) with respect to the read address. Additional
flip-flops are required to store the carry values.

Cvg: This module serially compares the output of the iter-
ated computation to the stored value (delayed by two
flip-flops in theMem module). This local convergence
test is then sent to a global NOR gate (see theEnable
module) to disable the computation loop after conver-
gence.

Decision: This module operates after convergence of the
computation iterations. It computes the minimum grid
point value among the 4 neighbors. Its output is the 2-
bit code of the direction to choose among N, E, W
and S. This code is computed by theNEWS module
that receives the results of the three comparators. This
computation is performed in a MSBF mode, thanks to
the reverse address counterr_cnt.

Counters: This module is shared by 16 nodes. It gener-
ates the read (resp. write) addresses for the dual port



RAM by means of counterscntR (resp.cntW). The
read address is multiplexed with the reverse counter
r_cnt to change from LSBF to MSBF mode. When
handlingd-bit precision data, these counters are re-
set eachd + 2 cycles (the RAM is written with a 2-
clock cycles delay). All stored values have two zeros
as most significant bits. Value 1 (for obstacles) is com-
puted as a logical function of countercntR.

Mem and Saturation: The local grid point value is not
directly the output of theUpdate module. It may
also be a constant 0 or 1 (goal or obstacle). A multi-
plexer selects the correct value with respect to a con-
trol given by theSaturation module that memo-
rizes thesat value to be the constant value of the grid
point when the node is selected by the global control
module (signalsel).

4.3 Implementation results

This work uses a PCI bus board equiped with a Vir-
tex XC2V6000-4FF1517 FPGA from Xilinx, with up to
6,000,000 system gates. It must be pointed out that the
current largest FPGAs already outperform the capacity of
the Virtex XC2V6000: such a FPGA contains 67,584 logic
cells, to be compared with the 200,448 ones of the largest
Virtex-4.

The design was synthesized, placed and routed au-
tomatically in Xilinx Foundation ISE 7.1i. Each node re-
quires 16 logic cells, so that each block of 16 nodes requires
280 logic cells (counters included). On a XC2V6000, 144
dual port SRAM blocks are available, that may be config-
ured as1K×18 RAMs to be shared by blocks of 16 nodes.
The whole architecture implements a48 × 48 grid on less
than 65 % of the XC2V6000logic cells. Larger grids (up to
73×73) may be implemented on the current largest FPGAs
with this approach (the available SRAM blocks being the
critical resource).

When considering the harmonic function computa-
tion, software implementations on a microprocessor based
computer, Pentium 4, 2 GHz, require around 100µs per it-
eration with a50 × 50 grid (100 to 1000 iterations are re-
quired to converge). In the proposed hardware implemen-
tation, 27 clock cycles are required per iteration, with an
estimated clock frequency of 55 MHz. Thus, the architec-
ture provides a speed factor up to 200×, that would even
increase with the number of nodes in the grid (sequential
vs parallel implementation). But the implementation speed
is not the main advantage of our implementation: real-time
computation is easily reached by software implementations
for such precisions and size grids. Power consumption is a
key factor for embedded implementations, and above all
very large precisions may be easily handled by the pro-
posed serial implementation (up to 1K bits when fully using
the SRAM blocks).

5 Conclusion and future work

We have presented an embedded architecture to solve the
navigation problem in robotics, that computes trajectories
along a harmonic potential, using a FPGA implementa-
tion. This architecture includes the iterated estimation of
the harmonic functions, with the possibility of changing the
goal and obstacle positions of the navigation problem dur-
ing computation. The trajectory decision is also performed
on-chip, by means of local computations of the preferred
direction at each point of the discretized environment. The
proposed architecture uses a massively distributed grid of
identical nodes that interact with each other within mutu-
ally dependant serial streams of data to perform pipelined
iterative updates of the local harmonic function values until
global convergence.

The proposed architecture enables us to handle very
large precisions using SRAM blocks, which is a benefit
over computer resolution of harmonic funtions. Furthe-
more, a greatly improved speed and a low power consump-
tion are other non-negligible advantages, since the goal is
to embed this implementation on mobile robots. The cur-
rent hardware model is already able to handle significantly
large discretized environments.

Future architecture improvements are already consid-
ered to extend the capacities of the model to navigation
within larger and more complex environments. A stud-
ied extention efficiently uses the available SRAM to handle
very large grid, by means of an iterated computation mode
that is both globally asynchronous and block-synchronous.
Current efforts are also made to extend our implementation
to optimal control, a more generic (and tunable) trajectory
planning method.
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