
Chi N. Thai

Exploring
Robotics
with ROBOTIS
Systems

 Exploring Robotics with ROBOTIS Systems

 Chi N. Thai

 Exploring Robotics
with ROBOTIS Systems

 ISBN 978-3-319-20417-8 ISBN 978-3-319-20418-5 (eBook)
 DOI 10.1007/978-3-319-20418-5

 Library of Congress Control Number: 2015944075

 Springer Cham Heidelberg New York Dordrecht London
 © Springer International Publishing Switzerland 2015
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

 Printed on acid-free paper

 Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

 Chi N. Thai
 College of Engineering
 University of Georgia
 Athens , GA , USA

www.springer.com

 To my parents for giving me life
and to my wife Christine and daughter
Emily for their enduring love and support.

vii

 1 Motivations and Instructional Approach .. 1
 1.1 Motivations ... 1
 1.2 Instructional Approach ... 2
 References .. 3

 2 ROBOTIS’ Robot Systems ... 5
 2.1 General Systems Description .. 5
 2.2 Robotics Kits Considered in Book .. 9
 2.3 Micom Training Kit .. 14
 2.4 System(s) Selection Criteria ... 15
 2.5 Review Questions for Chap. 2 .. 16

 3 Hardware Characteristics .. 19
 3.1 The Atmel AVR Family .. 19

 3.1.1 CM-5 (Discontinued) .. 19
 3.1.2 CM-510 (Discontinued) .. 23

 3.2 The STM ARM Cortex M3 Family .. 25
 3.2.1 CM-530 ... 25
 3.2.2 CM-900 (Discontinued) .. 26
 3.2.3 OpenCM-9.04 Series ... 27

 3.3 The Dynamixel Actuators Family ... 31
 3.3.1 The AX Series ... 31
 3.3.2 The MX Series .. 33

 3.4 ROBOTIS Sensors Family .. 35
 3.4.1 AX-S1 and IRSA .. 36
 3.4.2 AX-S20 (Discontinued) .. 37
 3.4.3 Foot Pressure Sensor (FPS: From HUV Robotics) 39
 3.4.4 HaViMo 2.0 ... 40
 3.4.5 GPIO (5-Pin) DMS Sensor ... 40
 3.4.6 GPIO (5-Pin) Gyroscope Sensor GS-12 41

 Contents

viii

 3.4.7 Other GPIO (5-Pin) Sensors and Output Devices 41
 3.4.8 Recent Adaptations of Smart Phone Features 42

 3.5 Review Questions for Chap. 3 .. 42
 References .. 45

 4 Software Tools ... 47
 4.1 Dynamixel Wizard Tool .. 49

 4.1.1 TTL (3-Pin) and RS-485 (4-Pin) Dynamixels 49
 4.1.2 XL-TTL (3-Pin) Dynamixels .. 50

 4.1.2.1 OpenCM-9.04-C .. 51
 4.1.2.2 OpenCM-9.04-B... 52

 4.2 Manager Tool .. 52
 4.2.1 CM-5, CM-510, CM-530 .. 52
 4.2.2 OpenCM-9.04-A/B/C .. 53

 4.3 Task Tool ... 54
 4.3.1 CM-5, CM-510, CM-530 .. 55
 4.3.2 CM-9.04-C .. 56

 4.4 Motion Tools (V.1 and V.2) ... 57
 4.5 R+ Design Tool ... 59
 4.6 “If I Were to Restart …” ... 60
 4.7 Review Questions for Chap. 4 .. 60

 5 Foundational Concepts ... 61
 5.1 “Sense-Think-Act” Paradigm ... 61
 5.2 Primer for MANAGER and TASK Tools 65

 5.2.1 MANAGER Capabilities... 65
 5.2.2 Basic TASK Usage .. 70

 5.3 “Sequence Commander” Project .. 70
 5.4 “Smart Avoider” Project ... 72
 5.5 “Line Tracer” Project .. 75

 5.5.1 Mechanical Design Features ... 76
 5.5.2 IR Array Sensor (IRSA) .. 77
 5.5.3 Programming Maneuvers for Line Tracer........................... 77

 5.6 “Remote Controlled CarBot” Project ... 79
 5.7 Review Questions for Chap. 5 .. 83
 5.8 Review Exercises for Chap. 5 ... 84
 References .. 85

 6 Actuator Position Control Basics ... 87
 6.1 AX-12/18 Position Control with TASK .. 87
 6.2 Using Motion Editor (V.1) .. 92

 6.2.1 Characteristics of a Motion Page in Motion V.1 92
 6.2.2 Application to a GERWALK Robot 95

 6.3 Form and Function of Walking Robots ... 95
 6.4 Review Questions for Chap. 6 .. 100

Contents

ix

 6.5 Review Exercises for Chap. 6 ... 101
 References .. 102

 7 Advanced Position Control... 103
 7.1 “Torque” Effects ... 103

 7.1.1 Torque Limit, Present Position and Present Load 104
 7.1.2 Adjusting Torque Limit Dynamically 104

 7.2 “Joint Offset” Effects .. 106
 7.3 A Load Sensing Gripper ... 107
 7.4 Review Questions for Chap. 7 .. 108
 7.5 Review Exercises for Chap. 7 ... 108
 References .. 109

 8 Wireless Communications Programming ... 111
 8.1 ZigBee Broadcast Channel Differences .. 112
 8.2 Broadcast Use of RC-100 (NIR and ZigBee) 113
 8.3 Message “Shaping” Concepts ... 115

 8.3.1 Mimicking Grippers .. 115
 8.3.2 Leader-Follower GERWALKS ... 118
 8.3.3 Multiple Users and Multiple Robots (ZigBee Only) 119

 8.4 PC to Robots Communications via C/C++ 122
 8.5 ZigBee and BlueTooth Performances ... 123
 8.6 Review Questions for Chap. 8 .. 123
 8.7 Review Exercises for Chap. 8 ... 125
 References .. 126

 9 Advanced Sensors ... 127
 9.1 Humanoid Static Balance with AX-S20 ... 127

 9.1.1 2-Leg Static Balance with AX-S20 128
 9.1.2 1-Leg Static Balance ... 132

 9.2 Humanoid Dynamic Balance with GS-12 133
 9.2.1 Walk Enhancement with GS-12 .. 135
 9.2.2 Fall Detection with GS-12 .. 136

 9.3 Humanoid Balance with FPS .. 136
 9.3.1 FPS Data Acquisition .. 136
 9.3.2 Humanoid 1-Leg Balance with FPS 138

 9.4 HaViMo2 Applications ... 139
 9.4.1 HaViMo2 Features and Usage .. 139
 9.4.2 HaViMo2 Application to a CM-5 CarBot 140

 9.5 Review Questions for Chap. 9 .. 144
 9.6 Review Exercises for Chap. 9 ... 144
 References .. 145

 10 Embedded C Options .. 147
 10.1 Embedded C vs. RoboPlus’ TASK .. 148
 10.2 Embedded C for the OpenCM-9.00/9.04 151
 10.3 Embedded C for the CM-510 and CM-530 152

 10.3.1 Tutorials for CM-510 ... 152

Contents

x

 10.3.2 Tutorials for CM-530 ... 153
 10.3.3 Future Support for Embedded C for CM-510/530? 153

 10.4 Motion Programming and Embedded C.. 154
 10.5 Review Questions for Chap. 10 ... 155
 10.6 Review Exercises for Chap. 10 ... 155
 Reference ... 155

 11 ROBOTIS-MINI System .. 157
 11.1 PC to MINI Wireless Options ... 158
 11.2 New Motion Concepts in MOTION V.2 159

 11.2.1 Unlimited File Size for MTNX 159
 11.2.2 Effi cient Motion Data Structure 160

 11.3 PC Control of Robot Moves .. 163
 11.4 Synchronizing LEDs to Motion .. 165
 11.5 Fight Choreography for two MINIs via ZigBee 167
 11.6 Fight Choreography for two MINIs via BlueTooth 169
 11.7 Review Questions for Chap. 11 ... 171
 11.8 Review Exercises for Chap. 11 ... 171
 References .. 172

Contents

1© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_1

 Chapter 1
 Motivations and Instructional Approach

1.1 Motivations

 My personal robotics journey began with RoboCup 2007 hosted by Ga Tech that sum-
mer. I was so impressed by the advancement in humanoid robotics on display there and
thought that this could be an important component for engineering instruction at The
University of Georgia, as at that time we were seeking to expand engineering beyond
biological and agricultural engineering. Also at RoboCup 2007, I met Mr. Jinwook
Kim from ROBOTIS and was introduced to the Bioloid Comprehensive and Expert kits
which were about the only “in-depth” but “affordable” robotic systems at the time.

 In 2008 when I started to draft out the instructional materials for my “Embedded
Robotics” course, the only source of ROBOTIS technical information was from their
“Quick Start”, “Programming Guide” and “Expert” manuals. I was also much
inspired by the works of Bekey (2005), Bräunl (2006), Matarić (2007) and Miller
et al. (2008) which resulted in my adoption of a project-based approach to my course.
Also during this time, I was going through some trainings by the UGA Center for
Teaching and Learning which made me aware of “learner-centered” approaches
(Fink 2003 ; Weimer 2002) and screen/classroom capture technologies such as
Camtasia Studio (Thai et al. 2008). I also had found the “Spiral” model from Dr.
Joseph Bergin (Bergin 2012) very inspiring in designing the fl ow of presented topics
and instructional materials in the “Embedded Robotics” course and also in this book.
Unfortunately, not all classroom teaching approaches can be directly transferred into
a “book”, for example I modifi ed the “contract” teaching style (Wikipedia 2013) by
allowing students to choose their own projects to suit their own interests and personal
strengths (Thai 2014). However, in this book, I can only describe those projects and
provide web links to show the students achievements.

 I was also fortunate to have help from outstanding students during the development
period of this course:

• Mr. Alex Fouraker (pursuing his BSAE degree) was instrumental in exploring
the limits of what the Bioloid kits can do: Alex’s work on the GERWALK climbing

2

stairs is still the most accessed item at the ROBOTIS Gallery web site with
255,192 views as of 12/10/2014 (Thai 2009).

• In Spring 2010, this course was taught for the fi rst time and more instructional
design details for this particular implementation can be found in this article
(Thai 2010). During this course, Mr. Matthew Paulishen (also pursuing his
BSAE degree) had extended many BIOLOID projects for PC-side Visual C++
and Machine Vision programming for bipedal robots (Thai 2011). Since then this
course had been fi ne-tuned using student feedbacks and in accordance with the
continuing hardware and software updates from ROBOTIS.

 Between Spring 2012 and Fall 2013, I had the opportunity to repurpose my UGA
classroom recordings with Drs. Yan-Fu Kuo and Ping-Lang Yen from National
Taiwan University for a Distance Education project based on a Flipped Classroom
model (Thai et al. 2013). This project has helped in refi ning the scaffolding of the
presented materials and genesis of new course projects.

 From their end, ROBOTIS had their Q&A web site since 2007 and added more
web resources for users such as their e-Manual (http://support.robotis.com/) in early
2010 and RobotSource (http://www.robotsource.org/?na=en&pc_ver=1) in late
2011. Furthermore, ROBOTIS continues to improve the instructional design of their
paper-based manuals that are included in their BIOLOID STEM and PREMIUM
robotic kits. At present, there are also several web-based Forums such as the ones
from RoboSavvy (https://robosavvy.com/forum/viewforum.php?f=5) and Trossen
Robotics (http://forums.trossenrobotics.com/) providing ROBOTIS user communi-
ties worldwide and they perform many useful functions. However, a reading of the
postings from the above web sites would show that some beginners are still having
a tough time learning and some folks are still having problems fi nding solutions to
suit their needs.

 Those were my motivations to write this book using a web-based multimedia
approach for illustrating robotics concepts, code implementations and actual result-
ing robot behaviors. This approach also allows the “thinning” the book (a video is
worth many pages of text!), for easier updates and for users to skip subjects they do
not need. This book is mainly designed for self-learners and presents in a more
organized manner various information sources from ROBOTIS technical training
manuals (paper-based and web-based).

1.2 Instructional Approach

 In keeping with the “Spiral” instructional model and a project-based approach, the
rest of this book is structured as follows:

• Chapter 2 —Overall view of ROBOTIS robotics systems from 1999 to 2014.
• Chapter 3 —Hardware characteristics of the robot systems used in this book

(i.e., BIOLOID and Open-CM): controllers, actuators and sensors.
• Chapter 4 —Description of the evolution of ROBOTIS software tools since 1999

and illustration of their basic use for fi rmware updating and evaluation of wired
and wireless control performances.

1 Motivations and Instructional Approach

http://support.robotis.com/
http://www.robotsource.org/?na=en&pc_ver=1
https://robosavvy.com/forum/viewforum.php?f=5
http://forums.trossenrobotics.com/
http://dx.doi.org/10.1007/978-3-319-20418-5_2
http://dx.doi.org/10.1007/978-3-319-20418-5_3
http://dx.doi.org/10.1007/978-3-319-20418-5_4

3

• Chapter 5 —Foundational robotics concepts using wheeled robots and the
Manager and Task tools: basic use of actuators and sensors, autonomous behaviors
achieved via reaction control and behavior control approaches, introductory
remote communication and control concepts. Projects implemented: Sequence
Commander, Line Tracer and Smart Avoider.

• Chapter 6 —Multi-link robots and introductory actuator position control concepts
using the Task and Motion V.1 tools: Proportional-Integral (PI) implementations,
Motion Pages, and required modifi cations to remote control programming
application. Projects implemented: BugBot, Bipedal Bots.

• Chapter 7 —Applications of advanced position control features such as ‘Load
Limit”, “Present Load” and “Join Offset”, Callback functions. Projects imple-
mented: GERWALK and Load-sensing gripper.

• Chapter 8 —Advanced communications programming concepts via ZigBee:
1-to-1 and broadcast modes. Projects implemented: Embedding special signals
into standard packets for bot-to-bot and PC-to-bots application programming,
Leader and Follower grippers, Multiple-users control scheme.

• Chapter 9 —Integrating advanced sensors such as gyroscope, inertial measuring
unit, foot pressure sensor, and color video camera. Projects implemented:
Balance of Humanoid Robot, Color Object Search by Carbot and GERWALK.

• Chapter 10 —Embedded C options and implementations on BIOLOID and
OpenCM-9.04-A/B systems using ROBOTIS SDK and OpenCM IDE
examples.

• Chapter 11 —ROBOTIS(DARWIN)-MINI system: PC wireless communications
options, new motion concepts in Motion V.2, sensor integration with TASK &
MOTION, and choreography application to two MINIs.

 In closing for this chapter, I would like to quote Dr. Ben Shneiderman from his
book “Leonardo’s Laptop” (2002 , p. 113):

 … we might rethink education in terms of collect-relate-create-donate:
 COLLECT—Gather information and acquired resources
 RELATE—Work in collaborative teams
 CREATE—Develop ambitious projects
 DONATE—Produce results that are meaningful to someone outside the classroom …

 References

 Bekey GA (2005) Autonomous robots. MIT, Cambridge
 Bergin J (2012) Pedagogical patterns: advice for educators. CreateSpace Independent Publishing

Platform, p 115
 Bräunl T (2006) Embedded robotics. Springer, Heidelberg
 Fink LD (2003) Creating signifi cant learning experiences. Jossey-Bass, San Francisco
 Matarić MJ (2007) The robotics primer. MIT, Cambridge
 Miller DP et al (2008) Robots for education. In: Siciliano B, Khatib O (eds) Springer handbook of

robotics. Springer, Heidelberg, pp 1283–1301
 Shneiderman B (2002) Leonardo’s laptop. MIT, Cambridge, pp 113–114
 Thai CN (2009) Bioloid GERWALK robot going up stairs steps. http://thai.engr.uga.edu/Bioloid/

Stairs/index.html . Accessed 13 Dec 2014

References

http://dx.doi.org/10.1007/978-3-319-20418-5_5
http://dx.doi.org/10.1007/978-3-319-20418-5_6
http://dx.doi.org/10.1007/978-3-319-20418-5_7
http://dx.doi.org/10.1007/978-3-319-20418-5_8
http://dx.doi.org/10.1007/978-3-319-20418-5_9
http://dx.doi.org/10.1007/978-3-319-20418-5_10
http://dx.doi.org/10.1007/978-3-319-20418-5_11
http://thai.engr.uga.edu/Bioloid/Stairs/index.html
http://thai.engr.uga.edu/Bioloid/Stairs/index.html

4

 Thai CN (2010) Teaching robotics to students with mixed interests. http://thai.engr.uga.edu/
PDF/EIAE_10_Teaching_Robotics.pdf . Accessed 13 Dec 2014

 Thai CN (2011) Biped robot going up stairs steps. http://thai.engr.uga.edu/RobotVids/
BipedUpStairs_1.wmv . Accessed 13 Dec 2014

 Thai CN (2014) Syllabus CSEE/ENGR-4310: Embedded Robotics (Fall 2014). http://thai.engr.
uga.edu/PDF/CSEE-ENGR-4310.pdf . Accessed 13 Dec 2014

 Thai CN et al (2008) Robotics-based curriculum development for an immigration course into
computer systems engineering. http://thai.engr.uga.edu/PDF/Thai_EIAE_08.pdf . Accessed 13
Dec 2014

 Thai CN et al (2013) Cooperative teaching in a distance education environment. http://thai.engr.
uga.edu/PDF/CooperativeTeachingDEEnvironment.pdf . Accessed 13 Dec 2014

 Weimer M (2002) Learner-centered teaching. Jossey-Bass, San Francisco
 Wikipedia (2013) Student-teacher contract (teaching style). http://en.wikipedia.org/wiki/Student-

teacher_contract_(teaching_style). Accessed 13 Dec 2014

1 Motivations and Instructional Approach

http://thai.engr.uga.edu/PDF/EIAE_10_Teaching_Robotics.pdf
http://thai.engr.uga.edu/PDF/EIAE_10_Teaching_Robotics.pdf
http://thai.engr.uga.edu/RobotVids/BipedUpStairs_1.wmv
http://thai.engr.uga.edu/RobotVids/BipedUpStairs_1.wmv
http://thai.engr.uga.edu/PDF/CSEE-ENGR-4310.pdf
http://thai.engr.uga.edu/PDF/CSEE-ENGR-4310.pdf
http://thai.engr.uga.edu/PDF/Thai_EIAE_08.pdf
http://thai.engr.uga.edu/PDF/CooperativeTeachingDEEnvironment.pdf
http://thai.engr.uga.edu/PDF/CooperativeTeachingDEEnvironment.pdf
http://en.wikipedia.org/wiki/Student-teacher_contract_(teaching_style
http://en.wikipedia.org/wiki/Student-teacher_contract_(teaching_style

5© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_2

 Chapter 2
 ROBOTIS’ Robot Systems

2.1 General Systems Description

 ROBOTIS Co., Ltd (Seoul, South Korea) was founded by Bill Byoung-Soo Kim in
1999 along with two other engineers. The current CEO (Byoung-Soo Kim) and
Vice-President (In-Yong Ha) were from the original team. The ROBOTIS name
derived from the question “What is a robot?” and their vision statement can be read
at http://en.robotis.com/index/company_01.php . In 2009, ROBOTIS opened their
USA offi ce in Irvine, California and currently ROBOTIS has more than 200 partners
in 40 countries worldwide. In a 2014 interview with Robot Magazine, CEO Kim
shared his strategy for future products (http://en.robotis.com/BlueAD/board.
php?bbs_id=news&mode=view&bbs_no=797584&page=3&key=&keyword=).

 “Dynamixel” is the brand name uniquely connected to ROBOTIS. “Dynamixel”
encapsulates several modularization and standardization concepts applied to both
sensors and actuators equipped with embedded computing and communications
capabilities (Fig. 2.1).

 In 1999, ROBOTIS launched their fi rst product called Didi and Titi. This link
(http://en.channel.pandora.tv/channel/video.ptv?c1=05&ch_userid=do7minate&pr
gid=49759295&ref=na) shows a TV commercial for Didi and Titi (Fig. 2.2).

 Since then, ROBOTIS has released 20 more products:

 1. Toma (2002—released in Korea only).
 2. Dynamixel—AX-12 (2003).
 3. Cycloid (2004—released in Korea only).
 4. BIOLOID—Beginner and Comprehensive (2005).
 5. URIA (2006—released in Korea only).
 6. Dynamixel—RX-64 (2006).
 7. OLLO (2008).
 8. Dynamixel—EX-106 (2008).
 9. BIOLOID PREMIUM (2009).
 10. Dynamixel—MX series (2011).

http://en.robotis.com/index/company_01.php
http://en.robotis.com/BlueAD/board.php?bbs_id=news&mode=view&bbs_no=797584&page=3&key=&keyword=
http://en.robotis.com/BlueAD/board.php?bbs_id=news&mode=view&bbs_no=797584&page=3&key=&keyword=
http://en.channel.pandora.tv/channel/video.ptv?c1=05&ch_userid=do7minate&prgid=49759295&ref=na
http://en.channel.pandora.tv/channel/video.ptv?c1=05&ch_userid=do7minate&prgid=49759295&ref=na

6

 11. DARWIN-OP (2011), renamed ROBOTIS-OP in 11/2014.
 12. BIOLOID STEM (2012).
 13. IDEAS (2013).
 14. THOR-MANG (2013).
 15. Dynamixel-Pro H-series (2013).
 16. Dynamixel—XL-320 (2014).
 17. DARWIN-MINI (5/2014), renamed ROBOTIS-MINI in 11/2014.
 18. Dynamixel-Pro L-series (2014).
 19. DREAM (2014).
 20. SMART (~2015).

 This list shows ROBOTIS’ commitment to continuing development and improve-
ment and to serve a very broad clientele in terms of age as well as technical level.
These products had been adopted by hobbyists of all ages as well as teachers and
researchers worldwide (please visit http://www.ROBOTIS.com for more details).

 The systems designed for young children are: OLLO, IDEAS, DREAM and
SMART. They are colorful and use a quick-connect system adapted from the

Status Display LED

Instruction Packet(ID=N)

Daisy chain Link

Status Packet(ID=N)

Main Controller

ID=0 ID=1 ID=N

 Fig. 2.1 “Dynamixel” concept

 Fig. 2.2 Didi and Titi

2 ROBOTIS’ Robot Systems

http://www.robotis.com/

7

standard rivet concept to ease hands-on creative activities for children. They can be
constructed to be simple mechanical assemblies (IDEAS) as well as programmable
and motorized robots (OLLO, DREAM). Their most recent SMART system is
designed to be used with mobile devices such as smart phones and tablets. Their
embedded controllers are based on the Atmel AVR chip with more recent systems
such as DREAM and SMART using the STM32F103C8 or STM32L151C8 from
STMicroelectronics (Fig. 2.3).

 The BIOLOID systems (BEGINNER, COMPREHENSIVE, STEM and
PREMIUM) are designed to be various entry points (depending on one’s budget)
into the robotics fi eld for those interested in taking a more comprehensive journey
into this knowledge area. They use standard screws and nuts for a sturdier fastening
method, with some parts using the OLLO’s rivet system also. The older kits
(BEGINNER and COMPREHENSIVE) were designed off the Atmel AVR chip
while more recent systems (STEM and PREMIUM) rely on the ARM architecture
provided such embedded controllers as STM32F103C8 and STM32F103RE from
STMicroelectronics (Fig. 2.4).

 In 2012, ROBOTIS made a strategic shift into the open hardware-software move-
ment with their OpenCM systems whereas users can collaborate on hardware and
software development worldwide (http://www.robotsource.org/bs/bd.php?bt=forum_
CM9DeveloperWorld) (Fig. 2.5).

 ROBOTIS is also well known for its humanoid robots in the competitive and
research arenas such as the GP (http://www.ROBOTIS.com/xe/BIOLOID_GP_en),
ROBOTIS(DARWIN)-OP (http://www.ROBOTIS.com/xe/darwin_en), and THOR-
MANG (http://www.youtube.com/watch?v=j_YSeOa9yAQ). In Spring 2014,

 Fig. 2.3 OLLO robots in action

2.1 General Systems Description

http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld
http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld
http://www.robotis.com/xe/BIOLOID_GP_en
http://www.robotis.com/xe/darwin_en
http://www.youtube.com/watch?v=j_YSeOa9yAQ

8

ROBOTIS released a more affordable humanoid robot called ROBOTIS(DARWIN)-
MINI (http://www.ROBOTIS.com/xe/ROBOTIS_DARWIN_MINI_en) based on
the OpenCM9.04-C controller and the XL-320 servo motor. Outwardly, the
DARWIN-MINI is roughly a half-scale version of the DARWIN-OP, but with

 Fig. 2.4 A Bioloid STEM robot

 Fig. 2.5 OpenCM-9.04-B controller (left), XL-320 servo motor (center), and USB2Dynamixel
communication converter (right)

2 ROBOTIS’ Robot Systems

http://www.robotis.com/xe/ROBOTIS_DARWIN_MINI_en

9

reduced capabilities and a different kinematic linkage solution for its legs. It is
designed to be operated and programmable from mobile devices as well as personal
computers (MS Windows) (Fig. 2.6).

 As this book is geared towards university undergraduate students or self- learners,
only the following systems will be considered in further details: BIOLOID
BEGINNER, COMPREHENSIVE, STEM and PREMIUM, OpenCM and
ROBOTIS(DARWIN)-MINI.

2.2 Robotics Kits Considered in Book

 The BIOLOID BEGINNER and COMPREHENSIVE systems use the CM-5 as its
main controller which is an Atmel ATmega @ 16 MHz and with 128 KB of fl ash
memory. It connects to ROBOTIS’ sensors and actuators via the Dynamixel TTL
bus (3-pin) and has ZigBee wireless communications capabilities via the ZIG-100
modules (Fig. 2.7).

 Actually there was another CM-5 based system called BIOLOID EXPERT that was
available between 2005 and 2009. It used the same basic hardware as the
COMPREHENSIVE, but had a wireless color video camera and a Visual C++ V.6

 Fig. 2.6 ROBOTIS(DARWIN)-MINI action fi gure

2.2 Robotics Kits Considered in Book

10

library with functions to control sensors, actuators, video camera and also to perform
machine vision processing routines and ZigBee wireless communications (Fig. 2.8).

 When the BIOLOID PREMIUM system fi rst came out in 2009, it was shipped
with the CM-510 controller which was a 16-MHz ATmega with 256 KB fl ash

 Fig. 2.7 CM-5 Controller (discontinued)

 Fig. 2.8 Wireless color
video camera from CM-5
EXPERT kit (discontinued)

2 ROBOTIS’ Robot Systems

11

memory, but since 2013 it is shipped with the CM-530 which is based on the
72-MHz STM32F103RE with 256 KB fl ash memory. Otherwise, visually and
functionally, the CM-510 and CM-530 are identical to each other. Both are also
capable of handling embedded C applications via the WinAVR (CM-510) or
WinARM (CM-530) tool chains (see further discussions in Chaps. 4 and 10)
(Fig. 2.9).

 It should be mentioned that there are also two barebone ATmega-based controllers,
CM-2+ (discontinued) and CM-700, which were designed for custom needs when
the user has to mix two types of Dynamixel modules together in the same controller
(i.e., 3-pin TTL and 4-pin RS-485, see Chap. 3 for more details). Embedded C is
also available for the CM-700 (Fig. 2.10).

 The latest BIOLOID system (2012) is the STEM kit which combines hardware
construction approaches from the previous BIOLOID kits (i.e., screws and nuts) and
from the OLLO kits (i.e., plate and rivets). The STEM also has new hardware to cre-
ate more secure pin joints (Fig. 2.11) and an IR Sensor Array (to be described later in
Chap. 3). The STEM kit uses the CM-530 controller. It comes as two separate kits,
Standard and Expansion, and the Standard kit is required for the proper use of the
Expansion kit.

 Fig. 2.9 CM-510 (discontinued) and CM-530 controllers

 Fig. 2.10 CM-2+ (left —discontinued) and CM-700 (right) controllers

2.2 Robotics Kits Considered in Book

http://dx.doi.org/10.1007/978-3-319-20418-5_4
http://dx.doi.org/10.1007/978-3-319-20418-5_10
http://dx.doi.org/10.1007/978-3-319-20418-5_3
http://dx.doi.org/10.1007/978-3-319-20418-5_3

12

 All BIOLOID systems use the RoboPlus software suite consisting of four tools:

 1. MANAGER—for general hardware troubleshooting and obtaining fi rmware
update for controllers.

 2. TASK—general programming environment for the user.
 3. MOTION—motion programming environment for multi-links robots.
 4. DYNAMIXEL WIZARD—for troubleshooting and updating fi rmware on

Dynamixel actuators and sensors.

 The OpenCM platform is the vehicle for ROBOTIS to accomplish its open-
hardware and software goals in the near future for operating systems such as MS
Windows, Mac OSX and Linux. The CM-900 was the beta platform fi rst available
in 2012 but is no longer sold by ROBOTIS. It had two editions, ES and V.1.0, which
are based on the STM32F103C8 microcontroller. They carried 64 KB of fl ash mem-
ory and support many hardware interface standards such as USB (1), CAN (1),
USART (3), I2C (2) and SPI (2). The ES version supported both AX/MX-TTL and
RS-485 Dynamixel ports, the V.1 edition additionally supported the new XL-TTL
Dynamixel port. Both supported software development using an Arduino-based
IDE (called “OpenCM IDE”) and wireless communications programming via
ZigBee and BlueTooth. Real-time debugging (SWD & JTAG) was also available
using additional tools such as ST-LINK/V2 and Keil μVision (Fig. 2.12).

 Currently, only the OpenCM-9.04 series is commercially available and it comes
in three versions A, B and C. The 9.04 series has the same hardware features previ-
ously listed for the 9.00 series, however they have a smaller physical format and
128 KB of fl ash memory (Fig. 2.13).

 The B version is “ready-to-go” if the user plans to use a mixture of AX/MX-TTL
and XL-TTL Dynamixel modules. The A version is essentially a user-customizable
B version whereas the user can install only the needed headers. Both A and B
versions are completely open hardware and software controllers whereas users can
adapt their own fi rmware and boot loader as they wish. They use the OpenCM IDE
as the programming interface.

 Fig. 2.11 BIOLOID
STEM pin-joint hardware

2 ROBOTIS’ Robot Systems

13

 Currently the C version comes with the ROBOTIS(DARWIN)-MINI kit and is
also available by itself (http://www.robotis.us/opencm9-04-c-with-onboard-xl-
type-connectors/). It has only the XL-TTL connectors installed. Most importantly,
it has a proprietary fi rmware so that it can operate with the R+Task and R+Motion
V.2 software suite. Alternately, the user can use the OpenCM IDE with version C
but this mode would effectively erase the proprietary fi rmware, thus if the user

 Fig. 2.12 CM-900 ES (left) and V. 1 (right)

 Fig. 2.13 OpenCM-9.04-A/B/C controllers (left to right)

2.2 Robotics Kits Considered in Book

http://www.robotis.us/opencm9-04-c-with-onboard-xl-type-connectors/
http://www.robotis.us/opencm9-04-c-with-onboard-xl-type-connectors/

14

wants to use the R+Task and R+Motion packages again, a fi rmware recovery pro-
cess must be performed (see Chap. 4).

 If the user requires more TTL and RS-485 Dynamixel ports, an expansion board
can be used (OpenCM-485-EXP) (Fig. 2.14).

2.3 Micom Training Kit

 By the Summer of 2015, ROBOTIS plans to release a “minimal” training kit named
“Micom Training Kit”. It is based on the OpenCM-9.04-C and oriented towards the
DIY type of user. Figure 2.15 shows its main components:

• One OpenCM-9.04-C with 2-mm header mounted.
• Three NIR sensors (5-pin type).
• Two XL-320 actuators.
• One solderless breadboard and some 100 mm jumper wires.
• Some electrical and electronics components such as resistors (10 and 100 KΩ),

one red LED, matching NIR LED emitter/receiver, one toggle switch, one variable
resistor, a microphone and a 7-segment LED display.

• Additional OLLO frame and wheel parts to make a wheeled robot using NIR
sensors so that it can follow a black track (for example).

 Fig. 2.14 Expansion board OpenCM-485-EXP for the OpenCM-9.04 series (beta version— green ,
release version— blue)

2 ROBOTIS’ Robot Systems

http://dx.doi.org/10.1007/978-3-319-20418-5_4

15

 With this kit, the DIY user can start programming using the TASK tool for a
quick learning approach, then later can switch to the Arduino based ROBOTIS IDE
for a low-level programming style using the C language and the breadboard for
experimental circuits such as:

• Direct pin access and digital output (PWM and duty cycle).
• Analog input and A/D conversion.
• Serial communications.
• Dynamixel control and instruction packet management.
• Memory access, etc.…

 ROBOTIS has not fi nalized the price for the Micom Training Kit at this point in
time (March 2015), but the author’s estimate is around $150–175.

2.4 System(s) Selection Criteria

 When I fi rst prepared the instructional materials for my “Embedded Robotics” course
in early 2009, the only option was the CM-5 based systems: BIOLOID
COMPREHENSIVE and BIOLOID EXPERT. But nowadays, as shown in the previ-
ous sections, we have many more choices for entry points into this “Robotics” jour-
ney. Furthermore, ROBOTIS has been putting in diligent efforts for maintaining
backwards compatibilities for their software updates and their newly developed
actuators and sensors so that the CM-5 based systems are still useful. For example,

 Fig. 2.15 Micom training kit (due Summer 2015)

2.4 System(s) Selection Criteria

16

the following devices are compatible with the CM-5, although they may not function
at their full capacities due to the 16 MHz clock speed on the Atmel AVR chip:

• IR Array Sensor (2012) (http://support.ROBOTIS.com/en/product/auxdevice/
sensor/ir_sensor_array.htm)

• Servo motor MX-28T (2011) (http://support.ROBOTIS.com/en/product/dynamixel/
mx_series/mx-28.htm)

• Color video camera HaViMo2 (2010) (https://www.havisys.com/?page_id=8)

 So let me go out on a limb and share with you these recommendations:

 1. For the DIY user, the Micom Training Kit can be an economical approach
whereas the user can start with TASK and progress to ROBOTIS IDE. This kit
could turn out to be a popular entry kit for a fi rst look at the ROBOTIS robotics
ecology.

 2. The CM-530 STEM or PREMIUM kits would offer a fast MCU @ 72 MHz and
the 5-pin GPIO connectors, and Embedded C is readily available (via WinARM
and Eclipse). If you have little background in computer programming, you can
get started on RoboPlus Suite (Firmware 1.0) and transition to Embedded C with
WinARM or purchase additional CM-9.04-A’s or B’s for an Arduino-style IDE,
as all your hardware would still be compatible. ROBOTIS’ e-Shop carries a
Programming Guide showing how to use the RoboPlus V.1 software suite (http://
www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=
GD080400).

 3. If you are already familiar with Arduino, there is good reason to use the CM- 9.04-
A/B from the beginning. But you will have to purchase all the other components
separately as you need them. ROBOTIS still sells a frame-only kit at $100 (http://
www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1269&GC=GD0803).
The assembly manuals for all robots that can be built with the PREMIUM kit are
available from the ROBOTIS e-Manual web site (http://support.ROBOTIS.com/en/
product/bioloid/premiumkit/premiumkit_download.htm).

 4. Option 4 is similar to Option 3, but it would use the ROBOTIS-MINI system
instead. The CM-9.04-C is designed to work with the second generation of the
RoboPlus software suite which has four tools: R+Design, R+Task, R+Motion
and R+Manager. The fi rst three tools are available since Summer 2014, but the
fourth tool R+Manager probably would not be available to users until Summer/
Fall 2015. This option would afford the users the most fl exibility in switching
between ROBOTIS-style and Arduino-style user interfaces.

 For my part, I am committed to keep examples and projects described in this
book compatible to systems from CM-5 to CM-9.04-C as much as possible.

2.5 Review Questions for Chap. 2

 1. What is the product brand name uniquely attributed to ROBOTIS Co.?
 2. What was the name of the fi rst commercial product from ROBOTIS?

2 ROBOTIS’ Robot Systems

http://support.robotis.com/en/product/auxdevice/sensor/ir_sensor_array.htm
http://support.robotis.com/en/product/auxdevice/sensor/ir_sensor_array.htm
http://support.robotis.com/en/product/dynamixel/mx_series/mx-28.htm
http://support.robotis.com/en/product/dynamixel/mx_series/mx-28.htm
https://www.havisys.com/?page_id=8
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1269&GC=GD0803
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1269&GC=GD0803
http://support.robotis.com/en/product/bioloid/premiumkit/premiumkit_download.htm
http://support.robotis.com/en/product/bioloid/premiumkit/premiumkit_download.htm
http://dx.doi.org/10.1007/978-3-319-20418-5_2

17

 3. Which are the robotic system(s) from ROBOTIS that use a rivet-like system for
building robots?

 4. What are the micro-controllers currently supported by ROBOTIS?
 5. List the robotic system(s) that are based on the STM32 family from

STMicrolectronics Co.
 6. List the robotic system(s) that are based on the ATmega AVR family from

Atmel Co.
 7. What is the name of the controller(s) associated with the open hardware-

software initiative from ROBOTIS?
 8. Which CM-XXX controller(s) can implement C-based computer programs

from the user?
 9. Which CM-XXX controller(s) run at 72 MHz?
 10. List the four software tools that come with the RoboPlus Software Environment.
 11. List three possible communication/interface protocols that are available to the

user for use with ROBOTIS systems.
 12. Which controller(s) support user-based fi rmware and boot loader?
 13. Which controller(s) support an Arduino-based IDE?
 14. Which controller(s) support an expansion board?
 15. Name the four types of linkages that are found in a typical 4-bar linkage

system.
 16. A __________ linkage is called a ___________ linkage when it can turn a

full 360°.
 17. Identify (i.e., draw) the correct links and name them properly for the 4-bar

linkage system as shown for the Cricket robot’s front leg picture below.

2.5 Review Questions for Chap. 2

19© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_3

 Chapter 3
 Hardware Characteristics

 In this chapter, the goal is to go over the main hardware characteristics of ROBOTIS’
controllers, actuators and sensors so that the user can evaluate their hardware options
in designing a robotic system to suit their needs.

 Current ROBOTIS systems can be broadly divided into two groups, “Firmware
1.0” and “Firmware 2.0”. The microcontrollers used in “Firmware 1.0” systems are
based on the Atmel AVR chip, except for the CM-530 which is based on an ARM
Cortex M3 chip from STMicroelectronics. “Firmware 2.0” systems are all based on
ARM Cortex M3 chips from STMicroelectronics (Figs. 3.1 and 3.2).

3.1 The Atmel AVR Family

3.1.1 CM-5 (Discontinued)

 The CM-5 controller (c. 2005) is based on the ATmega128 clocked at 16 MHz and
has 128 KB of fl ash memory. It comes with the BIOLOID BEGINNER and
COMPREHENSIVE (BBC) kits.

 It has three TTL-Dynamixel (3-pins) connections, thus ones can use:

 1. AX and MX types of actuators, but only the AX-12A actuators come with the
BBC kits.

 2. Also available with the BBC kits is the AX-S1, an integrated sensor, with three
NIR sensors (right, center, left) which can be used in both active and passive
modes. It has a buzzer which can also serve as a sound clap counter. It also has
an NIR receiver which can be used with the RC-100 remote controller in NIR
mode.

 3. Other Dynamixel-based sensors (3-pin) do exist for other types of measurements
such as foot pressure, 3-axes acceleration or color video camera which will be
discussed in more details in Sect. 3.3 .

20

 Fig. 3.1 “Firmware 1.0” systems

 Fig. 3.2 “Firmware 2.0” systems

 It uses a mini-jack connector/cable (BSC-10) to communicate with the PC via a
9-pin RS-232 connector. If your PC has only USB ports, you need to use the
USB2Dynamixel module to serve as the interface between the USB port and the
CM-5 communication port. More advanced users can also use the USB2Dynamixel
to control 3-pin (TTL) and 4-pin (RS-485) types of actuators and sensors directly
from the PC (C/C++ programming knowledge is required and several web sites
have related information and tutorials such as “softwaresouls.com”, “forum.tros-
senrobotics.com” or “robosavvy.com/forum”).

 The CM-5 is also capable of wireless communications via the ZIG-100 daughter
card. However it can only accommodate only ONE mode of communication at any
one time, i.e., either wired or wireless but not both. With the “wired” option, ones
can download microcontroller codes as well as send “remote control” commands to
the CM-5 via the Virtual RC-100 Controller. The “wireless” option only allows
remote control commands via a physical RC-100 Controller (equipped with a
matching ZIG-100) or via another CM-5 (also with a matching ZIG-100). Please
note that since 2012, the RC-100 got discontinued and was replaced by the
RC-100A/B to accommodate additional BlueTooth communications features

3 Hardware Characteristics

21

(http://www.robotis.us/rc-100b/). More detailed ZigBee and BlueTooth
 communications programming will be discussed in Sect. 5.6 and Chap. 8 (Fig. 3.4).

 If your PC has a 9-pin RS-232 connector (assumed to be COM1), you can adopt
the following scheme to use the “wired” connection for programming and debug-
ging, and then switch to “wireless” for operating your robot during run-time:

 1. Using the black 9-PIN to mini-jack serial cable hooked up to COM1, keep on
using the TASK tool via COM1 to create your TSK program and download it to
the CM-5 controller and use the Virtual Controller RC-100 as normal to check
out your code (Fig. 3.5).

 2. Use a spare USB port to plug in a combination module (USB2Dynamixel-
Zig2Serial- ZIG-100, see Fig. 3.6)—in my particular case, it turned out to be
COM34. Next, UNPLUG the mini-jack serial cable FROM the CM-5 (if you
leave this mini-jack connector plugged in, the CM-5 disables its ZigBee circuit)
(Fig. 3.6).

 Fig. 3.4 CM-5 with (left) and without (right) daughter card ZIG-100

 Fig. 3.3 Internal view of the CM-5

3.1 The Atmel AVR Family

http://www.robotis.us/rc-100b/
http://dx.doi.org/10.1007/978-3-319-20418-8
http://dx.doi.org/10.1007/978-3-319-20418-5_8

22

 3. Make sure that you switch to COM34 in TASK tool, then click on “View Output
of Program” on the menu bar to open up the Output Window (see Fig. 3.7) and
then use the Virtual RC-100 as normal, except now it is really routed wirelessly
via COM34—also make sure that you actually have the CM-5 in play mode and
had started the downloaded program as normal.

 Fig. 3.6 USB2Dynamixel-Zig2Serial-ZIG-100 combo

 Fig. 3.5 Using CM-5 via wired connection (COM1)

3 Hardware Characteristics

23

3.1.2 CM-510 (Discontinued)

 The CM-510 controller (c. 2009) is based on the ATmega256, still clocked at
16 MHz but has 256 KB of fl ash memory (Fig. 3.8). It comes with the BIOLOID
PREMIUM (BP) kit from 2009 to 2012. After 2012, the CM-510 is replaced by the
CM-530 for the BP kit.

 It has an extended suite of Dynamixel, I/O and communications ports:

 1. Five 3-pin TTL Dynamixel ports (work with AX and MX actuators and other
Dynamixel based sensors).

 2. Six 5-pin GPIO ports (work with sensors such as NIR (intensity-based, distance
measurement (NIR refl ected-angle-based), gyroscope, touch, color, magnetic,
with temperature, ultrasonic and motion recognition sensors coming up in 2015).

 3. One 4-pin communication port for the ZIG-110A which is the equivalent of the
ZIG-100 (Fig. 3.9). All previously discussed PC communication options for the
CM-5 still apply for the CM-510 (Sect. 3.1.1).

 Fig. 3.7 Using CM-5 via wireless connection (COM34)

3.1 The Atmel AVR Family

24

 4. Starting in 2012, BlueTooth communications devices were added: BT-100/110A
and BT-210 (Fig. 3.10). They can be used with the same 4-pin communication
port on the CM-510 but with different features unique to the BlueTooth protocol.
The BT-100/A will only work in the RC-100A/B remote controller. When using
BT modules, the user must take note that the PC would associate two COM ports

 Fig. 3.8 Internal views of the CM-510

 Fig. 3.9 ZIG-100 and
ZIG-110A ZigBee
communication modules

 Fig. 3.10 BlueTooth communication devices BT-100/110A and BT-210

3 Hardware Characteristics

25

to each BT module used, one OUT-GOING and one IN-COMING (the user can
check this information via Windows Device Manager). Thus when using
ROBOTIS’ application software on the PC side, the user needs to make sure to
choose the OUT-GOING COM port.

 5. The CM-510 has a sound generator and detector built in its circuit board, and still
uses the serial mini-jack cable to communicate with the PC for the “wired”
option.

3.2 The STM ARM Cortex M3 Family

3.2.1 CM-530

 The CM-530 controller (c. 2012) is based on the STM32F103RE, clocked at
72 MHz and has 256 KB of fl ash memory (Fig. 3.11). It uses the USB port directly
(i.e., no need for the USB2Dynamixel module). Otherwise it is functionally and
visually identical to the CM-510.

 It has the same extended suite of Dynamixel, I/O and communications ports as
the CM-510:

 1. Five 3-pin TTL Dynamixel ports.
 2. Six 5-pin GPIO ports.
 3. One 4-pin communications port, and one USB-mini port.

 All actuators, sensors, ZigBee and BlueTooth modules previously discussed for
the CM-510 (Sect. 3.1.2) work with the CM-530 with a boost in MCU clock rate
(72 MHz instead of 16 MHz).

 Since Spring 2014, there had been an issue on the PC side with the FTDI driver
for the USB port, a driver reinstallation would be needed and a guide is available at
 http://www.robotis.com/xe/download_en/646927 .

 Fig. 3.11 Internal views of the CM-530

3.2 The STM ARM Cortex M3 Family

http://www.robotis.com/xe/download_en/646927

26

3.2.2 CM-900 (Discontinued)

 The CM-900 series was ROBOTIS’ entry into the open hardware and software
 movement and the CM-900 controller was available to the beta testing community
between October 2012 and July 2013. It had two versions, ES and V.1 (see Fig. 2.12)
and both were clocked at 72 MHz. V.1 was only commercially available during 2013.

 The main technical specifi cations for the CM-900 V.1 are listed below:

 CM-900 V.1

 CPU STM32F103C8 (ARM Cortex-M3)
 Op voltage 5–35 V (USB 5 V, DXL 12 V, 7.4 V)
 Flash 64 Kb
 3-Pin DXL TTL 2
 4-Pin DXL RS485 2
 Mini 3-Pin DXL TTL 1

 From the DXL connector and operating voltage options shown above, ones can
see that the CM-900 was quite possibly envisioned to control the complete family
of Dynamixel actuators from AX to Dynamixel Pro. It used an Arduino-based IDE
called OpenCM IDE (Fig. 3.12).

 Fig. 3.12 OpenCM IDE V.1.0.2

3 Hardware Characteristics

http://dx.doi.org/10.1007/978-3-319-20418-2

27

 Included with this book is a zipped fi le containing user manuals and other
 technical information for the CM-900 series (OpenCM-900.zip). These fi les origi-
nated from the CM-9 Developer’s World Circle at http://www.robotsource.org/bs/
bd.php?bt=forum_CM9DeveloperWorld where interested users can get more
updated information.

 With feedbacks from the beta test community, the CM-900 was redesigned into
the OpenCM-9.04 in July 2013.

3.2.3 OpenCM-9.04 Series

 The OpenCM-9.04 series illustrates a new segmented-market view by ROBOTIS
which currently offers three versions of the OpenCM-9.04 (A, B and C) with the
same main technical features listed below:

 CM-9.04-A/B/C

 CPU STM32F103CB (ARM Cortex-M3)
 Op voltage 5–16 V (USB 5 V, DXL 12 V, 7.4 V)
 Flash 128 Kb

 The OpenCM-9.04-A (Fig. 3.13) allows the user complete freedom in mounting
only the components that are needed for his or her project from the power switch to
the types and numbers of interface headers needed for AX/MX-TTL or XL-TTL
(3-pin) and GPIO (5-pin), and even JTAG/SWD connection.

 The OpenCM-9.04-B (Fig. 3.14) comes pre-connected for power switch, battery
connections and connectors for AX/MX-TTL (2), XL-TTL (2), GPIO (4), JTAG/
SWD (4-pin) and wired/wireless communications (4-pin).

 Fig. 3.13 OpenCM- 9.04-
A controller

3.2 The STM ARM Cortex M3 Family

http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld
http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld

28

 The A and B versions have open fi rmware and are designed to work only with the
ROBOTIS IDE software. Included with this book is a zipped fi le containing user
manuals and other technical information for the OpenCM-9.04-A/B series
(OpenCM-904.zip) which originated from the ROBOTIS e-Manual web site http://
support.robotis.com/en/product/controller/opencm9.04.htm where interested users
can get more updated information. Advanced users may also want to invest in the
in-circuit debugger and programmer ST-LINK/V2 (http://www.st.com/web/en/
catalog/tools/PF251168) and Keil μVision IDE (http://www.keil.com/arm/mdk.asp)
to modify fi rmware and bootloader programs.

 The OpenCM-9.04-C (Fig. 3.15) comes pre-connected for power switch, battery
connections and connectors for Mini-DXL-TTL (4), GPIO (4) and JTAG/SWD
(4-pin) and wired/wireless communications (4-pin).

 Fig. 3.14 OpenCM- 9.04-
B controller

 Fig. 3.15 OpenCM-9.04-C
 controller

3 Hardware Characteristics

http://support.robotis.com/en/product/controller/opencm9.04.htm
http://support.robotis.com/en/product/controller/opencm9.04.htm
http://www.st.com/web/en/catalog/tools/PF251168
http://www.st.com/web/en/catalog/tools/PF251168
http://www.keil.com/arm/mdk.asp

29

 The C version comes with a proprietary fi rmware to make it function with the
next generation of ROBOTIS software: R+Task, R+Design, R+Motion and
R+Manager. Alternately, the user can use the OpenCM IDE with version C but this
mode would effectively erase the proprietary fi rmware, thus if the user wants to use
the R+ packages again, a fi rmware recovery process must be performed.

 If the user requires more AX/MX/XL-TTL and/or RS-485 Dynamixel ports (i.e.,
additional power options), an expansion board can be used (OpenCM-485-EXP)
and the user also needs to solder extra headers (from an accessory set) onto the
OpenCM-9.04, please visit the web links below for more information:

• http://support.robotis.com/en/product/controller/opencm_485_exp.htm
• ht tp: / /www.robotis-shop-en.com/?act=shop_en.goods_view&GS=

1623&GC=GD080201
• http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1490&GC=

GD080201

 As compared to the CM-5XX series, the OpenCM-9.04 series have more options
regarding connections from the PC: plain USB cable (A to micro), or LN-101, ZigBee/
BlueTooth via Serial 2 (USART CH 2) (see Fig. 3.16). Serial 1 (USART CH 1) was
still reserved to the Dynamixels on the local OpenCM-904 Dynamixel TTL bus.
Serial 3 was “new” and connected to the OpenCM 485 Expansion Board for access to
AX/MX/DX/RX/PRO types of Dynamixel actuators.

 Fortunately, a compatibility chart for all ROBOTIS products can be found at
 http://support.robotis.com/en/product/controller_main.htm , however a word of
 caution when using that list, for example:

 Fig. 3.16 Functional block diagram for OpenCM-9.04 series

3.2 The STM ARM Cortex M3 Family

http://support.robotis.com/en/product/controller/opencm_485_exp.htm
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1623&GC=GD080201
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1623&GC=GD080201
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1490&GC=GD080201
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1490&GC=GD080201
http://support.robotis.com/en/product/controller_main.htm

30

• A plain USB connection would work best for an OpenCM-9.04-A/B controller if
you use the ROBOTIS IDE (Arduino-based), but it won’t work if you try to use
it with the RoboPlus Manager tool to update its fi rmware. However, the user can
update the OpenCM-9.04-C fi rmware via this USB cable and RoboPlus Manager
(see more details in Sect. 4.2.2). A more versatile module is the LN-101 that
would allow the Dynamixel Wizard tool to update fi rmware (at the same time) on
a CM-9.04-C and the XL-320 s connected to it (see Sect. 4.1.2.1). However, the
LN-101 won’t connect to the OpenCM-9.04-C controller to show the regular
Manager’s interface with all the hardware settings for this controller (hopefully
this situation will be resolved in a future version of Manager).

• The ZigBee (ZIG-110A) and BlueTooth modules (BT-110A and BT-210) are
compatible with the 9.04-C, but so far I had found that ZigBee performed better
than BlueTooth in terms of connection latency and packet performance (more on
this in Chap. 4).

 Ironically, part of these issues is due to the fact that ROBOTIS is committed to
continuing development of their hardware and software systems, so the software
team is always playing catch-up to the hardware team! In Chap. 5 , “particular”
usages will be described in more details.

 Furthermore, starting in Summer 2015, ROBOTIS plans to release a new series
of BlueTooth modules (BT-410) based on BlueTooth 4.0 Low Energy (BLE) stan-
dard. This series will be able to handle 1 to 1 (1:1) and 1 to N (1:N) communications
and targeted towards mobile devices (see Fig. 3.17).

 Fig. 3.17 BT-410 series
(available Summer 2015)

3 Hardware Characteristics

http://dx.doi.org/10.1007/978-3-319-20418-4
http://dx.doi.org/10.1007/978-3-319-20418-4
http://dx.doi.org/10.1007/978-3-319-20418-5_4
http://dx.doi.org/10.1007/978-3-319-20418-5_5

31

3.3 The Dynamixel Actuators Family

 ROBOTIS has an extensive repertoire of actuators and maintains up-to-date
 technical information at this web link (http://support.robotis.com/en/product/dxl_
main.htm). Currently most of ROBOTIS actuators are using Communication
Protocol 1 (http://support.robotis.com/en/product/dynamixel/dxl_communication.
htm), except for the XL-320 and Dynamixel PRO which are using Communication
Protocol 2 (http://support.robotis.com/en/product/dynamixel_pro/communication.
htm). The goal of this section was not to provide duplication of the above informa-
tion but to provide the reader with some complementary hardware information
using the AX-12 and MX-28 as examples.

 The MX-28 was chosen as a representative of the types that can perform 0–360°
in position control mode and with PID control features, while the AX-12 was cho-
sen as a representative of the types that have a more limited range of motion from 0
to 300° when in position control mode and with only proportional control.

3.3.1 The AX Series

 The fi rst ROBOTIS Dynamixel actuator was the AX-12 (c. 2003) which had a stall
torque of 1.5 Nm and ran around 59 RPM. Throughout the years, it got updated to
AX-12+ and then to AX-12A (current version). It has two “cousins”:

 1. AX-18F/AX-18A which has a slightly higher stall torque of 1.8 Nm and runs
faster at 97 RPM.

 2. AX-12W which is designed more for continuous rotation as wheels. It can rotate
in wheel mode at 470 RPM and in joint mode at 54 RPM. Its stall torque is not
provided by ROBOTIS.

 They all use DC motors and have proprietary fi rmware implemented on an Atmel
AVR microcontroller (16 MHz and 8 KB memory). Their fi rmware can be updated
via the Dynamixel Wizard software tool, using a USB2Dynamixel module and
requiring separate power (via the SMPS2Dynamixel, for example). See this web
link for more details (http://support.robotis.com/en/software/roboplus/dynamixel_
wizard.htm). In operations, the actuators get updated every 8 ms by the main con-
troller via the Dynamixel bus. The TTL communication speed for the AX family
can be set between 7.8 Kbps and 1 Mbps.

 The good folks at Irish Robotics have provided circuit diagrams for the AX-12
motor and processor, and even for the CM-5 at the following links:

 http://robosavvy.com/Builders/Chris.H/AX12Motor.pdf
 http://robosavvy.com/Builders/Chris.H/AX12Processor.pdf
 http://robosavvy.com/Builders/Chris.H/CM5.pdf

3.3 The Dynamixel Actuators Family

http://support.robotis.com/en/product/dxl_main.htm
http://support.robotis.com/en/product/dxl_main.htm
http://support.robotis.com/en/product/dynamixel/dxl_communication.htm
http://support.robotis.com/en/product/dynamixel/dxl_communication.htm
http://support.robotis.com/en/product/dynamixel_pro/communication.htm
http://support.robotis.com/en/product/dynamixel_pro/communication.htm
http://support.robotis.com/en/software/roboplus/dynamixel_wizard.htm
http://support.robotis.com/en/software/roboplus/dynamixel_wizard.htm
http://robosavvy.com/Builders/Chris.H/AX12Motor.pdf
http://robosavvy.com/Builders/Chris.H/AX12Processor.pdf
http://robosavvy.com/Builders/Chris.H/CM5.pdf

32

 One AX-12 feature that users found most intriguing was how could the AX-12
rotate completely in 360° when in wheel mode but was restricted to a 300° range
when in position control mode. This was due to the position encoder used on the
AX-12 which is a Murata SV01A103, effectively a potentiometer with an effective
range of only about 333° (see Fig. 3.18).

 During assembly at the factory, the main gear shaft (black plastic) is inserted into
the semi-circular white rotor of the Murata part and then through a gear train it is
connected to the DC motor (silver cylinder on the right in Fig. 3.18). Thus when the
motor rotates, the white rotor also rotates but at a slower speed due to the gear ratio.
The white rotor “wipes” against a resistive element inside the SV01A103 and refer-
ring back to the AX12Motor.pdf document, ones can see that when at a position 60°
left of the “12 o’clock” position, this rotor (Pin 2) would provide a 5 V reading to
the AX-12 microcontroller which would then digitize it to a numerical value of
1023. Similarly, when this rotor reaches 60° left of the “6 o’clock” position, Pin 2
would provide a 0 V reading which gets digitized to a numerical value of 0. And
thus there is a ±30° zone around the “9 o’clock” position where Pin 2 is not con-
nected to the resistive element, and therefore no voltage reading is possible, and
consequently the AX-12 microcontroller has no valid digitized value also (i.e., it
does not know where it is at). This is why on the horn of the AX-12, there is an “I”
mark (see Fig. 3.19) so that the user can use it to put the servo into the vicinity of
the “512” position (3 o’clock position) in the assembly instructions for most robots,
to be used as an initial pose before they perform any programmed action.

 Ones can also recognize that with wears due to usage, the rotor may provide
“unreliable” voltage readings to the AX-12 controller at certain positions and as a
consequence of this, ones can observe that an older servo tends to “tremble” when
it is commanded to stay at those “unreliable” positions.

 Fig. 3.18 AX-12 PCB with Murata SV01A103 (light gray hexagonal box) and main gear shaft

3 Hardware Characteristics

33

 As plastic gears can break off sometimes, users can order replacement sets at http://
www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1397&GC=GD080307 .
DIY videos on YouTube described the detailed steps plus tools needed to perform
these maintenance tasks (http://www.youtube.com/watch?v=W1sOavdmIus).

 Thus on higher-end actuators such as the MX-28, metallic gears and shafts are
selected and most importantly contact-less magnetic position encoders are used.

3.3.2 The MX Series

 The MX series started with the MX-28 which was designed for the ROBOTIS-OP
(c. 2011). It has a stall torque of 2.5 Nm at 12 V and 55 RPM. This series use the
STM32F103C8 @ 72 MHz as controllers and they has all metallic gears
(see Fig. 3.20a). Once the gear train is removed, ones can see the magnetic encoder
chip AS5045 inside the shaft cavity (Fig. 3.20b).

 Fig. 3.19 “I” mark on
horn of AX-12 actuator

 Fig. 3.20 (a , b) Internal views of MX-28T

3.3 The Dynamixel Actuators Family

http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1397&GC=GD080307
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1397&GC=GD080307
http://www.youtube.com/watch?v=W1sOavdmIus

34

 On the right in Fig. 3.20a , the big silver gear (where the servo’s horn would be
mounted to) has on the other end of its shaft a 2-pole magnet that would hover over
the encoder chip AS5045 shown in Fig. 3.20b (see Fig. 17 on page 24 of the data
sheet available at http://www.ams.com/eng/Products/Position-Sensors/Magnetic-
Rotary- Position-Sensors/AS5045). When the motor turns, this magnet also turns via
the gear train, and thus changes the magnetic fi eld characteristics as sensed by the
AS5045 which uses its own fi rmware to output a corresponding PWM signal over a
full turn of 360°.

 Figure 3.21a, b shows two views of the PCB of a typical MX-28T. In Fig. 3.21a
ones can see the main STM controller, and on Fig. 3.21b the magnetic encoder
AS5045 is shown. This magnetic encoder allows the MX actuators to have position
control for the complete 0–360° range at 0.088° resolution (i.e., 12 bits).

 Information for the complete MX family can be found at this web link: http://
support.robotis.com/en/product/dynamixel/dxl_mx_main.htm . The TTL communi-
cation speed for the MX family can be set between 7.8 Kbps and 4.5 Mbps. The
MX-28 has three “cousins”:

 1. MX-12W, designed to be used as a wheel running at 470 RPM.
 2. MX-64, with stall torque at 6.0 Nm and 63 RPM.
 3. MX-106, with stall torque at 8.4 Nm and 45 RPM.

 The effects of PID control features (MX-28) or the lack thereof (AX-12) on the
position control behavior of these example actuators will be explored in more details
in Chap. 6 .

 Fig. 3.21 (a – b) Two views of the PCB of an MX-28T

3 Hardware Characteristics

http://www.ams.com/eng/Products/Position-Sensors/Magnetic-Rotary-Position-Sensors/AS5045
http://www.ams.com/eng/Products/Position-Sensors/Magnetic-Rotary-Position-Sensors/AS5045
http://support.robotis.com/en/product/dynamixel/dxl_mx_main.htm
http://support.robotis.com/en/product/dynamixel/dxl_mx_main.htm
http://dx.doi.org/10.1007/978-3-319-20418-5_6

35

 For a more general understanding of servo motor design and control, I would
like to refer the readers to Clark and Owings (2003) or Kanniah et al. (2014).
The “Humanoid Robot Lab” in Portugal had done detailed studies on the Bioloid
Comprehensive kit and AX-12 (http://humanoids.dem.ist.utl.pt/humanoid/ overview.
html). And there are many more Internet sites sharing others’ knowledge and experi-
ences with ROBOTIS products. ROBOTIS also maintains a ROBOTIS channel on
YouTube showing many how-to videos for various maintenance tasks (http://www.
youtube.com/user/ROBOTISCHANNEL/videos).

3.4 ROBOTIS Sensors Family

 Currently available sensors from ROBOTIS and third-party partners can be sorted
into two groups:

 1. Dynamixel-compliant sensors (3-pin TTL), i.e., they can be daisy-chained on the
Dynamixel bus and individually assigned with a unique ID (0–253, however ID
200 is reserved for the main microcontroller), for example:

 (a) AX-S1, Integrated Sensor from ROBOTIS, NIR intensity-based sensor (short
and long range active modes or passive mode), sound claps detector and NIR
remote control sensor (http://support.robotis.com/en/product/auxdevice/sensor/
dxl_ax_s1.htm).

 (b) IRSA, IR Sensor Array from ROBOTIS, seven NIR intensity-based sensors
with buzzer features (http://support.robotis.com/en/product/auxdevice/sen-
sor/ir_sensor_array.htm).

 (c) AX-S20, fi rst Inertia Measuring Unit from ROBOTIS, 3-D acceleration
components and resulting XYZ rotational angles, plus a magnetic heading
sensor. In beta tests in 2010, but did not get to full production.

 (d) Foot Pressure Sensor (from HUV Robotics) (http://www.huvrobotics.com/
shop/index.php?_a=viewProd&productId=4). Not commercially available
currently.

 (e) HaViMo2, color video camera with onboard processing capabilities (https://
www.havisys.com/?page_id=8). Commercially available in Europe, Mexico
and Southeast Asia.

 2. GPIO-based sensors (5-pin). These sensors have a open architecture and are
attached to specifi c ports available on various CM controllers:

 (a) CM-510 and CM 530 have six GPIO ports, while CM-900 and OpenCM9.04
have only four GPIO ports.

 (b) From ROBOTIS, we have a growing supply of these types of sensors (IR,
Distance Measurement DMS, Gyroscope, Touch, Color, Magnetic) and in
the near future (Temperature, Ultrasonic and Gesture Recognition).

 (c) The reader can fi nd other third party sensors interfaced to the OpenCM system
at http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld .

3.4 ROBOTIS Sensors Family

http://humanoids.dem.ist.utl.pt/humanoid/overview.html
http://humanoids.dem.ist.utl.pt/humanoid/overview.html
http://www.youtube.com/user/ROBOTISCHANNEL/videos
http://www.youtube.com/user/ROBOTISCHANNEL/videos
http://support.robotis.com/en/product/auxdevice/sensor/dxl_ax_s1.htm
http://support.robotis.com/en/product/auxdevice/sensor/dxl_ax_s1.htm
http://support.robotis.com/en/product/auxdevice/sensor/ir_sensor_array.htm
http://support.robotis.com/en/product/auxdevice/sensor/ir_sensor_array.htm
http://www.huvrobotics.com/shop/index.php?_a=viewProd&productId=4
http://www.huvrobotics.com/shop/index.php?_a=viewProd&productId=4
https://www.havisys.com/?page_id=8
https://www.havisys.com/?page_id=8
http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld

36

3.4.1 AX-S1 and IRSA

 Both sensors work on the principle of sending out 38-KHz pulses of NIR light
(invisible to the human eyes) and then to process the NIR intensities refl ected off
objects in its path. Thus an object closer to the sensor would refl ect more NIR energy
(represented as a bigger numerical value to the microcontroller) than an object fur-
ther away. In Fig. 3.22 , the “clear” LED (right LED) sends out the NIR pulses, and
the “black” LED (left LED) receives the refl ected NIR intensities. Please note the
“recessed” mounting of these LEDs to reduce interferences from each other.

 This type of sensor does have a drawback when your robot has to deal with
objects with different brightnesses as darker objects will be “perceived” in being
“further away” than lighter objects although their “true” physical distances may be
the same. Furthermore their response is non-linear, including a reversal in response
at extreme close range (see Fig. 3.23).

 However this technique is quite effective in detecting white from black areas on
a complicated track using an IR Sensor Array as shown in Fig. 3.24 .

 The AX-S1 can switch between a short range detection (up to 1–3 cm) and a long
range detection (up to 10–12 cm) using a software parameter. It also has a passive
mode to detect light sources. The AX-S1 can use its microphone to sample at
3.8 KHz sound events such as hand claps, but they have to be at least 80 ms apart.

 Fig. 3.22 Forward looking
set of NIR LEDs for
AX-S1

 Fig. 3.23 Non-linear response of a typical NIR-LED sensor vs. distance

3 Hardware Characteristics

37

 These Dynamixel compliant sensors are also well documented at these ROBOTIS
web links:

• http://support.robotis.com/en/product/auxdevice/sensor/dxl_ax_s1.htm .
• http://support.robotis.com/en/product/auxdevice/sensor/ir_sensor_array.htm .

 More detailed applications programming of these sensors will be shown in Chap. 5 .

3.4.2 AX-S20 (Discontinued)

 Although this product never saw full production, the reader may be interested in its
working. The AX-S20 used an ATmega8 for controller (i.e., Dynamixel compliant)
and the sensor AMS0805WAH from Amosense (http://www.motionsense.net/kor/
index/AMS0805WAH%20DataSheet%201.3%20%28AMOSENSE%29.pdf) for
measuring 3-Axis Magnetic and Acceleration fi elds. The AMS0805WAH has an
embedded calibration algorithm which eliminates the need for initial calibrations
and supports precise calculation of motion data under all environments. It has 1°
resolution for its Roll, Pitch and Azimuth angles. In practice, it supports about a
20 Hz sampling rate on a CM-510. Figure 3.25 shows an AX-S20 installed in the
head piece of a PREMIUM Humanoid A robot and the resulting coordinates system
(as a side note, the AX-S20, with its magnetometer, was mounted in the robot’s head
so as to keep it away from the electromagnetic interferences of the operating actua-
tors as much as possible).

 Fig. 3.24 Application of IRSA on a challenging track

3.4 ROBOTIS Sensors Family

http://support.robotis.com/en/product/auxdevice/sensor/dxl_ax_s1.htm
http://support.robotis.com/en/product/auxdevice/sensor/ir_sensor_array.htm
http://dx.doi.org/10.1007/978-3-319-20418-5_5
http://www.motionsense.net/kor/index/AMS0805WAH DataSheet 1.3 (AMOSENSE).pdf
http://www.motionsense.net/kor/index/AMS0805WAH DataSheet 1.3 (AMOSENSE).pdf

38

 Figure 3.26 is a screen capture of a RoboPlus Manager session on a Humanoid A
robot with an AX-S20 (ID = 105), and ones can see the list of various inertia param-
eters that ones can use in its programming.

 So far we only got the opportunity to test the AX-S20 via the RoboPlus software
suite and these application programming projects are discussed later in Chap. 9 .

 A newer IMU (MPU-9150) with gyroscope, accelerometer and compass
components (each having three axes) is available at Spark-Fun Electronics

 Fig. 3.25 AX-S20 installed in the head of a PREMIUM Humanoid A robot and the resulting
coordinates system

 Fig. 3.26 Screen capture of RoboPlus Manager used on a PREMIUM Humanoid A robot with
AX-S20 (ID=105)

3 Hardware Characteristics

http://dx.doi.org/10.1007/978-3-319-20418-5_9

39

(https://www.sparkfun.com/products/11486) and has been adapted to work
with the OpenCM-9.04 framework (http://www.robotsource.org/bs/bd.php?bt=
forum_CM9DeveloperWorld&bt_id=707).

3.4.3 Foot Pressure Sensor (FPS: From HUV Robotics)

 This HUV Robotics product is also Dynamixel compliant, but it is not currently
available commercially (http://www.huvrobotics.com/shop/index.php?_a=view
Prod&productId=4). Figure 3.27 shows how a set of FPS was mounted at the four
corners of a foot of a PREMIUM Biped.

 Each pressure sensor relies on a material that would change its electrical resis-
tance (i.e., its voltage values) depending on the pressure imposed on it. These FPS
require a fl at hard surface for a satisfactory performance. Figure 3.28 shows the
addressing scheme to access these values from inside a typical TASK program.

 Fig. 3.27 HUV FPS mounted on foot of a PREMIUM Biped robot

 Fig. 3.28 Addressing scheme to access FPS data from a TASK program

3.4 ROBOTIS Sensors Family

https://www.sparkfun.com/products/11486
http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld&bt_id=707
http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld&bt_id=707
http://www.huvrobotics.com/shop/index.php?_a=viewProd&productId=4
http://www.huvrobotics.com/shop/index.php?_a=viewProd&productId=4

40

 So far we only got the opportunity to test the HUV FPS via the RoboPlus software
suite and these application programming projects are described later in Chap. 9 .

 ROBOTIS provides a similar product to the HUV FPS but only for the
ROBOTIS-OP (DARwIn-OP) called FSR (http://www.robotis-shop-en.com/?act=
shop_en.goods_view&GS=1442&keyword=FSR).

3.4.4 HaViMo 2.0

 This color video camera (Fig. 3.29) is available via e-shops located in the United
Kingdom and Southeast Asia (https://www.havisys.com/?page_id=8).

 The HaViMo 2.0 is Dynamixel compliant and it has a video frame resolution at
160 × 120 pixels (19 fps) with a color depth of 12 bits YCrCb. It has many powerful
embedded image processing functions for tracking multi-colored blobs.

 So far we have tested this camera successfully on CM-510 and CM-530 using
RoboPlus TASK as well as Embedded C on them. This camera performed better on the
newer controllers such as OpenCM-9.00 and OpenCM-9.04-B due to the faster MCU
clock rate. These application programming projects are described later in Chap. 9 .

3.4.5 GPIO (5-Pin) DMS Sensor

 This sensor uses a triangulation technique and a Position Sensitive Detector to
determine the angular displacement of the refl ected light beam and thus can com-
pute the distance to the object (http://www.sharpsma.com/webfm_send/1489).
It can achieve a longer detection range (10–80 cm) than the AX-S1 and is mostly
independent of objects’ brighnesses (see Fig. 3.30).

 Fig. 3.29 HaViMo 2.0 video cameras mounted on PREMIUM BiPed

3 Hardware Characteristics

http://dx.doi.org/10.1007/978-3-319-20418-5_9
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1442&keyword=FSR
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1442&keyword=FSR
https://www.havisys.com/?page_id=8
http://dx.doi.org/10.1007/978-3-319-20418-5_9
http://www.sharpsma.com/webfm_send/1489

41

3.4.6 GPIO (5-Pin) Gyroscope Sensor GS-12

 This sensor (see Fig. 3.31) is a MEMS based 2-Axis gyroscope with digital output
values between 45 and 455, corresponding respectively to −300°/s and +300°/s (i.e.,
we are dealing with very fast motion rates for your robot).

 It can be used within a CallBack routine to help stabilize Humanoid robots doing
fast walking moves. It is usually mounted near the Center of Gravity of the robot,
and because it is MEMS based, it is immune to electromagnetic interferences from
the actuators. Some gyro applications programming are presented in Chap. 9 .

3.4.7 Other GPIO (5-Pin) Sensors and Output Devices

 When the OLLO system was coming out in 2008, a few GPIO sensors, actuators
and output devices also became available: IR, Touch, Servo Motor and LED display
(see Fig. 3.32).

 The latest crop of GPIO sensors came with the ROBOTIS-MINI in 2014: color,
magnetic, temperature, ultrasonic, object detection (see Fig. 3.33).

715
White paper
(Reflective ratio:90%)

Gray paper
(Reflective ratio:18%)500

285

70

0
0 10 20 30 40

Distance (Unit : cm)

D
is

ta
nc

e
S

en
so

r
R

ob
oP

lu
s

O
ut

pu
t V

al
ue

50 60 70 80

 Fig. 3.30 DMS and output vs. distance graph

The direction where Y axial
angular velocity increases

YX
The direction where X axial
angular velocity increases

 Fig. 3.31 MEMS based Gyro Sensor (GS-12)

3.4 ROBOTIS Sensors Family

http://dx.doi.org/10.1007/978-3-319-20418-5_9

42

3.4.8 Recent Adaptations of Smart Phone Features

 Recently, ROBOTIS started to integrate technologies from Smart mobile devices
into “Firmware 2.0” controllers such as the CM-150, CM-200 and OpenCM-9.04
system to obtain a whole host of new features as shown in the screen-captures below
(Fig. 3.34):

 Thus, in the next few years, we can expect a coming of age of “Personal/Mobile
Robotics” applications. But that will have to be the subject of another book!

3.5 Review Questions for Chap. 3

 1. Which Firmware group does the CM-530 belong to?
 2. Which Firmware group does the CM-200 belong to?
 3. Which controller(s) use a mini-jack connector (BSC-10) to connect with the

PC?
 4. Which CM controller(s) allow simultaneous wired and wireless communica-

tions from the PC?
 5. How many “wired” interface modules are supported by ROBOTIS? And what

are their names?
 6. How many “wireless” interface modules are supported by ROBOTIS? And

what are their names?
 7. Which wireless protocol would open two COM ports on the PC side for each

wireless module used?
 8. Which module allows direct interfacing to the Dynamixels?
 9. Which member of the CM-5XX family of controllers has 128 KB of RAM?
 10. Which member of the CM-5XX family of controllers clocks at 72 MHz?

 Fig. 3.32 GPIO modules: IR, Touch, Servo Motor & LED display

 Fig. 3.33 Color, magnetic, temperature, ultrasonic, object detection sensors

3 Hardware Characteristics

http://dx.doi.org/10.1007/978-3-319-20418-5_3

43

 11. Which controller(s) use the Atmel AVR controller?
 12. Which controller(s) use an ARM Cortex M3 architecture?
 13. Which Dynamixel hardware interface uses a 4-pin connector? And which one

is using 3-pin connector?
 14. How many pins does a typical GPIO port have?

 Fig. 3.34 Integration of Smart mobile technologies into R+Task tool (partial list)

3.5 Review Questions for Chap. 3

44

 15. How many pins does the communication port have? This port is used to connect
modules such as LN-101, ZIG-110A or BT-210.

 16. On which controller(s) can the user access wired and wireless connections at
the same time?

 17. Hardware wise and software wise, how can the user connect wirelessly from a
PC to a CM-5 based robot?

 18. Hardware wise and software wise, how can the user connect wirelessly from a
PC to a CM-510 based robot?

 19. Hardware wise and software wise, how can the user connect wirelessly from a
PC to a CM-530 based robot?

 20. Hardware wise and software wise, how can the user connect wirelessly from a
PC to an OpenCM-9.04 based robot?

 21. How many ways can the user access the Virtual RC-100 Controller? From
which tools?

 22. Which sensor modules can be used to measure distances?
 23. Which controller(s) have a built-in microphone? And which one(s) do not?
 24. Which version(s) of the OpenCM-9.04 controller can be used with the RoboPlus

Software Suite?
 25. Which controller(s) have real-time debugging capabilities (JTAG/SWD)?
 26. What are the difference(s) between the three versions A-B-C of the

OpenCM-9.04?
 27. How many serial communication ports can the OpenCM9.04 support?
 28. Which sensor(s) interface to the GPIO ports of the ROBOTIS controllers?
 29. Which sensor(s) are used to acquire positional data of a typical actuator when

it is operating, such as the AX-12, MX-28 or XL-320?
 30. List three sensors that are Dynamixel-compliant.
 31. List three actuators that are Dynamixel-compliant.
 32. List three sensors that are designed for use on the GPIO ports.
 33. Which sensor module has two programmable ranges for its distance measure-

ment task?
 34. From a hardware circuitry point of view, how can a servo motor switch its rota-

tion direction?
 35. How would a user design a system that can control DYNAMIXEL-PRO

actuators?
 36. Which Dynamixel actuators can be controlled with a PID approach?
 37. What does the specifi cation “W” stand for in the naming of ROBOTIS

actuators?
 38. What is the hardware refresh cycle time for Dynamixels?
 39. What is the type of the physical device used to transduce the angular position

of the AX-12 actuator?
 40. What is the type of the physical device used to transduce the angular position

of the MX-28 actuator?
 41. Why does the AX-S1 have a reverse-response to the distance when objects are

too close to its NIR-LED sensing element?

3 Hardware Characteristics

45

 42. What is the minimum time interval between sound claps that the AX-S1 needs
in order to distinguish the sound claps as distinct audio events?

 43. What are the current options for a user who wants to measure inertia-related
parameters such as accelerations and rotational rates?

 44. What are the current options for a user who wants to measure contact pressures/
forces between the robot and the supporting surface?

 45. What embedded vision hardware is current available for the CM-5XX and
OpenCM systems?

 References

 Clark D, Owings D (2003) Building robot drive trains. McGraw-Hill, New York
 Kanniah J et al (2014) Practical robot design: game playing robots. CRC, Boca Raton

References

47© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_4

 Chapter 4
 Software Tools

 In this chapter, the goal is to go over the main software tools provided by ROBOTIS
using a simple demonstration system having two servo motors but swapping out
different controllers (CM-5, CM-510, CM-530 and CM-9.04-B/C) as needed.

 ROBOTIS provides their software tools for free and most tools have proprietary
source codes and/or fi rmware, except for the ROBOTIS OpenCM IDE for the
CM-9.04-A/B/C systems (which is based on Arduino). Offi cially, ROBOTIS has
not released a “roadmap” for their software tools, so things are still confusing at
times even for a long-time practitioner like the author (especially when new prod-
ucts get released), so I’ll do my best to help the reader in sorting what to use to do
what and under which circumstances.

 Historically speaking, the very fi rst ROBOTIS software suite was the BIOLOID suite
(c. 2005) with “Behavior Control Programmer” and “Motion Editor”. It got replaced
with RoboPlus V.1.0.8 in 2009 along with the introduction of BIOLOID PREMIUM.

 Currently at version 1.1.3.0 (7/8/2014), the RoboPlus suite runs on MS Windows
only or “mostly” on a good emulator of it such as Parallels, Fusion, WINE, Boot
Camp, etc.… It is available for download at (http://www.robotis.com/xe/download_
en/1132559). When installed, it is a portal to fi ve software tools (Task, Manager,
Motion, Terminal and Dynamixel Wizard) as shown in Fig. 4.1 . Furthermore, once
installed, each of these fi ve tools will get automatic updates on their own whenever
ROBOTIS pushes them out.

 Next, there are currently two “new-generation” software packages for MS Windows
(or emulators): R+ Design (V.1.1.5) and R+ Motion (V.2.2.4)—not to be confused
with the previous RoboPlus Motion tool (which can be considered as V.1). They are
available for download at http://en.robotis.com/BlueAD/board.php?bbs_id=downloa
ds&page=1&key=&keyword=&bbs_opt1=&scate . After installation, they are also set
to be automatically updated when available (see Fig. 4.2).

 Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-
319- 20418-5_4) contains supplementary material, which is available to authorized users.

http://www.robotis.com/xe/download_en/1132559
http://www.robotis.com/xe/download_en/1132559
http://en.robotis.com/BlueAD/board.php?bbs_id=downloads&page=1&key=&keyword=&bbs_opt1=&scate
http://en.robotis.com/BlueAD/board.php?bbs_id=downloads&page=1&key=&keyword=&bbs_opt1=&scate
http://dx.doi.org/10.1007/978-3-319-20418-5_4
http://dx.doi.org/10.1007/978-3-319-20418-5_4

48

 There are also mobile versions of these software tools (Android OS only for
now) which are available for download at Google Play (https://play.google.com/
store/search?q=robotis&c=apps&hl=en , see Fig. 4.3). These applications, especially
R+m.Task and R+m.Motion, leverage extensively on existing SMART technologies
available in current mobile devices such as phones and tablets. Although these mobile
tools are quite interesting implementations, they are outside the scope of this book.

 In the Embedded C area, there are two options for the users. Option 1 is more
for professional programmers as it requires quite a bit of hardware and software

 Fig. 4.1 RoboPlus portal

 Fig. 4.2 R+ Design and R+ Motion

4 Software Tools

https://play.google.com/store/search?q=robotis&c=apps&hl=en
https://play.google.com/store/search?q=robotis&c=apps&hl=en

49

knowledge from the user and it uses more complex tool chains based on compilers
provided by the manufacturers of the microcontrollers themselves. These software
tools, installation procedures and some tutorials are provided at the following link
(http://support.robotis.com/en/software/embeded_c_main.htm) and they are designed
for the CM-510/CM-700 and CM-530 only. Option 2 has a lower technical bar for
entry as it is based on the Arduino interface and it is called OpenCM IDE which is
available for download at (http://www.robotis.com/xe/download_en/633740). There
is also a learning community for the OpenCM system at (http://www.robotsource.org/
bs/bd.php?bt=forum_CM9DeveloperWorld). Technical manuals and tutorial materi-
als for OpenCM were provided previously in Chap. 2 as ZIP fi les. Both Embedded C
options will be discussed further in Chap. 10 .

4.1 Dynamixel Wizard Tool

 You should not have to use this tool at all if you recently bought your new controllers
and Dynamixel actuators or sensors, as they would have the latest fi rmware installed
from the factory. In general, the Dynamixel’s fi rmware is updated via the Dynamixel
Wizard and the Controller’s fi rmware is updated via the Manager tool, but see
Sect. 4.1.2.1 for specifi c procedures for the OpenCM-9.04-C.

 First you will need to acquire the USB2Dynamixel module (http://www.
robotis-shop- en.com/?act=shop_en.goods_view&GS=1289&GC=GD080300) or
the LN-101 module (http://www.robotis-shop-en.com/?act=shop_en.goods_
view&GS=1277&GC=GD080300) depending on the type of controllers used
(see chart at http://support.robotis.com/en/techsupport_eng.htm#product/auxde-
vice/controller_main.htm).

4.1.1 TTL (3-Pin) and RS-485 (4-Pin) Dynamixels

 Your best option is to go with the USB2Dynamixel module and you also need to
arrange for independent power of the Dynamixels via the SMPS2Dynamixel (http://
www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1267&GC=GD080303)

 Fig. 4.3 Android’s apps of ROBOTIS software tools

4.1 Dynamixel Wizard Tool

http://support.robotis.com/en/software/embeded_c_main.htm
http://www.robotis.com/xe/download_en/633740
http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld
http://www.robotsource.org/bs/bd.php?bt=forum_CM9DeveloperWorld
http://dx.doi.org/10.1007/978-3-319-20418-5_2
http://dx.doi.org/10.1007/978-3-319-20418-5_10
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1289&GC=GD080300
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1289&GC=GD080300
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1277&GC=GD080300
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1277&GC=GD080300
http://support.robotis.com/en/techsupport_eng.htm#product/auxdevice/controller_main.htm
http://support.robotis.com/en/techsupport_eng.htm#product/auxdevice/controller_main.htm
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1267&GC=GD080303
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1267&GC=GD080303

50

or just use the controller module as the power source (see Fig. 4.4 for an example
setup with a CM-530 and two AX-12As). If you are using a CM-5, CM-510 or
CM-700, you can use the same setup and just swap out the controller.

 Figure 4.4 shows that the LiPo battery is powering the CM-530 controller and
indirectly the AX-12As via the 3-pin Dynamixel bus, while the PC (i.e. Dynamixel
Wizard) communicates to the AX-12As via the chain “USB ≫ USB2Dynamixel ≫
AX- 12As”. Please note that the side switch on the USB2Dynamixel module needs
to be slid into the TTL (or RS-485) position (as appropriate) for this setup to work
properly.

 If you are only “updating” the fi rmware of your Dynamixels, you can string
them up in a daisy-chain fashion as shown in Fig. 4.4 , as the Wizard tool can update
several Dynamixels (of the same type, to be on the safe side) during the same cycle.
However, if something “real bad” had happened to a particular Dynamixel, and as part
of the troubleshooting process you are trying to see if “recovering” the fi rmware on
it will help, then you will need to hook up only ONE Dynamixel at a time. Procedures
for updating, recovering and testing fi rmware are accessible at this link (http://
support.robotis.com/en/software/roboplus/dynamixel_wizard.htm). For a more
recent video of the process, please review enclosed video fi le “Video 4.1 ”. If you are
“recovering” successfully, remember to set the Dynamixel ID back to the one you
were using before, as the “recovery” process will reset the ID to “1”.

4.1.2 XL-TTL (3-Pin) Dynamixels

 Currently, the only XL-TTL Dynamixel in existence is the XL-320 operating with
the OpenCM-9.04-A/B/C controllers. At the time of writing of this book, ROBOTIS
was still working on their RoboPlus tools to work with the OpenCM systems,

 Fig. 4.4 Typical setup for
Dynamixel fi rmware
update using a CM-530
and two AX-12As

4 Software Tools

http://support.robotis.com/en/software/roboplus/dynamixel_wizard.htm
http://support.robotis.com/en/software/roboplus/dynamixel_wizard.htm

51

thus the procedures described herein were obtained from experimentation by the
author. So please be aware that, at a later time, fi nal and offi cial ROBOTIS proce-
dures may be different.

 Due to the difference in fi rmware used on the A/B version and the C version, the
respective fi rmware update processes were also different.

4.1.2.1 OpenCM-9.04-C

 The 9.04-C controller’s fi rmware and the fi rmware of XL Dynamixels attached to it
can be updated at the same time via the 4-pin communication port. The user has
several options for communications hardware, such as “wired” via the LN-101 or
“wireless” via ZIG-110 and BT-110/210. The LN-101 route is the most reliable for
this rather delicate operation, but the reader should try other options just for learning
experiences.

 Figure 4.5 describes a setup using an LN-101 with a 9.04-C and 2 XL-320
servos.

 Once the “Dynamixel Wizard” tool is started (currently at V.1.0.19.5), the user
can click on the icon for “XL-320 Firmware Management” (see Fig. 4.6) and choose
either “Update” or “Recovery” depending on the need and then follow the on-screen
instructions (see video clip “Video 4.2 ” for more details).

 Please note that this tool will additionally update the fi rmware of the 9.04-C
controller to its most current version.

 Fig. 4.5 Typical setup for
Dynamixel fi rmware
update using an
OpenCM-9.04-C

 Fig. 4.6 Pull-down menu
for the “XL-320 Firmware
Management” icon

4.1 Dynamixel Wizard Tool

52

4.1.2.2 OpenCM-9.04-B

 At present, if the user only has the OpenCM-9.04-B controller, the Dynamixel fi rmware
update process is much more complex because the B version does not have a “nice”
fi rmware to interact with the previous “XL-320 Firmware Management” tool
(Sect. 4.1.2.1). In a way, the user will have to use similar steps shown in Sect. 4.1.1
with the USB2Dynamixel module. Figure 4.7 shows the required hardware setup:

• The USB2Dynamixel module serves as the interface between the PC’s USB port
and the Dynamixel Port on the OpenCM-9.04-B (USB2Dynamixel’s side switch
set on TTL as per Sect. 4.1.1).

• The OpenCM-9.04-B controller acts a common Dynamixel bus because it has
both AX/MX-TTL and XL-TTL connectors. It also serves as the power source
for the XL-320 actuators.

 This setup also requires that the “DxlTosser” sketch be preloaded and running on
the 9.04-B (see Chap. 10 for more details). Then ones can get the Dynamixel Wizard
tool started and apply similar procedures described in Sect. 4.1.1 for the AX/MX-TTL
Dynamixels to the XL-320 actuators, i.e. “updating” several Dynamixels of the same
type or “recovering” only 1 Dynamixel (see “Video 4.3 ” for more details).

 Updating the 9.04-B controller’s fi rmware would involve JTAG/SWD procedures
that are not yet released by ROBOTIS.

4.2 Manager Tool

4.2.1 CM-5, CM-510, CM-530

 The Manager tool, currently at V.1.0.33.2, is fully functional for the CM-5, CM-510
and CM-530 controllers and the user must choose wired connections via the
USB2Dynamixel ≫ BSC-10 (CM-5 and CM-510) or USB-mini cable (CM-530).

 Fig. 4.7 Typical setup for
Dynamixel fi rmware
update using an
OpenCM-9.04-B

4 Software Tools

http://dx.doi.org/10.1007/978-3-319-20418-5_10

53

 The video fi le “Video 4.4 ” highlights how Manager can perform a quick check
on a Bioloid Premium Humanoid A equipped with some extra sensors such as
AX-S20, Gyro and Foot Pressure Sensors (see Fig. 4.8).

 More on-line resources for the Manager tool can be found at http://support.
robotis.com/en/software/roboplus/roboplus_manager_main.htm .

4.2.2 OpenCM-9.04-A/B/C

 First, the OpenCM-9.04-A/B controllers were designed to work with the ROBOTIS
Arduino-like IDE so they do not work with the Manager tool at all.

 At the time of writing for this book, the Manager tool (V.1.0.33.2) was not yet
fully functional with the OpenCM-9.04-C system, thus it could only update the
9.04-C’s fi rmware (which could be done via the Dynamixel Wizard tool also—see
Sect. 4.1.2.1). Through experimentations, the author has determined that the LN-101
module should be used for the most reliable results with this procedure.

 Figure 4.9 shows a hardware setup needed to update the fi rmware of an OpenCM-
9.04-C controller using an LN-101.

 The next step is to start the Manager tool. At the main menu bar, choose the
correct COM port corresponding to the LN-101 and click on the “Controller
Firmware Management” icon (left of the “?” icon) and follow on-screen instructions
to get the 9.04-C controller updated to its latest fi rmware version (see video fi le
“Video 4.5 ” for more details).

 If the user had bought a ROBOTIS(DARWIN-MINI) kit which came with a
BT-210, the above procedure also worked well, as long as the OUT-GOING COM
port was chosen for the connection between the PC and the BT-210.

 Fig. 4.8 “Bal’Act”
Humanoid A robot

4.2 Manager Tool

http://support.robotis.com/en/software/roboplus/roboplus_manager_main.htm
http://support.robotis.com/en/software/roboplus/roboplus_manager_main.htm

54

 If the user had bought a “loose” OpenCM-9.04-C (http://www.robotis.us/
opencm9-04-c-with-onboard-xl-type-connectors/) which came with a USB-to-
micro cable, the above procedure also worked quite satisfactorily when using the
appropriate COM port.

4.3 Task Tool

 The TASK tool, currently at V.1.1.2.4, is a cross-over between a standard text-
based IDE such as Eclipse or ROBOTIS IDE and a pure icon-based such Lego
NXT to help beginners with a more controlled syntax. It has all the standard con-
trol structures (sequential, repetition and conditional) and provides variables and
functions defi nition. It even supports 1 CallBack function, but it does not support
variable arrays.

 Since 2013, the TASK tool is well documented in the Software Programming
Guide included in the Bioloid Premium kit. If you got an earlier edition of this kit
that did not have this user’s guide, I would recommend fi rst-time users to get it at
 h t tp : / /www.robo t i s - shop-en .com/?ac t=shop_en .goods_v iew&GS=
1486&GC=GD080400 . The ROBOTIS e-Manual web site also has much techni-
cal information for the Task tool at http://support.robotis.com/en/software/robop-
lus/roboplus_task_main.htm . Thus instead of repeating all this information here,
I would like to share a “comparative study” across different controllers using a
demonstration setup with two AX-12As or XL-320s using “wired” and “wireless”
(ZigBee and BlueTooth) communications using the Virtual RC-100.

 Fig. 4.9 Typical setup for
controller fi rmware update
for an OpenCM-9.04-C

4 Software Tools

http://www.robotis.us/opencm9-04-c-with-onboard-xl-type-connectors/
http://www.robotis.us/opencm9-04-c-with-onboard-xl-type-connectors/
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://support.robotis.com/en/software/roboplus/roboplus_task_main.htm
http://support.robotis.com/en/software/roboplus/roboplus_task_main.htm

55

4.3.1 CM-5, CM-510, CM-530

 The demonstration setups for the CM-5XX family is shown in Fig. 4.10 .
 The test TASK code (TestVRC-100_CMs.tsk) is shown in Fig. 4.11 .

 Fig. 4.10 Demonstration setups for TASK “comparative study” (left to right —CM-5, CM-510
and CM-530)

 Fig. 4.11 Demonstration test code (TestVRC-100_CMs.tsk)

4.3 Task Tool

56

 It is quite simple:

• Just an overall Endless_Loop with an initial Wait_While loop checking on
whether the Virtual RC-100’s buttons had been pushed or not (line 5).

• When a button had been pushed, check it to see if it was:

 – “Up” then set the Goal_Position for servos 1 and 16 to “1023” (lines 8–12).
 – “Down” then set the Goal_Position for servos 1 and 16 to “0” (lines 13–17).
 – “Nothing”, i.e. upon release of any button of the RC-100’s buttons, tell servos

1 and 16 to go to Goal_Position “512” (lines 18–22). The author chose to treat
this condition explicitly because it was known that the RC-100 would send
the “0” signal (statement 18) only once , thus any “worthy” communication
hardware/software implementation would have to be able to pick up this one-
time event. This feature was used to evaluate the performance between wired
and wireless communications as shown in sections below.

 The video fi le “Video 4.6 ” showed how this test code was performing on a CM-5
using a “wired” connection (i.e. USB ≫ USB2Dynamixel ≫ BSC-10 ≫ CM-5) or a
“wireless” connection (i.e. USB ≫ USB2Dynamixel ≫ Zig2Serial ≫ ZIG-100-1 ≫
ZIG-100- 2 on CM-5 ≫ CM-5. Both options worked well without any discernable
performance issue.

 This test code was also tried on a similar system with a CM-510 using “wired” and
“wireless” connections. For a CM-510, there were three “wireless” options: ZIG-110,
BT-110 or BT-210. The video fi le “Video 4.7 ” showed that all three wireless options
were functional but there were some subtle performance differences:

• ZigBee connections were made within 1 s of executing of the program, while BT
connections could take up to 3–4 s to be done, thus users need to take these BT
delays into account for their own applications.

• ZigBee data buffers seemed to be updated much more effi ciently than BT data
buffers, as BT systems seemed to be “stuck” when a particular VRC-100 button was
held in for 2–3 s. It is not known whether this is an issue on the PC side or on the BT
modules side, or that this is an expected behavior of BlueTooth protocols.

• BT-210’s performance was less than BT-110’s in the above test conditions.

 When the same tests were performed on a CM-530 system (“wired” plus the
previous three “wireless” options), all wired and wireless connections were func-
tional but the same issues discussed previously were also found on the CM-530
(see video fi le “Video 4.8 ”).

4.3.2 CM-9.04-C

 To complete the comparative study, the same TASK code was tested on an
OpenCM- 9.04-C system with the same four communication protocols as in
Sect. 4.3.1 , but with XL-320 servos instead:

4 Software Tools

57

• Wired, through LN-101.
• Wireless, through ZIG-110, BT-110 and BT-210.

 The video fi le “Video 4.9 ” showed that the previous wireless issues existed for
the OpenCM-9.04-C also.

 (Note: since the V1.1.2.4 update for TASK (9/5/2014), the previous BlueTooth
issues are resolved satisfactorily).

 In conclusion, at present, ZigBee is the best performing wireless option for con-
trolling ROBOTIS robotic systems, however it is also recognized that BlueTooth is
more widely implemented on PCs and mobile devices thus requiring no extra hard-
ware for the users to buy. It was also shown that a TSK code is portable across exist-
ing RoboPlus-compatible platforms as long as the “correct” controller was chosen
before compiling and downloading the codes.

4.4 Motion Tools (V.1 and V.2)

 The TASK tool is well suited for reading and writing data/commands from/to a
small number of actuators and sensors as on a wheeled robot, as the inherently
“sequential” execution of those commands (line by line as shown in Fig. 4.11) still
has an acceptable performance. However on a humanoid robot with 18 actuators
that have to work together and “simultaneously” in order to perform a maneuver
such as walking, a different way of generating and executing sets of actuator goal
positions in “parallel” on those 18 actuators in a timely manner has to be devised.

 For this purpose, ROBOTIS created the Motion tools, from the original BIOLOID
Motion Editor (c. 2005) to the RoboPlus Motion V.1 (c. 2009), to the latest R+
Motion V.2 (c. 2014) (see Fig. 4.12). Conceptually, these Motion tools were based
on cartoons (or frames) animation which is essentially the re-playing of a sequence
of poses of the considered character (robot) within a time line, with slight variations
in each pose to create the illusion (perception) of motion.

 The BIOLOID Motion Editor only provided front views of a 3-D robot, and
they were shown “relative” to the main controller and not to the ground surface.
With RoboPlus Motion V.1, 3-D graphics of the robot are available (still relative to
the controller/body) but were used more for animation check of the robot poses,
rather than for creating and editing them. Since 2013, the Software Programming
Guide (SPG) included in the Bioloid Premium kit has very good tutorial materials

 Fig. 4.12 Evolution of the Motion tools from 2005 to 2014

4.4 Motion Tools (V.1 and V.2)

58

for learning how to use the Motion tool (V.1). I would recommend beginners to
obtain it from http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=
1486&GC=GD080400 and use it well. The ROBOTIS e-Manual also has much
information for the Motion V.1 tool (http://support.robotis.com/en/software/robo-
plus/roboplus_motion_main.htm), but the materials in the SPG is better suited for
self-learners. The enclosed video fi le “Video 4.10 ” shows how to use RoboPlus
Motion V.1 on a PREMIUM GERWALK robot. Additional applications of this tool
will be provided in Chap. 6 .

 R+ Motion V.2 was released in Spring 2014 and it supports PREMIUM, STEM,
SMART & ROBOTIS-MINI systems (currently it is at V.2.2.4). RoboPlus V.1 is still
available to support robots using CM-5 and CM-510, but most likely it will be
phased out in a few years along with the CM-5 and CM-510 controllers. Three key
features of R+ Motion V.2 should be noted (see Fig. 4.13):

 1. The display of a global time line for each “motion-unit”.
 2. The use of a “physics” engine so that the robot 3-D frame can be manipulated

relative to the “ground” surface, and not with respect to the robot’s body as in
V.1. However this “physics” engine won’t be able to accommodate highly acro-
batic moves like body fl ipping or rolling!

 3. The robot motions can be edited and executed on an existing 3-D model without
the need of the real robot actually being connected to the PC or mobile device
during that time.

 4. On fast graphics display hardware, the graphics engine will be able to syn-
chronize the simulated robot moves to the real robot moves in the physical
world.

 The web-based user manual for the R+ Motion tool V.2 is available at http://
support.robotis.com/en/software/roboplus2/r+motion2/rplus_motion2.htm .
Enclosed is a video illustrating some basic uses of R+ Motion V.2 on an OpenCM-
9.04-C with 2 XL-320 servos (Video 4.11). More applications of this tool will be
shown in Chap. 11 .

 Fig. 4.13 Key features of R+ Motion V.2

4 Software Tools

http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://support.robotis.com/en/software/roboplus/roboplus_motion_main.htm
http://support.robotis.com/en/software/roboplus/roboplus_motion_main.htm
http://dx.doi.org/10.1007/978-3-319-20418-5_6
http://support.robotis.com/en/software/roboplus2/r+motion2/rplus_motion2.htm
http://support.robotis.com/en/software/roboplus2/r+motion2/rplus_motion2.htm
http://dx.doi.org/10.1007/978-3-319-20418-5_11

59

4.5 R+ Design Tool

 Spring 2014 also saw the fi rst release of the R+ Design tool (V.1.1) for MS Windows
PCs (see Fig. 4.14), but it was originally designed for mobile systems (currently
Android OS only) and for the OLLO system as part of the suite of R+m.Task and
R+m.Design (c. 2012).

 The current R+ Design V.1.1.5 supports the following systems: OLLO, STEM,
PREMIUM, PLAY, IDEAS, DREAM, SMART and ROBOTIS-MINI. At present,
R+ Design only supports 3-D design and assembly of ROBOTIS parts, but the R+
Design and Motion tools together show ROBOTIS’ vision of integration from
design to simulation/control/testing (on the computer) for individual users as well
as for communities of robotics designers and instructors. At present, those activities
are beginning via websites such as RobotSource and STEAM Education Association
(http://www.robotsource.org/bs/bd.php?bt=proj_ucrgallery_1 and http://www.
steamcup.org/new/?mid=main_eng#).

 Currently, March 2015, only the Korean version of the user manual for R+
Design is available at http://support.robotis.com/ko/software/r+design_main.htm .

 Personally, I have used R+ Design on OLLO kits with my younger students (5–6
years old) and they defi nitely preferred R+ Design over the instruction pages of the
paper-based manuals, because they can “see” the 3-D assemblies from different
view angles on the computer screen. However, there was one issue that required the
students to refer back to the paper-based manuals and it was about cable routing
(at present, only the paper manuals have illustrations of “proper” cable routing dur-
ing assembly).

 Fig. 4.14 R+ Design tool with a SMART robot

4.5 R+ Design Tool

http://www.robotsource.org/bs/bd.php?bt=proj_ucrgallery_1
http://www.steamcup.org/new/?mid=main_eng
http://www.steamcup.org/new/?mid=main_eng
http://support.robotis.com/ko/software/r+design_main.htm

60

4.6 “If I Were to Restart …”

 Recapping Chaps. 3 and 4 and if I were to restart my robotics journey at the present
time, I would start with the BIOLOID PREMIUM system using the CM-530
controller. Next I would replace the CM-530 with the OpenCM-9.04-C controller
combined with the OpenCM-485 shield so that I could keep using my 12 V LiPo
battery and the AX/MX Dynamixels. But now I could access multi-media features
provided by Android tablets and smart phones via R+ V.2 software suite. Later,
I could switch to OpenCM IDE for closer access to the ARM controller.

4.7 Review Questions for Chap. 4

 1. Which option(s) does a user have to run ROBOTIS software on Mac OS based
computers?

 2. What are the software tools that are available with the ROBOPLUS software
suite on Windows platforms? Or on Android mobile platforms?

 3. What tasks can the MANAGER tool provide?
 4. What tasks can the TASK tool provide?
 5. What tasks can the DYNAMIXEL WIZARD tool perform for the user in

conjunction with a USB2Dynamixel or LN-101 module?
 6. Which controllers can have their fi rmware updated using the MANAGER tool?
 7. How can fi rmware update/recovery be performed for a Dynamixel actuator?
 8. Which way(s) can be used to set the IDs of the ZigBee modules? Via MANAGER

tool? Or via TASK tool?
 9. From which tool can the user perform ZigBee management tasks with the

ZIG2SERIAL module?
 10. Which kind of signal (if any) does the “physical” RC-100 Remote Controller

send out when the user releases one of its buttons?
 11. Which kind of signal (if any) does the “virtual” RC-100 Remote Controller

send out when the user releases one of its buttons?
 12. What are the differences between versions 1 and 2 for ROBOTIS’ MOTION

tools?
 13. What graphics engine is the R+MOTION tool V.2 based on?
 14. List key features of the R+MOTION V.2 tool.
 15. What can the R+DESIGN tool be used for?
 16. Which ROBOTIS robotics system does the R+ DESIGN tool support?
 17. What are the Embedded C options for the user?

4 Software Tools

http://dx.doi.org/10.1007/978-3-319-20418-5_3
http://dx.doi.org/10.1007/978-3-319-20418-5_4
http://dx.doi.org/10.1007/978-3-319-20418-5_4

61© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_5

 Chapter 5
 Foundational Concepts

 For this chapter, the assumptions are that the reader is a beginner to robotics but has
some exposure to computer programming. This chapter’s main topics are listed below:

• “Sense-Think-Act” paradigm and illustration of its diverse interpretations in the
design of hardware and software systems using selected robotics systems.

• “Sequence Commander” CarBot to explain “Sequential-Repetition-Selection” con-
trols and “Functional Decomposition” concepts used in basic robotic programming.

• “Smart Avoider” CarBot to illustrate “reactive” and “behavior-based” control
architectures.

• “Line Tracer” CarBot to demonstrate “timed” and “conditional” maneuvers, the
concept of “self-localization” and the feedback between robot design and robot
performance tuning.

• Introductory Remote Control concepts using Virtual and Physical remote
controllers.

 The above topics will be developed using the ROBOTIS MANAGER and TASK
tools. For more advanced topics in wheeled robots, the reader is referred to Campion
and Chung (2008), Dudek and Jenkin (2010) and Cook (2011).

5.1 “Sense-Think-Act” Paradigm

 Winfi eld (2012) defi ned a robot as:

 1. an artifi cial device that can sense its environment and purposefully act on or in
that environment ;

 2. an embodied artifi cial intelligence ; or
 3. a machine that can autonomously carry out useful work .

 Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-
319- 20418-5_5) contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-3-319-20418-5_5
http://dx.doi.org/10.1007/978-3-319-20418-5_5

62

 Nourbakhsh (2013) pointed out that robotics research and innovation had been
inspired from human intelligence which depends on two aspects (Fig. 5.1):

 1. a meaningful two-way connection with the world; this connection has inputs
termed “perception” and outputs back to the world termed “action” (from our
own body or via tools that we create).

 2. an internal decision making process termed “cognition” that maps our sensory
inputs into deliberate actions.

 When translated to the realm of world-robot interactions, we got the familiar
“Sense-Think-Act” paradigm (Fig. 5.2).

 Ones should note the “endless loop” shown in Figs. 5.1 and 5.2 as this is the
fundamental characteristic found in all robotics computer programs. This usually is

 Fig. 5.1 World-human interactions

 Fig. 5.2 World-robot interactions

5 Foundational Concepts

63

the fi rst “conceptual” obstacle to overcome for beginners, as we all learned how to
do basic computer programming by designing and creating programs that would run
only once. Some recent robotics systems designed for “very young” roboteers even
“hide” this implicit “endless loop”, such as the MRT3 system from My Robot Time
(http://www.myrobottime.com/#!proudt/c8hd).

 Figure 5.3 was a screen capture of the MRT3 programming interface where a
fairly constrained Input ≫ Output approach (i.e. Reactive Control) was used. The
interested reader can also watch this video clip describing the software program-
ming aspects of the MRT3 system (Video 5.1).

 For years, Lego NXT has been the leader in providing a “drag & drop” graphical
programming interface for young robot enthusiasts, but a recent robotics product
called ABILIX introduced a new graphical approach using standard fl owchart icons
(http://www.abilix.com/en/support.php) along with a parallel C language develop-
ment interface (see Fig. 5.4 and video clip Video 5.2).

 Another innovative robotics product is called CUBELETS from Modular
Robotics (http://www.modrobotics.com/cubelets/), and in a way it manages to get rid
of the software interface entirely by “transferring” enough of the “Think” capacity into
the “Sense” and “Act” components of the standard “Sense-Think-Act” paradigm, so
as to enable a second “inner” loop between their “Sense” and “Action” Cubelets
(see Fig. 5.5 and video clip Video 5.3).

 Fig. 5.3 MRT3 system’s software interface

5.1 “Sense-Think-Act” Paradigm

http://www.myrobottime.com/#!proudt/c8hd
http://www.abilix.com/en/support.php
http://www.modrobotics.com/cubelets/

64

 The ROBOTIS’ TASK tool could be characterized as a “context-sensitive” text
editor and it is closer in programming style to professional tools such as Visual C/
C++ or Eclipse (see Fig. 5.6). Thus it would take comparatively longer to be
profi cient at it, but then ones can shift to an Arduino-type interface rather quickly
(see Chap. 10).

 From an end-user point of view, I think that it is good that we have such a range
of possible “entry” points into the “robotics” journey to adjust for different maturity
and skill levels of every beginner who should realize that this journey can be very
far and wide, requiring continual adjustment of the tools that we would use throughout
this journey.

 Fig. 5.4 ABILIX system’s software interface

 Fig. 5.5 CUBELETS robotics system

5 Foundational Concepts

http://dx.doi.org/10.1007/978-3-319-20418-5_10

65

5.2 Primer for MANAGER and TASK Tools

 In practice, MANAGER and TASK work together very well. MANAGER is an
effi cient tool to do a thorough but quick check on all hardware components with
some special operations such as controller fi rmware update and managing ZigBee
communication settings. TASK is the main algorithm development tool supporting
all the standard logical structures (sequential, conditional and repetition) and
functions, but it does not support arrays and advanced mathematical functions
(for those features, the user will need to use Embedded C tools or the OpenCM
IDE described in Chap. 10).

5.2.1 MANAGER Capabilities

 For this section, a CM-510 CarBot (Fig. 5.7) was chosen to illustrate the use of the
MANAGER tool. This CarBot used four AX-12As in wheel mode (ID 1 & 3 on left
side; ID 2 & 4 on right side) and two IR sensors, one looking forward (Port 1) and
one looking down (Port 2). It also had a ZigBee module (ZIG-110A) set to a 1-to-1
communication mode.

 Once MANAGER was executed and connected to the appropriate COM port, the
user would see a similar interface to the one shown in Fig. 5.8 (depending on one’s

 Fig. 5.6 ROBOTIS’ TASK tool interface

5.2 Primer for MANAGER and TASK Tools

http://dx.doi.org/10.1007/978-3-319-20418-5_10

66

actual robot of course). All Dynamixel-compliant (3-pin) actuators and sensors
would be listed on the left panel below the Controller item.

 In the “Controller” subpanel on the right, the parameter “My Remote ID” (Address
36) corresponded to the actual ZigBee ID (read-only) of the ZIG-110A module used
(e.g. 11090). The parameter “Remote ID” (Address 34) was user- editable and it cor-
responded to the ID of the “other” ZigBee module (e.g. 11091). To make this ZIG-
110A module switch to its broadcast mode, the user would need to input “65535”
into Address 34. The “other” ZigBee module could be a ZIG-100 module installed
inside a CM-5 controller (i.e. another robot) or inside the RC-100 Remote Controller
(for more information, please look up the web link http://support.robotis.com/en/
product/auxdevice/communication/zigbee_manual.htm). Optionally, the “other”
ZigBee module could be another ZIG-110A connected to a CM-510 or CM-530.
There are other ZigBee management options which will be discussed in more details
in Chap. 8 .

 Fig. 5.7 CM-510 CarBot
used

 Fig. 5.8 MANAGER Controller Panel (with ZIG-110A in 1-to-1 mode)

5 Foundational Concepts

http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
http://dx.doi.org/10.1007/978-3-319-20418-5_8

67

 If the user happens to be using a BT-110A or BT-210, then the MANAGER
Controller Panel would look like Fig. 5.9 and as BlueTooth connections are man-
aged at the Windows Device Manager level, the user should not modify Address 34
at all when using BT modules.

 In the “Other Devices” subpanel, the user could check on the status of the GPIO
(5-pin) actuators and sensors used on the six ports available on the CM-510 and
CM-530 (Fig. 5.10). In this particular case, IR sensors were used on Port 1 and Port 2.
If MANAGER was used for the FIRST time with any GPIO hardware confi guration,
the user would have to manually assign the correct sensor to the specifi c port used for
that sensor in order to update the controller fl ash memory contents.

 MANAGER can also be used to test out actuators functions for troubleshooting
purposes (Fig. 5.11 and watch the “Video 5.4”). The web link http://support.robotis.
com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm has more detailed
information on the built-in ROM procedures.

 Fig. 5.9 “Controller” subpanel (with BT-110A or BT-210)

 Fig. 5.10 “Other Devices”
subpanel (with IR sensors
on Ports 1 & 2)

5.2 Primer for MANAGER and TASK Tools

http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm
http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm

68

 MANAGER also provided access to Windows Device Manager (Fig. 5.12),
ZigBee management via the ZIG2SERIAL module (Fig. 5.13 and more details
will be forthcoming in Chap. 8), Controller Firmware Management (Fig. 5.14 and
previously illustrated in Chap. 4 for OpenCM-9.04 controllers).

 Fig. 5.11 “AX-12” built-in ROM procedures

 Fig. 5.12 MANAGER’s access to Windows Device Manager

5 Foundational Concepts

http://dx.doi.org/10.1007/978-3-319-20418-5_8
http://dx.doi.org/10.1007/978-3-319-20418-5_4

 Fig. 5.13 MANAGER’s access to ZigBee Management

 Fig. 5.14 MANAGER’s access to Controller Firmware Management

70

5.2.2 Basic TASK Usage

 If you happen to be an absolute beginner with the TASK tool, please watch the
“Video 5.5” fi rst before reading on the rest of this section. This video demonstrated
the basic steps needed from creating a TSK program from scratch to running it on a
CM-510 CarBot (Fig. 5.7). It showed how to declare parameters and use printing
facilities and also discussed the use of control structures (sequence, loops and con-
ditions). Additionally, it showed how to use functions to modularize coding. Please
also refer to the example code fi les “IR-Sensors-1.tsk” and “IR-Sensors-2.tsk”.

 The next example, “IR-Motor.tsk”, illustrated the closing of the “Sense-Think-
Act” loop and was the fi rst example using a Reactive Control approach (well
described in Chap. 14 of Matarić (2007)). The “Video 5.6” described the main steps
for a Reactive Control approach:

 1. Determine the “mutually exclusive conditions” that the bot would encounter
during its operation in the world.

 2. Match up each of those conditions with “appropriate” action(s). Create a table of
matching conditions and actions to keep track of one’s current thinking about the
problem to be solved.

 3. From this “Condition | Action” table, generate a matching “Input | Output” or
“Sensor | Actuator” table that would correspond to the actual sensors and actuators
used in the bot design (see Fig. 5.15a, b).

 4. Next translate the “Sensor | Actuator” table into coding facilities that were
provided with the chosen software development environment (see examples in
Figs. 5.3 , 5.4 and 5.6).

 5. Ones can expect to revisit Steps 1 through 4 several times before achieving a
satisfactory solution.

5.3 “Sequence Commander” Project

 This project used the CarBot described in Fig. 5.7 and it was a 4-WD adaptation
of the 2-WD Sequence Racer robot belonging to the BIOLOID STEM system.
The sample code “SequenceCommander_CM-510-530.tsk” was designed to work on

 Fig. 5.15 (a) Condition | Action table; (b) Sensor | Actuator table

5 Foundational Concepts

http://dx.doi.org/10.1007/978-3-319-20418-5_14

71

CM-510/530 controllers, while the other version “SequenceCommander_CM-5.tsk”
was made for a CM-5 controller using the Integrated Sensor AX-S1 (ID = 100).

 The “Sequence Commander” robot operated in two distinct phases:

 1. This robot started out in a “Learning” mode where it would wait for the user to
press the Up-Down-Left-Right buttons on the controller, in any combination or
sequence, but up to fi ve buttons only. As soon as the user pressed the sixth but-
ton, the robot would sound out an “error” signal, clear all previous inputs and
restart on its learning phase.

 2. Once the user had entered a “legal” sequence of button presses (≤5 buttons), the
user would press on the “START” button to make the robot shift into its “Replay”
mode. The robot would then move in the directions as recorded in the sequence
made by the user during the learning phase. Each forward or backward step
would last 1 s, while the left and right turn maneuvers would last only 0.5 s.

 There were some program design features needing to be discussed further:

 (a) Each of the four AX-12 motors was provided with its own speed parameter
(Speed1 through Speed4). This feature was provided so that the user could fi ne-
tune these parameters in case the robot did not move “straight enough” when
commanded to do so. This problem may come from robot construction mis-
alignments or from non-uniform performance among the 4 motors. In practice,
it may even come from the non-uniform properties of the surface that the robot
would be running on, but that issue would be beyond the user’s control.

 (b) The “Button_Standby” function (see Fig. 5.16) was very short, but it fulfi lled an
important task of adjusting the extremely fast processing speed of the controller
to the rather slow speed of human motion (when the user pressed and released
a given button).

 Before the execution of this function (essentially statement 131), the controller
had already determined and saved the value of the button just pressed by the user
into a parameter named “Button” (statement 34). However, the user’s fi nger might
still be hovering over the pressed button as human reaction times are at best in
tenths of a second, while the controller can execute its commands in microseconds.
This “WAIT WHILE” construct essentially halted the controller’s progress as long
as it detected that some button(s) were still being pushed. Please note that we had
to use “double negation” to achieve this goal, as “NOT (No Button Was Pressed)”
was equivalent to “Some Buttons Were Being Pressed”. Please also note that it
would be “computationally ineffi cient” to use a WAIT WHILE condition that

 Fig. 5.16 Function to help
with “debouncing” button
presses

5.3 “Sequence Commander” Project

72

involved “OR” operators and the status of each of the U-D-L-R buttons as shown
below, although it would be logically equivalent.

 The video fi le “Video 5.7” described the code in more details and contained
webcam recordings of this robot in action.

5.4 “Smart Avoider” Project

 This project used a CM-5 CarBot described in Fig. 5.17 and it used an AX-S1 for
detecting obstacles in front of it.

 True to its namesake of “Integrated Sensor”, the AX-S1 has many functions as
shown in Fig. 5.18 :

 1. Active NIR sensing via “IR Fire Data” [0–255] (Addresses 26–28 for specifi c
Left-Center-Right sensors). When these values are larger than a threshold value set
at Address 52 (defaulting to 32), a 3-bit (RCL) fl ag would be set at Address 32.

 2. Passive NIR sensing via “Light Data” [0–255] (Addresses 29–31 for specifi c
Left-Center-Right sensors). Similarly as for active mode, when these values are
larger than a threshold value set at Address 53, a 3-bit (RCL) fl ag is set at
Address 33.

 3. Detecting sound claps via parameters at Addresses 35–37.
 4. Generating sound via buzzer (addresses 40 and 41).
 5. Threshold settings for Active and Passive NIR sensing modes (addresses 52 and

53 respectively). When Address 52 is set to 0, the Active NIR sensors switch to a
short-range mode and they can only detect objects within 12 cm of each sensor’s
opening. But if Address 52 is set to a non-zero number, the Active NIR sensors go
to a long-range mode whereas they can detect objects up to 37 cm away from their
openings.

 Fig. 5.17 CM-5 CarBot
used

5 Foundational Concepts

73

 In this section, the goal was to illustrate two control approaches (Reactive
and Behavior-Based) on the same physical CarBot (Fig. 5.7). The Reactive
Control approach yielded a solution represented by the TASK program
“ObstacleDetectionCar.tsk”, while the Behavior-Based Control approach
yielded “SmartAvoider.tsk”.

 As previously discussed in Sect. 5.2.2 , a Reactive Control approach required the
generation of “mutually-exclusive” conditions for the robot to monitor along with
specifi c and appropriate robot action(s) to be triggered when each of those condi-
tions became true. Figure 5.19 was the Condition-Action table that was generated
upon analysis of the “object-detection” capabilities of the AX-S1 (in NIR long-
range detection mode).

 The translation of this Condition-Action table into a TASK program yielded the
code fragment as shown in Fig. 5.20 where the “Object Detected” Flag was used to
represent the eight possible conditions to be monitored. Please note that a Reactive
Control approach usually lead into an IF-ELSE-IF logical structure. The video clip
“Video 5.8” had more detailed explanations of the program design and webcam
views of the robot performance in avoiding obstacles.

 Upon viewing the “Video 5.8”, the reader would notice that the behavior for
dealing with a front obstacle was not very satisfactory as it kept on repeating seem-
ingly un-intelligent actions. A possible remedy was to add a slight left or right turn
to the MovFrd function (this is left to the reader to do as an exercise).

 Fig. 5.18 MANAGER’s display for a CM-5 with AX-S1

5.4 “Smart Avoider” Project

74

 Matarić (2007) presented a compact introduction to the Behavior-Based Control
(BBC) approach (Chap. 16) but the seminal work in this area was from Arkin (1998).
Matarić described BBC as “the use of behaviors as modules for control” and that

 Fig. 5.19 Condition-Action Table for CM-5/AX-S1 CarBot

 Fig. 5.20 IF-ELSE-IF structure corresponding to Condition-Action Table of Fig. 5.19

5 Foundational Concepts

http://dx.doi.org/10.1007/978-3-319-20418-5_16

75

“behaviors achieve and/or maintain particular goals”. When translated to the
SmartAvoider solution, there were three behaviors to emulate:

 1. How to go forward.
 2. How to avoid obstacles that come in from the side.
 3. How to escape from dead-ends.

 Figure 5.21 displayed a code fragment representing the main logic of the
“SmartAvoider.tsk” program whereas the robot would go forward as its default
behavior, but it would also additionally act appropriately to avoid side obstacles and
to escape from cul-de-sacs.

 The reader would surely appreciate the coding differences between Figs. 5.20
and 5.21 (i.e. “IF-ELSE-IF” vs. “parallel IFs” with a default function call Go_
forward). The video clip “Video 5.9” would present more explanations about the
coding of those three behaviors and about additional programming decisions taken
to improve NIR sensors use. This video clip closed by showing the performance of
this “unaltered” SmartAvoider robot as it tried to navigate through a maze, although
it was not originally designed for this purpose. This was to illustrate the concept of
“emerging behavior” (which was not completely successful in this example as the
robot struggled very hard to get out of the cul-de-sac). The interested reader can also
visit YouTube for other performances by the same CM-5 CarBot on a different maze
(http://www.youtube.com/watch?v=tR0dWVppFFM and http://www.youtube.com/
watch?v=iFgVpc5U7Rg).

5.5 “Line Tracer” Project

 This project came from the BIOLOID STEM STANDARD kit (CM-530) and used
two AX-12W for the motorized wheels and the IR Sensor Array (IRSA) to fi nd its
way on a very complex line track (see Fig. 5.22).

 It was well designed mechanically to make it nimble in maneuvers and it also
illustrated the appropriate uses of timed turns and conditional turns.

 Fig. 5.21 Code fragment corresponding to BBC as applied to SmartAvoider

5.5 “Line Tracer” Project

http://www.youtube.com/watch?v=tR0dWVppFFM
http://www.youtube.com/watch?v=iFgVpc5U7Rg
http://www.youtube.com/watch?v=iFgVpc5U7Rg

76

5.5.1 Mechanical Design Features

 Some well thought out mechanical design features needed to be noticed:

 1. The batteries and AX-12Ws (the heaviest components) were laid out such that
the robot’s center of gravity was just slightly ahead of the wheels contact line
(Fig. 5.23). This helped the maneuverability of the Line Tracer.

 2. Figure 5.24 showed the subtle ~1 mm clearance in the back, while the front
weight rested on the two big LEDs of the IRSA. Thus this robot has 4 points of
contact with respect to the travel surface and the front LEDs offered the mini-
mum friction possible.

 As a design exercise, the author adapted the BIOLOID STEM Avoider robot to
also have a line-tracing ability using the IRSA (see Fig. 5.25). However as its CG
was shifted more forward as compared with the Line Tracer’s, this modifi ed Avoider
was found to be not as maneuverable as it tended to drag on the “larger” metallic
hemispheroidal support piece when a turn was executed.

 Fig. 5.23 Line Tracer’s
CG and wheel contact line

 Fig. 5.22 BIOLOID STEM Line Track

5 Foundational Concepts

77

5.5.2 IR Array Sensor (IRSA)

 The IRSA had seven NIR LED sets to detect changes in brightness, i.e. whether it
was on the black track or not. The LED sets were positioned to match the IRSA with
the width of the black track and also for the detection of the circular and diagonal
branches (Fig. 5.26).

 The video fi le “Video 5.10” demonstrated how to set up threshold values for
each NIR LED set to result in a proper setting of the IRSA’s IR Obstacle Detected
fl ag (a 7-bit parameter) which was an important parameter used in programming
the maneuvers needed by the robot to navigate a user-defi ned path within the line
track shown in Fig. 5.26 .

5.5.3 Programming Maneuvers for Line Tracer

 The TSK programs used in this section were adapted from the original TSK codes
provided by ROBOTIS at their web site (http://support.robotis.com/en/product/
bioloid/stemkit/download/bio_stem_standard_apps.htm) for their robot named
“LineFollower”.

 Fig. 5.24 Line Tracer’s points of contact with the travel surface

 Fig. 5.25 Line Tracer’s points of contact with the travel surface

5.5 “Line Tracer” Project

http://support.robotis.com/en/product/bioloid/stemkit/download/bio_stem_standard_apps.htm
http://support.robotis.com/en/product/bioloid/stemkit/download/bio_stem_standard_apps.htm

78

 The “LineTracer1.tsk” program took this robot on a path that had only straight
line runs and 90° turns (left and right). Figure 5.27 showed this path (in gray) and
the corresponding function calls for the fi rst seven maneuvers. The “Video 5.11”
video fi le explained the programming aspects in more details.

 The “LineTracer2.tsk” illustrated how the robot could detect and handle diagonal
and curve “nodes”—see Fig. 5.28 and video fi le “Video 5.12” for more program-
ming explanations.

 ROBOTIS also provided a WMV video fi le of LineTracer2 program in action at
this web site (http://www.robotis.com/video/BIO_STEM_LineFollower.wmv).

 In “LineTracer3.tsk”, two tasks/missions were added to the “LineTracer2” code
using light and audio activations (Fig. 5.29).

 Fig. 5.26 Avoider robot on line track

 Fig. 5.27 Path (gray) taken by robot via LineTracer1.tsk

5 Foundational Concepts

http://www.robotis.com/video/BIO_STEM_LineFollower.wmv

79

5.6 “Remote Controlled CarBot” Project

 This project demonstrated basic concepts in wireless remote control (RC) programming
of a CarBot and applied them into a mixed “human-control” and “autonomous-
behavior” situation. We will also assess the performance of ROBOTIS ZigBee and
BlueTooth communication devices and software tools. More advanced communica-
tion programming topics such as bot-to-bot and multi-bot controls will be demon-
strated in Chap. 8 .

 ROBOTIS supports quite a few communications devices:

• The RC-100 device is the main means to control ROBOTIS’ robots, http://www.
robotis-shop-en.com/?act=shop_en.goods_view&GS=1487&GC=GD080302)
(currently at version B, see Fig. 5.30). Its default communication means is via
NIR which is limited to line of sight, short range and low communication rate.
The RC-100 can also be combined with ZIG-100 to use ZigBee protocols

 Fig. 5.28 New maneuver types for “LineTracer2.tsk”

 Fig. 5.29 Added missions for “LineTracer3.tsk”

5.6 “Remote Controlled CarBot” Project

http://dx.doi.org/10.1007/978-3-319-20418-5_8
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1487&GC=GD080302
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1487&GC=GD080302

80

(any RC-100 version), or with BT-100 (versions A and B) or with BT-210
(version B only) to use BlueTooth protocols (http://support.robotis.com/en/
product/auxdevice/communication_main.htm).

• For wireless communications and controls from a Personal Computer, the user
has two options:

 (a) If the user’s PC has BlueTooth (BT) capabilities, then use BT-110 or BT-210
on the robots, and just access the appropriate COM ports created by the PC’s
BT services upon pairing and connection. Using BT protocols would allow
TASK to perform “program download” during editing time and “remote
control” at run time.

 (b) If the user’s PC has no BT capabilities, then the user needs to use a combination
of USB2DYNAMIXEL-ZIG2SERIAL modules and also ZIG-100 or BT-100
modules for the protocol needed. Option (b) is obviously more expensive
than option (a), but the USB2DYNAMIXEL and ZIG2SERIAL can perform
other functions such as direct access to actuators or changing the baud rates.
BT is potentially faster than ZigBee, but my personal experiences so far have
shown that ZigBee is more reliable than BT. Also the user has to consider
whether “one-to-one” BT connections are enough or that he or she would
need broadcast-type communications in the future.

 Depending on the controller type used, the TASK tool provides up to six
communications related parameters (see Fig. 5.31):

 1. “Remocon Data Received” is a logical fl ag which is set to TRUE when the
controller received a new message, otherwise it is set to FALSE. This parameter
is available on all controllers (CM-5, CM-510, CM-530 and OpenCM-9.04).

 2. “Remocon RXD” is a 16-bit parameter corresponding to the message received
(available on all controllers).

 3. “Remocon TXD” is used to send out a 16-bit message (available on all controllers).
This procedure will be demonstrated in Chap. 8 .

 4. “My ID” corresponds to the ZigBee ID of either the ZIG-100 or ZIG-110 module
used on the robot being programmed. Currently, it is available on CM-5XX con-
trollers only (i.e. Firmware 1.0), even though the author knows that ZigBee
works with the OpenCM-9.04 system (i.e. Firmware 2.0), so maybe it will be
supported in a future release of TASK?

 Fig. 5.30 Different versions of the RC-100

5 Foundational Concepts

http://support.robotis.com/en/product/auxdevice/communication_main.htm
http://support.robotis.com/en/product/auxdevice/communication_main.htm
http://dx.doi.org/10.1007/978-3-319-20418-5_8

81

 5. “Remocon ID” corresponds to the ZigBee ID for the “other” ZIG-100 or ZIG-
110 modules (on the “other” robot or on the RC-100 being used). Currently, it is
implemented on Firmware 1.0 controllers only.

 6. “RC-100 Channel” only pertains to the NIR communication option.

 More information can be found at the ROBOTIS e-Manual web site (http://
support.robotis.com/en/software/roboplus/roboplus_task/programming/parameter/
controller(roboplus_task).htm).

 In this section, only the use of “Remocon Data Received”, “Remocon RXD”
and “Remocon TXD” would be demonstrated. “TestComm.tsk” was made for an
OpenCM-9.04-C using 4 XL-320s (ID = [1, 2, 3, 4]). Figure 5.32 listed a code frag-
ment to illustrate the basic algorithm:

• After initializing the XL-320s to wheel mode and setting their speeds to a value
of 512 (CALL Initialize), the controller went into an endless loop whereas:

 (a) It waited for new data to come in, i.e. stayed at Statement 7 as long as
“Remocon Data Received” was FALSE.

 (b) When this fl ag became TRUE, because new data just came in, it would save
this data in parameter “Data” (Statement 8).

 (c) Then it would go through a procedure to determine the digit that corresponded
to the “thousand” position in “Data” (i.e. parameter “Thousands” in Statement
10). If “Thousands” is positive, it would turn Motor 1 as many times as the
actual value found in “Thousands”. If not, it would fl ash on the LED of Motor
1 once for 0.5 s.

 Fig. 5.31 Communication Parameters available in TASK tool

5.6 “Remote Controlled CarBot” Project

http://support.robotis.com/en/software/roboplus/roboplus_task/programming/parameter/controller(roboplus_task).htm)
http://support.robotis.com/en/software/roboplus/roboplus_task/programming/parameter/controller(roboplus_task).htm)
http://support.robotis.com/en/software/roboplus/roboplus_task/programming/parameter/controller(roboplus_task).htm)

82

 (d) Then it would proceed similarly to determine and handle the digits corre-
sponding to the “hundred” (Motor 2), “ten” (Motor 3) and “unit” (Motor 4)
positions in “Data”.

 (e) At the end of the endless loop, the robot would send back, via “Remocon
TXD”, to the PC the original “Data” that it received (Statement 75). The
robot would also “Print Line” back to the PC this original “Data” (Statement
76). This was to show that the “Remocon TXD” command sent data in a dif-
ferent format, i.e. in a 6 byte packet that the “Program Output Monitor”
window could not unpack and decode properly, thus it could only display
“U” instead of the actual data. On the hand, because the “Print Line” com-
mand sent data in the clear, the “Program Output Monitor” could display the
data properly (see video fi le Video 5.13).

 The video fi le “Video 5.13” also explained more details for this program and
showed how to use the “Zig2Serial Management” feature of the RoboPlus
Manager tool to provide inputs from the PC to this program wirelessly via ZigBee
(ZIG- 100/110A) and BlueTooth (BT-110/210) devices.

 The next three TASK programs were created to illustrate the application of RC
concepts to a CarBot of a type as shown in Fig. 5.17 :

 1. “RC100_Carbot_1.tsk” demonstrated the use of the “&” (i.e. AND) operator to
fi lter out unwanted user button pushes unless they were the Up-Down-Left-Right

 Fig. 5.32 Algorithm to parse out the “Thousand” digit from “Data”

5 Foundational Concepts

83

buttons (Statement 18). It also showed the use of the IF-ELSE-IF structure to
enable the activation of one and only one condition, in other words allowed the
use of only one button on the RC-100 at any one time.

 2. “RC-100_Carbot_2.tsk” showed the use of parallel IFs so as to enable the user
to activate several buttons at the same time, for example “Up” and “Left”
together to perform a left turn with a wider arc instead of a pivot turn when
“Left” is used alone.

 3. “RC-100_Carbot_3.tsk” built on “RC-100_Carbot_2.tsk” and added a new
functionality by allowing the user to change the robot speed “on the fl y” using
the buttons “1-2-3-4”.

 The video fi le “Video 5.14” had more details about these three TSK programs
and showed how they performed at run time.

5.7 Review Questions for Chap. 5

 1. What is the name of the sensor module in the Bioloid robotics system?
 2. What is the name of the servo motor module in the Bioloid robotics system?
 3. How many UART ports does the Bioloid Controller CM-5 provide?
 4. What are the two ways that we can use the AX-12+ module for?
 5. How many symbols are used in a hexadecimal numbering system?
 6. What is the numerical range on decimal values that a 10-bit number can

represent?
 7. What is the UART_1 communication port used for on the CM-5?
 8. What are the name and default speed (how many bits per second) for the com-

munication protocol between the CM-5 and the various servo motor and sensor
modules?

 9. Please name two possible control architectures that can be used in robotics.
 10. Which tool of the RoboPlus Suite to use when programming several servo

motors in concert?
 11. What is the type of communication protocol used between the PC and the typical

CM-5XX controller.
 12. Draw up the diagram for the World-Computer Interactions.
 13. In the TASK tool, what are the two types of commands that can be used to set

the rotation direction and speed for the AX-12 module?
 14. In the TASK tool, when should we use the “CUSTOM” option?
 15. What is the actual time elapsed when the standard timer counter changed by

3 counts?
 16. The Bioloid system uses a Full-Duplex communication protocol. (T-F)
 17. Inside the TASK tool, which parameter should you set in order to change the

range mode of the AX-S1, from long range to short range, and vice-versa?
 18. Which parameter should we set in the Task tool to make the AX-S1 NIR

sensors go into the Short Range detection mode? Parameter name and correct
value to set?

5.7 Review Questions for Chap. 5

http://dx.doi.org/10.1007/978-3-319-20418-5_5

84

 19. What is the minimum time period between sound claps for the AX-S1 to discern
them as distinct sound claps?

 20. How long does it take before a sound count detected in the AX-S1 becomes
accessible to a program running on the CM-5?

 21. The NIR sensors on the AX-S1 modules can be set to be used in a passive
mode. (T-F)

 22. Which parameter should we set in the Task tool to make the AX-12+ modules
go into the Wheel Mode? i.e. Address number and correct value to set?

 23. What is the “duplex” type of the communication protocol used by the Bioloid
system to communicate between different devices?

 24. To control the accuracy of the Goal Position on an AX-12, we need to reduce
its SLOPE value to the minimum value of 1. (T-F)

 25. What is the purpose of an IF-ELSE-IF structure?
 26. What is the purpose of a parallel IFs structure?
 27. Which communication protocol does the Virtual RC-100 Controller use to

communicate with the CM-5XX controller?
 28. Describe procedure to ignore all inputs from the RC-100 except for buttons “2”

and “3”.

5.8 Review Exercises for Chap. 5

 1. To practice setting an AX-12 into Continuous Turn mode and using basic timed
operations for it with the LOAD or COMPUTE commands, please use the enclosed
programs “AX12ContinuousTurn_1.tsk” and “AX12ContinuousTurn_2.tsk”.

 2. To practice reading from the DMS and NIR sensors, please use the enclosed
program “DMS-NIR_sensing.tsk”.

 3. To practice using the AX-S1 as a light sensor, please use the enclosed program
“AX-S1-LightSensing.tsk”.

 4. To practice using the AX-S1 as a NIR sensor in a direct mode, please use the
enclosed program “AX-S1-IR-SensingDirect.tsk”. This program also shows
how to get the AX-S1 into its long-range and short-range mode.

 5. To practice using the AX-S1 as a NIR sensor using its Obstacle Detected Flag
and its related Threshold setting, please use the enclosed program “AX-S1-IR-
SensingFlag.tsk”. Please modify this program to make it work similarly but in
its Light Sensing mode.

 6. The enclosed program “CM5Music.tsk” demonstrates how to get the AX-S1 to
play music using a CM-5. Please modify this program to make it work on a
CM-530 controller.

 7. Expand enclosed “Sequence Commander” code so that the bot can handle up to
eight maneuvers in a given sequence.

 8. Modify “Sequence Commander” code so that each left and right turn corresponds
to a 90° turn. Does your solution work for all running surfaces? And at all battery
levels? i.e. these “timed” maneuvers have their limitations and more fl exible
“sensor-based” approaches are used in the “Line Tracer” project in Sect. 5.5 .

5 Foundational Concepts

http://dx.doi.org/10.1007/978-3-319-20418-5_5

85

 9. Please start from the sample program “RC100_Carbot_2.tsk” and implement
the following features:

 (a) If no button is pushed on the RC-100, the carbot should stop.
 (b) Buttons U-D-L-R are still used in the usual manner.
 (c) Buttons 1-2-3-4 will be used to adjust the nominal speed level of the carbot:

• Button 1 will set the speed to 128 (initial default speed).
• Button 2 will set the speed to 256.
• Button 3 will set the speed to 512.
• Button 4 will set the speed to 1023.
• The user should have to push any of the buttons (1 through 4) only ONCE

to set the “new” speed (i.e. the user SHOULD NOT have to keep pushing
down on the “speed” buttons to affect a speed change).

• Please make sure that the user can change the speed setting (1, 2, 3, 4)
while performing a car maneuver (U,D,L,R) AT THE SAME TIME.

• Remember that you can use the Virtual RC-100 (i.e. using Mouse click or
keyboard from inside the Task Tool—the View Print of Program sub-
window to be exact) to test out your solution before using the Physical
RC-100.

 10. Practice in combining Remote Control and Autonomous Behavior program-
ming in one application:

• Simulation of a tail-gating situation between two carbots (both under
remote control by the RC-100’s), when the front carbot suddenly stops
(an equivalent static frontal obstacle could also be used).

• Rear carbot using its NIR sensors will trigger an autonomous response
(i.e. ignoring commands from RC-100) to help it avoid colliding into
front car).

• The Spring 2013 solutions from the students at National Taiwan
University can be viewed at this link https://www.youtube.com/
playlist?list=PLVHBjRDK0kAJA_GC3UMreuKVeWnuASw7P&featur
e=view_all .

 References

 Arkin RC (1998) Behavior-based robotics. The MIT Press, Cambridge
 Campion G, Chung W (2008) Wheeled robots. In: Siciliano B, Khatib O (eds) Springer handbook

of robotics. Springer, Heidelberg, pp 391–410
 Cook G (2011) Mobile robots. Wiley, Hoboken
 Dudek G, Jenkin M (2010) Computational principles of mobile robotics. Cambridge University

Press, Cambridge
 Matarić MJ (2007) The robotics primer. The MIT Press, Cambridge
 Nourbakhsh IR (2013) Robot futures. The MIT Press, Cambridge
 Winfi eld A (2012) Robotics. Oxford University Press, Oxford

References

https://www.youtube.com/playlist?list=PLVHBjRDK0kAJA_GC3UMreuKVeWnuASw7P&feature=view_all
https://www.youtube.com/playlist?list=PLVHBjRDK0kAJA_GC3UMreuKVeWnuASw7P&feature=view_all
https://www.youtube.com/playlist?list=PLVHBjRDK0kAJA_GC3UMreuKVeWnuASw7P&feature=view_all

87© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_6

 Chapter 6
 Actuator Position Control Basics

 In Chap. 3 , the hardware characteristics for representative actuators such as the
AX-12 and MX-28 were described and the key information was on the rotational
encoders that were used for the AX-12/18 (a variable potentiometer, restricted to a
300° range) and for the MX-28/64 (a magnetic fi eld detector allowing a full 360°
range). In this chapter, the programming aspects for controlling such actuators via
the TASK and MOTION EDITOR (V.1) tools are described. The capabilities of the
newer R+MOTION (V.2.1) tool will be discussed in Chap. 11 using the DARWIN-
MINI and the XL-320.

 This chapter’s main topics are listed below:

• How does an actuator reach and maintain a given position via TASK?
• Concept of Motion Page in MOTION EDITOR (V.1) and application to a biped

robot.
• Walking robots—Forms and Functions: BUGFIGHTER, HEXAPOD, DROID,

GERWALK, BIPED and HUMANOID.

 For more advanced topics on legged and humanoid robots, the reader is referred
to Kajita and Espiau (2008), Kemp et al. (2008), Chevallereau et al. (2009), Abdel-
Malek and Arora (2013) and Kajita et al. (2014).

6.1 AX-12/18 Position Control with TASK

 In Position Control mode, the AX-12/18 was restricted to a range of 300°, with 0°
(i.e. Goal Position = 0) located in the lower right corner of the actuator front view
(see Fig. 6.1), and 300° (i.e. Goal Position = 1023 , i.e. a 10 bit parameter) located in
its lower left corner (Fig. 6.1).

 Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-
319- 20418-5_6) contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-3-319-20418-5_3
http://dx.doi.org/10.1007/978-3-319-20418-5_11
http://dx.doi.org/10.1007/978-3-319-20418-5_6
http://dx.doi.org/10.1007/978-3-319-20418-5_6

88

 First, ones must take care in setting all actuators to the Position Control mode
before programming them in TASK for this mode. This action could be performed
inside the RoboPlus Manager tool by setting the “CCW Angle Limit” parameter to
a value of 1023 or by using a LOAD command inside a TSK program with a
CUSTOM WRITE of a WORD-sized value of 1023 into Address 8 of appropriate
Dynamixel IDs (preferred by author, see Fig. 6.2).

 Fig. 6.1 Front and back views of AX-12

 Fig. 6.2 TASK function to initialize AX-12s to Position Control mode

6 Actuator Position Control Basics

89

 The Control Table for all operational parameters for the AX-12 (as an example)
could be accessed at this link http://support.robotis.com/en/product/dynamixel/
ax_series/dxl_ax_actuator.htm . Please note that most parameters had Read/Write
properties, but some were set to Read-Only. The user also should be aware that the
 name for a particular parameter as shown in this Control Table may not match with
the name for the same parameter as shown in the TASK program pop-up window,
so it is highly recommended for users to rely on the address of such parameter
instead. For example, Address 34 in the Control Table was named “Torque Limit”
(allowable range [0–1023], but the same parameter in TASK tool was named “Goal
Torque” (see Fig. 6.3). This book would only use the parameter names as pro-
vided in the Control Table web links (hopefully by the time this book goes to
print , the typos inside the TASK tool would have been corrected).

 Figure 6.3 also listed often-used parameters:

 1. “Goal Position” [0–1023] stood for the location where the user wanted the actuator
to go next.

 2. The CW/CCW “Margin” and “Slope” parameters worked in concert to provide
the “mechanical behavior” of the actuator when it traveled from a “Present
Position” to the already set “Goal Position” (more details later in this chapter).

 3. “Torque Limit” [0–1023] denoted the maximum load (electrical current) allowed
on the actuator. In practical terms, when the “Torque Limit” was set to 0 for any
actuator, the user could rotate such actuator by hand (as no electrical current was

 Fig. 6.3 Example of a parameter naming error in TASK tool

6.1 AX-12/18 Position Control with TASK

http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm
http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm

90

allowed into the motor, thus no resisting torque to maintain a given “Goal
Position”). This effect would be demonstrated in Chap. 7 for the implementation
of a Bilateral Control of 2 GERWALKS robots. “Torque Limit” worked in
concert with “Moving Velocity” to provide the actual (fi nal) rotational speed of
the actuator.

 4. “Moving Velocity” should be considered as a relative setting [0–1023], whereas 0
meant to stop the actuator, and 1023 meant the maximum speed allowable by the
current setting of “Torque Limit”. For example, a setting combination of “Torque
Limit” (=512) and “Moving Velocity” (=1023) would only result in half the rota-
tional speed that the actuator was capable of doing physically. Users also would
not need to set the rotation directions—CW or CCW when actuators were in
Position Control mode (in contrast to when they were in wheel mode for Chap. 5).

 For actuators, there was another important parameter called “Punch” that users
could adjust by using a CUSTOM WRITE of a WORD-sized value (default = 32)
into Address 48 of appropriate Dynamixel IDs. It corresponded to the minimum
electrical current used to drive the motor from a full-stop, i.e. to overcome static
friction and inertia (parameter E in Fig. 6.5).

 Another issue to be aware of when using TASK was that just because a parameter
showed up in the pop-up menu did not mean that it really existed and was opera-
tional for the actuator being used for the user’s particular robot. In Fig. 6.4 , the
“Goal Torque” parameter (address 71) was really operational for the MX-64 actua-
tor only and did not exist at all on the Control Table of the MX-28, please see links
to both Control Tables below:

• http://support.robotis.com/en/product/dynamixel/mx_series/mx-28.htm
• http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm

 Fig. 6.4 “Goal Torque” (address 71) operational only for MX-64 and not for MX-28

6 Actuator Position Control Basics

http://dx.doi.org/10.1007/978-3-319-20418-5_7
http://dx.doi.org/10.1007/978-3-319-20418-5_5
http://support.robotis.com/en/product/dynamixel/mx_series/mx-28.htm
http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm

91

 Figure 6.5 is key to the understanding of how a typical AX actuator got controlled
by its own embedded controller (Atmel AVR–8 kB–16 MHz) to go from a Present
Position (let’s say 200) to a Goal Position of 512. Furthermore let’s assume that
Parameter D (CCW Slope) is set to 32, Parameter C (CCW Margin) set to 2, Torque
Limit (TL) set to 1023, Moving Velocity (MV) set to 1023, and E (Punch) set to 32:

 1. As soon as this LOAD command was issued to
Actuator[1], its embedded controller would move the horn CCW towards the
Goal Position of 512 at the highest output torque/speed possible (because
TL = 1023 and MV = 1023) while monitoring its “Present Position” (PP).

 2. When its PP reached the value of 478 (=512 − 2 − 32), the controller would start
to reduce its output torque “linearly” so that it could reach an output torque of 32
(=E) by the time the actuator’s PP reached its value of 510 (=512 − 2).

 3. When the PP reached 510, the controller would cut off power to the motor to let
it “coast” towards 512. If from inertial effects, the PP overshot to a value higher
than 513 (=512 + 1), the controller would generate a CW output torque to bring
the horn back towards 512. Please note that the user did not have to set the CW/
CCW Margin and Slope values in a symmetrical manner as the plot in Fig. 6.5
would have suggested. In the previous discussion, B was set to 1, and A set to 16,
so the constraints could be set to be tighter for the CW approach to 512 than for
the CCW approach to 512, or vice-versa, as needed.

 4. This cycle of monitoring the PP, comparing it to the GP and turning the motor CW
or CCW as needed, was repeated every 7.8 ms by the embedded controller. This
hardware/software refresh cycle is fundamental to the working of all ROBOTIS
actuators, and Chap. 11 would show how this timing was used to generate motion
frames inside the R+Motion tool (V.2) to enable its synchronous mode.

 5. Lastly, this mode of controlling the AX actuators could be classifi ed as Proportional
Control. The control scheme for other actuators such as the MX-28 or the XL-320
would be of the Proportional-Integral-Derivative (PID) type (see Sect. 6.2).

 The video fi le “Video 6.1 ” demonstrated more details for these characteristics
using the following example TASK programs on a CM-510:

 1. AX-12-Position.tsk
 2. AX-12-MoveNoHold.tsk

 Fig. 6.5 Output Torque vs. Actuator Position far and near a Goal Position

6.1 AX-12/18 Position Control with TASK

http://dx.doi.org/10.1007/978-3-319-20418-5_11

92

 3. AX-12-MoveMargin.tsk
 4. AX-12-MoveSmooth.tsk
 5. AX-12MonitorPositionSpeed.tsk

6.2 Using Motion Editor (V.1)

 Currently, ROBOTIS is supporting two motion-editing tools, one bundled with
the RoboPlus suite (Motion V.1) and the other, self-standing, called R+Motion
(currently at V.2.1.1). Motion V.1 had been around since 2009 and is currently at
v1.0.29.0. Motion V.1 still supports some CM-5 based robots (BIOLOID
COMPREHENSIVE kit), so it may still be around for a few years but its days are
numbered. R+Motion V.2 only supports the BIOLOID PREMIUM kit and later kits,
such as STEM, SMART and ROBOTIS-MINI and this tool will be discussed in
more details in Chap. 11 .

 As pointed out in Sect. 4.4 , conceptually these Motion tools were based on
cartoons (or frames) animation which was essentially the re-playing of a sequence
of poses of the considered character (robot) within a time line, with slight variations
in each pose to create the illusion (perception) of motion. The key idea is to use
MOTION tools to create motion data sets (saved as *.MTN fi les) while using the
TASK tool to create the logical fl ow among these motion data sets (saved as *.TSK
fi les). In other words, the two tools, MOTION and TASK, have to work together in
order to create robot moves that are both mechanically realizable and logically
coherent.

 The MOTION V.1 tool is quite a sophisticated tool and the user can purchase a
copy of the User’s Guide at http://www.robotis-shop-en.com/?act=shop_en.goods_
view&GS=1486&GC=GD080400 . This manual is highly recommended as it pro-
vides extensive procedures on how to use specifi c features of the tool which won’t
be repeated in this book. Instead, this book will strive to provide an integrative
description of key concepts and practical demonstrations of selected procedures via
video recordings.

6.2.1 Characteristics of a Motion Page in Motion V.1

 Motion V.1 was designed to operate with an actual robot connected via a serial
communication port in real-time to the PC running this tool. Figure 6.6 showed the
complete window for Motion V.1.0.29.0 when started up on a PC. It contained two
main panels:

 1. The right panel was designed to do pose editing, i.e. to interact directly with the
robot by turning selected actuators on and off, and thus enabling the setting of
the robot into various “poses” which were then saved as sequential “steps” on
the left panel.

6 Actuator Position Control Basics

http://dx.doi.org/10.1007/978-3-319-20418-5_11
http://dx.doi.org/10.1007/978-3-319-20418-5_4
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400

93

 2. The left panel was designed to allow the grouping of these “sequential steps”
into “motion pages” which could be left self-standing or further linked together
for more extensive robot moves.

 Conceptually, the user would need to consider the Motion Pages, located on the
left edge of the Left Panel, as “macro” lines of code, and as such, they could be
copied and pasted somewhere else for further editing. They could be renamed as
needed, or named if a blank page was created.

 Each Motion Page could have up to seven steps (i.e. robot poses) labeled from
Step 0 to Step 6. A Pose was essentially a data set of “n” actuator positions [0–1023]
where “n” was the number of actuators used for generating robot moves (thus not all
actuators making up the robot needed to be listed here). A Step was then a Pose
along with a play Time period (0.072–2.04 s) allocated to the robot for it to reach
this Pose, from whatever its actuator positions were at the start of this Step. A Pause
time (0.000–2.04 s) was optional and specifi es the time period for the controller to
wait out (doing nothing) before it can start on the next Step.

 Each Motion Page could be connected to another Motion Page by specifying that
Page Number in the “ Next ” column (see Left Panel), i.e. after all the steps in the
current Motion Page were executed, the controller would play the “Next” Page
Number as specifi ed in its own “Next” cell value. A “0” in this “Next” cell meant
for the controller to stay at the same Motion Page when the last Step of the current

 Fig. 6.6 Motion V. 1 tool (full view)

6.2 Using Motion Editor (V.1)

94

Motion Page was fi nished. For example, as shown in Fig. 6.6 , let’s trace the route
that the robot would take if Motion Page 4 (Fast Forward) was initiated. After Page
4 was done, it would go to Page 5, then Page 6, then Page 3, then Page 7, then back
to Page 5, i.e. the robot would “Fast Forward” continuously until its power is turned
off or the controller gets reset.

 It was also possible that a command to stop a Motion Page needed to be executed
while the robot was still going through a particular Motion Page, and as a conse-
quence of this command, the robot could be put into an unstable situation/pose.
To alleviate this problem, the user could specify a defi ned Motion Page as an “ Exit ”
Page where the robot could go to, after an emergency stop command had been
issued. For example, if the robot was doing Page 5 when it was ordered to stop, it
would “exit” to Page 42 which would lead to Page 43 for a fi nal stop, setting the
robot into a ready position (Fig. 6.7).

 Found in the middle of the Left Panel, the “Page Parameters” section (Fig. 6.8)
could be used to specify four parameters for each Motion Page, independently of
each other:

 Fig. 6.7 Exit Page 42,
eventually ending at Page 43

 Fig. 6.8 Page Parameters
that affect the fi nal
execution of Motion Pages

6 Actuator Position Control Basics

95

• “Repeat Time” and “Speed Rate” were rather self-explanatory parameters (see the
formula used in the Real Play Time box).

• The “Control Inertial Force” (CIF) parameter (0–127 range, default value = 32)
represented the level of acceleration and deceleration used to move the robot
 from Pose to Pose . It was inversely proportional to the actual acceleration/decel-
eration level. Thus a small CIF translated to higher speed increases from the
starting Pose and also higher speed decreases when near the ending Pose (like for
a “punch”), so outwardly the robot would move fast but might shake and get
unstable. Conversely, a large CIF would be equivalent to a “caress” then.

• The “Joint Softness” (JS) parameter (1–7 range, default value is 5) was related to
the compliance (Margin and Slope) settings for the actuator, so it applied only
when near the starting and ending Poses of a Motion Step. When JS was large,
resulting movements would be smooth but would not be suitable for legs that
needed much support. So the robot could collapse at the Ready Pose already.
A small JS would provide steadiness of motion but resulting movements might
look too rigid.

 Motion V.1 also offered a Calibration tool which could be used to defi ne actuator
 offsets that were particular to a given robot, as no robot could really be built exactly
(in a mechanical sense) like another of the same model. However, we would expect
them to be able to use the same Motion fi les and Task programs. This tool will be
demonstrated in Sect. 6.2.2 .

6.2.2 Application to a GERWALK Robot

 To illustrate the main concepts described in Sect. 6.2.1 , a CM-510 GERWALK
robot (Fig. 6.9) was used to create the following videos:

• “Video 6.2 ” demonstrated the concept of a Calibration Pose and showed how to
use the Calibration sub-tool and to do basic motion editing.

• “Video 6.3 ” used the sample Motion and Task fi les provided by ROBOTIS to
illustrate the planning of motion design inside MOTION V.1 and the integration
of Motion Pages with the logic fl ow design provided inside TASK.

6.3 Form and Function of Walking Robots

 In this section, the goal was to illustrate how Form infl uences Function in the design
and operation of walking robots, going from a design with only 2 actuators
(BugFighter) to a Humanoid design with 18 actuators.

 The author could be wrong on this issue, but so far the author could not fi nd any
legged robot that could move around on only one actuator. Even the Planar One-Leg
Hopper from MIT (c. 1982) needed two actuators (http://www.ai.mit.edu/projects/
leglab/robots/2D_hopper/2D_hopper.html).

6.3 Form and Function of Walking Robots

http://www.ai.mit.edu/projects/leglab/robots/2D_hopper/2D_hopper.html
http://www.ai.mit.edu/projects/leglab/robots/2D_hopper/2D_hopper.html

96

 The BIOLOID STEM STANDARD kit offered a 2-servo BugFighter robot using
two AX-12W in wheel mode. The walking motion of its six legs was based on the
conversion of the rotary motion of the AX-12W into a back-and-forth motion for its
legs by using a dual set of 4-bar linkages for each side (Fig. 6.10). Please note that

 Fig. 6.10 Dual set of 4-bar linkages used for BugFighter

 Fig. 6.9 A CM-510
GERWALK Robot in
Calibration Pose

6 Actuator Position Control Basics

97

the 4-bar linkages worked in a vertical plane for this robot. Thanks to this mechanical
conversion, the control scheme for this robot was the same for the various carbots
used in Chap. 5 . ROBOTIS has a video of this robot in action at http://www.robotis.
com/video/BIO_STEM_BugFighter.wmv .

 In the BIOLOID STEM EXPANSION kit, the Hexapod robot used three AX-12A
in Position Control mode to achieve its walking ability: one actuator to shift its
weight left and right using its middle leg in a seesaw motion (Fig. 6.11), and
one actuator on each side to provide the forward-backward and steering motions.
The hexapod also used a 4-bar linkage but as a parallel linkage between its front and
back leg, and it worked in a horizontal plane instead (Fig. 6.12).

 Fig. 6.11 ROBOTIS Hexapod middle leg (third actuator) is used to shift its weight left and right

 Fig. 6.12 ROBOTIS Hexapod front actuator’s activation of a parallel 4-bar linkage to obtain its
walking motion

6.3 Form and Function of Walking Robots

http://dx.doi.org/10.1007/978-3-319-20418-5_5
http://www.robotis.com/video/BIO_STEM_BugFighter.wmv
http://www.robotis.com/video/BIO_STEM_BugFighter.wmv

98

 ROBOTIS has a video of its walking motion at http://www.robotis.com/video/
BIOLOID_STEM_14.Hexapod.wmv .

 TWITCH was also another 3-actuator Hexapod using a different design for its
legs (http://forums.trossenrobotics.com/robots.php?project_id=7#ad-image-0).

 There are great web resources for mechanical linkage design such as:

• http://www.mekanizmalar.com/ .
• Kinematic Models for Design Digital Library from Cornell University (http://

kmoddl.library.cornell.edu/).

 Figure 6.13 showed a CM-510 version of the GERWALK using seven actuators
and having a walking gait closer to the human solution. It swung its upper body left
and right in order to shift its center of gravity towards the supporting leg before
making a step with the other leg. As it had no hip joint, it had to use a “moon-walk”
like maneuver to generate enough friction forces from the ground surface to allow
it to turn sideways (see video at http://www.robotis.com/video/BIO_PRM_
GerWalk.wmv).

 Figure 6.14 showed a CM-510 version of the BIPED robot using eight actua-
tors and having a walking gait even closer to the human solution. It did have ankle
joints but it still had no hip joint, so it had to rotate its ankle and to use another
“moon- walk” like solution to generate enough friction forces from the ground
surface to turn sideways (see video at http://www.robotis.com/video/BIO_PRM_
BipedWalkingRobot.wmv).

 Fig. 6.13 ROBOTIS
PREMIUM GERWALK

6 Actuator Position Control Basics

http://www.robotis.com/video/BIOLOID_STEM_14.Hexapod.wmv
http://www.robotis.com/video/BIOLOID_STEM_14.Hexapod.wmv
http://forums.trossenrobotics.com/robots.php?project_id=7#ad-image-0
http://www.mekanizmalar.com/
http://kmoddl.library.cornell.edu/
http://kmoddl.library.cornell.edu/
http://www.robotis.com/video/BIO_PRM_GerWalk.wmv
http://www.robotis.com/video/BIO_PRM_GerWalk.wmv
http://www.robotis.com/video/BIO_PRM_BipedWalkingRobot.wmv
http://www.robotis.com/video/BIO_PRM_BipedWalkingRobot.wmv

99

 Figure 6.15 showed a CM-530 version of a Humanoid-A robot using 12 actuators
for its lower body, i.e. it had hip and ankle joints and thus had a walking gait closer
to a human gait (see “Video 6.4 ”).

 The reader is also recommended to read and practice the materials found in
Section 4-4 (Advanced Learning) of the Software Programming User’s Guide that

 Fig. 6.14 ROBOTIS
BIPED

 Fig. 6.15 ROBOTIS HUMANOID-A (lower body)

6.3 Form and Function of Walking Robots

100

came with the BIOLOID PREMIUM kit. This section has some advanced instructional
materials for humanoid gait generation using the Mirror Exchange function. If the
reader had bought the PREMIUM kit before 2013, it would not contain this manual
and it has to be bought separately at present (http://www.robotis-shop-en.
com/?act=shop_en.goods_view&GS=1486&GC=GD080400).

 Please visit the web site http://thai.engr.uga.edu/RobotVids for video clips of
other legged robot projects from students.

6.4 Review Questions for Chap. 6

 1. A MOTION fi le can be considered as DATA, while a TASK fi le can be considered
as LOGIC. (T-F)

 2. The Play Motion fl ag is set to 0 when a given Motion page is being executed. (T-F)
 3. To control the accuracy of the Goal Position on an AX-12, we need to reduce its

SLOPE value to the minimum value of 1. (T-F)
 4. What does parameter PUNCH correspond to in functional terms for the motor

component of a Dynamixel actuator?
 5. What does parameter PRESENT LOAD correspond to in functional terms for

the motor component of a Dynamixel actuator?
 6. What does parameter SLOPE correspond to in functional terms for a Dynamixel

actuator?
 7. What are the ranges of possible values for the “Torque Limit” and “Present

Load”?
 8. What is the physical unit that parameter SLOPE can be mapped to?
 9. What is the physical unit that parameter MARGIN can be mapped to?
 10. How does one program the AX-12 to go to its “position control” mode from

inside a TASK program?
 11. Please match typical servo parameters to their correct addresses:

 • Present Load Address 30
 • Present Position Address 34
 • Goal Position Address 36
 • Torque Limit (Goal Torque) Address 40

 12. What is the allowable range of angular positions in degrees for the AX-12 when
it is set into Position Control mode?

 13. What is the allowable range of angular positions in degrees for the XL-320
when it is set into Position Control mode?

 14. When using the Motion Editor V.1 tool, what is the maximum number of
steps/poses that the user can create per Motion Page, for each type of CM-5XX
controller?

 15. How many Motion Pages are allowed for each type of CM-5XX controller?
 16. Describe in your own terms what is a POSE?
 17. Describe in your own terms what is a STEP?

6 Actuator Position Control Basics

http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1486&GC=GD080400
http://thai.engr.uga.edu/RobotVids
http://dx.doi.org/10.1007/978-3-319-20418-5_6

101

 18. Describe in your own terms what is a MOTION PAGE?
 19. How can a robot fl ow from one MOTION PAGE to another MOTION PAGE?
 20. What is the EXIT PAGE used for?
 21. To control the acceleration/deceleration patterns for a robot to go from Pose to

Pose, we need to adjust the “Joint Softness” parameter of the servos involved in
the robot’s moves. (T-F)

 22. What is the effect of a small CONTROL INERTIAL FORCE setting?
 23. What is the effect of a large JOINT SOFTNESS setting?
 24. When using the Motion Editor V.1, for each specifi c step within a Motion Page,

there is a value that ones can set for the “PAUSE” fi eld, does that “PAUSE”
happen “before” or “after” the execution of that specifi c step?

 25. Describe the procedure to calibrate a multi-link robot using a specially designed
pose for this task.

 26. What is the common linkage system used to convert a rotational motion into a
back-and-forth motion?

6.5 Review Exercises for Chap. 6

 1. The enclosed program “AX-12ChangingModes.tsk” demonstrates how to change
an AX-12 to its Continuous Turn mode (set 0 to Address 8) and then to its
Position Control mode (set 1023 to Address 8).

 2. The enclosed program “AX-12MonitorPositionSpeed.tsk” is a basic data acquisi-
tion program that prints data onto the TASK tool’s Output Window that the user
can cut and paste into a data plotting application such as MS Excel.

 3. The enclosed programs “PRM_GerwalkDemo.mtn” and “PRM_GerwalkDemo.
tsk” work together to make a PREMIUM GERWALK (see Fig. 6.13) walk and
avoid obstacles autonomously. Please modify the TASK code so that the user can
control its movement via the RC-100, while keeping intact its obstacle avoiding
functions.

 4. Create a new Motion fi le (*.MTN) that would allow a GERWALK to kick a ten-
nis ball. See enclosed video clip “Video 6.5 ” for several student solutions to a
soccer penalty-kick simulation.

 5. Create a new Motion fi le (*.MTN) that would allow a GERWALK or a BIPED
to go up and down stairs steps:

• Practice in generating appropriate motion pages combining CG shifting
forward and up, backward and down as well as sideways recovery.

• Alex Fouraker’s 2008 GERWALK solutions up and down six stair steps (see
enclosed video fi les “Video 6.6 ” and “Video 6.7 ”—this one used the AX-S1
to check for a step existence fi rst before stepping up).

• Matthew Paulishen’s 2011 solution for a BiPed going up six stair steps (see
enclosed video fi le “Video 6.8 ”).

• Also enclosed is a sample MTN fi le “BipedUpStairs.mtn” that the user could
start from.

6.5 Review Exercises for Chap. 6

http://dx.doi.org/10.1007/978-3-319-20418-5_6

102

 6. Compare the servo confi gurations between the BIOLOID HUMANOID type A
and the ROBOTIS-MINI.

 7. Contrast similarities and differences about how the three actuators were used
between the two designs: BIOLOID HEXAPOD and TWITCH?

 References

 Abdel-Malek KA, Arora JS (2013) Human motion simulation. Academic, Waltham
 Chevallereau C et al (2009) Bipedal robots. Wiley, Hoboken
 Kajita S, Espiau B (2008) Legged robots. In: Siciliano B, Khatib O (eds) Springer handbook of

robotics. Springer, Heidelberg, pp 361–389
 Kajita S et al (2014) Introduction to humanoid robotics. Springer, Heidelberg
 Kemp CC et al (2008) Humanoids. In: Siciliano B, Khatib O (eds) Springer handbook of robotics.

Springer, Heidelberg, pp 1307–1333

6 Actuator Position Control Basics

103© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_7

 Chapter 7
 Advanced Position Control

 Chapter 6 showed the “forward-control” features of the ROBOTIS RoboPlus V.1
software suite such as “Goal Position”, “Torque Limit” and “Motion Page”. In this
Chap. 7 , “Torque Limit” would be revisited but in a more “dynamic” manner allow-
ing a limited feedback control capability. Additionally new control parameters such
as “Present Load” and “Joint Offset” would be described and their usage demon-
strated using an AX-12 based gripper and a special Function named “CALLBACK”
from inside the TASK tool.

 This chapter’s main topics are listed below:

• Concepts of “Torque Limit”, “Present Load”, and “Joint Offset”.
• Interactions between various actuator parameters: Goal Position, Slopes,

Margins, Punch, Present Position, Present Load, Torque Limit and Join Offset.
• Use of “CALLBACK” function inside the Task tool.
• Illustrations of above concepts to a “load-sensing” gripper.

 For more advanced robotic control topics, the reader is referred to Jazar (2010),
Niku (2011) and Burdet et al. (2013).

7.1 “Torque” Effects

 The goal of this section was to illustrate the interactions between the many parameters
that infl uenced the process of moving a typical actuator (AX-12) from one Goal
Position to another using a GERWALK as the test robot.

 Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-
319- 20418-5_7) contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-3-319-20418-5_6
http://dx.doi.org/10.1007/978-3-319-20418-5_7
http://dx.doi.org/10.1007/978-3-319-20418-5_7
http://dx.doi.org/10.1007/978-3-319-20418-5_7

104

7.1.1 Torque Limit, Present Position and Present Load

 Figure 7.1 was essential to the understanding of the interplay between the three
parameters “Torque Limit” (Address 34, also labeled as Goal Torque in TASK),
“Present Position” (Address 36) and “Present Load” (Address 40):

 1. As previously described in Sect. 6.1 , “Torque Limit” [0–1023] denoted the
 maximum load (electrical current) allowed on the actuator. When it was set high
(512–1023), the user would need quite substantial physical effort to manually
move the actuator from its current Goal Position. When it was set low (1–10), the
user would be able to manually shift the actuator away from its Goal Position,
and the actuator would not be able to get back to its Goal Position at all (this
feature would be used later in Chap. 8 to illustrate the concept of “Bilateral
Control” between two GERWALK robots).

 2. Despite its given name of “Present Load”, this parameter should not be understood
as the true external load on an actuator. More accurately, it would correspond to
the “present electrical current” that was supplied to the motor by the actuator’s
circuitry as long as the controller realized that the actuator’s Present Position was
not where it was supposed to be (i.e. Goal Position ± Margins B and C).

 The video fi le “Video 7.1 ” and the TASK fi le “Gerwalk_TorqueEffects.tsk” pro-
vided a more thorough demonstration for these characteristics by monitoring the
Present Position and Present Load during a manually forced resetting of the Goal
Position(s) of the GERWALK actuators.

7.1.2 Adjusting Torque Limit Dynamically

 In this subsection, the TASK fi les “Gerwalk_LoadAdjust.tsk” and “Gerwalk_
LoadAdjustFast.tsk” were used to demonstrate the external behavior of actuators
4 and 5 of a GERWALK robot (Fig. 7.2) when they were manually forced out of
their given Goal Position of 512. This would be the fi rst step towards the

 Fig. 7.1 Concept of present load

7 Advanced Position Control

http://dx.doi.org/10.1007/978-3-319-20418-5_6
http://dx.doi.org/10.1007/978-3-319-20418-5_8

105

understanding of a feedback control approach for actuators such as the AX-12 (see
Sect. 7.3 for a load-sensing application).

 “Gerwalk_LoadAdjust.tsk” fi rst initialized all seven AX-12s to a GOAL
POSITION of 512 with a TORQUE LIMIT of 1023 during the fi rst 2 s of its run,
then it set the TORQUE LIMIT to 1 for Actuators 4 and 5 (to enable the user to
manually move these two actuators out of Position 512 at his or her discretion).
Next, it got into an endless loop where it printed out the following parameters:
actuator’s ID, Torque Limit (Address 34), Present Position (Address 36) and Present
Load (Address 40). Also within this endless loop, if the controller found that the
Present Position of either actuator (4 or 5) was outside of a High-Low boundary
around the initial position, it would increase the corresponding Torque Limit by a
constant value saved in a parameter called TorqueStep. The net physical result was
that one would see the actuators 4 and 5 go back to Position 512 at a constant rate,
once the user “disturbed” their initial positions (see “Video 7.2 ”).

 “Gerwalk_LoadAdjustFast.tsk” was designed to do the same job as “Gerwalk_
LoadAdjust.tsk”, except that its TorqueStep value was proportional to the Gap
between the actuator’s Present Position and either High or Low boundary values set
around the Goal Position (see “Video 7.3 ”).

 Fig. 7.2 Gerwalk robot
used for adjusting torque
limit dynamically

7.1 “Torque” Effects

106

7.2 “Joint Offset” Effects

 In Sect. 6.3.2 , the video fi le “Video 6.2 ” showed the reader how to adjust the
“Offset” values of individual actuators so as to correspond to a given Calibration
Pose from inside the Motion Editor tool. In this Sect. 7.2 , this JOINT OFFSET
parameter would be re-visited as an advanced programming technique from inside
the TASK tool and it would be applied to a single-actuator gripper (Fig. 7.3).

 Fundamentally, the JOINT OFFSET parameter of a given actuator was designed
to work only in conjunction with a MOTION PAGE (involving that particular actua-
tor) being “played”. Please note that the GOAL POSITION parameter (Address 30)
would not be affected in any way by the JOINT OFFSET parameter.

 The possible range of values for JOINT OFFSET would be from −255 to +255
and essentially it was “added” to a given GOAL POSITION as specifi ed in a STEP
of a particular MOTION PAGE (and not by a regular LOAD command into Address
30, please make a note of this). For example, if JOINT OFFSET was set as -10 for
a particular actuator, and a given STEP or MOTION PAGE commanded this actua-
tor to go to Position 200, the actuator would actually go to a physical Actuator
Position equal to (200 − 10 = 190).

 The “BasicGripper.mtn” and “AX-12JointOffset.tsk” fi les, along the video fi le
“Video 7.4 ” demonstrated the above interactions for a single-actuator gripper. The
reader could see that the invoked PAGE 3 (inside the endless loop) commanded the
actuator to go to Position 512, but the actuator was actually decrementing its Goal
Position by −10 every time that the program went through this loop (i.e. it kept on
“opening up” the gripper).

 Fig. 7.3 A single-actuator Gripper

7 Advanced Position Control

http://dx.doi.org/10.1007/978-3-319-20418-5_6
http://dx.doi.org/10.1007/978-3-319-20418-5_6

107

 Finally, the reader should note that there was a special value of 1024 that could
be set to the JOINT OFFSET parameter of a particular actuator, when the program-
mer wanted to exclude this particular actuator from the effects of a MOTION PAGE
being executed. The ROBOTIS e-Manual web site has an application of this feature
to the arms and grippers of a humanoid (Type B) robot (http://support.robotis.com/
en/product/bioloid/premiumkit/tutorial/bioloid_prem_tutorial_gripper.htm). Please
note that Dynamixel IDs 9 and 10 are assigned to the grippers in this particular
example, and refer to the sample program fi les “PRM_HumanoidTypeB.mtn” and
“PRM_GripperExam.tsk”.

7.3 A Load Sensing Gripper

 In this section, the goal was to program a simple gripper that could adjust to differ-
ent sizes of the object to be held by its fi ngers.

 The software solution involved using the same “BasicGripper.mtn” fi le but a
new TSK fi le called “AX-12Gripper.tsk” whereas the basic algorithm was described
below:

 1. Initialization to put the gripper at the neutral position by playing Motion Page 3,
i.e. its Goal Position was set to 512.

 2. Next the program entered an endless loop whereas:

 (a) If the user pushed on Button U of the Virtual RC-100, the controller played
MOTION PAGE 2 (i.e. Actuator Position set to 430—open gripper
position).

 (b) Else if the user pushed on Button D of the Virtual RC-100, the controller
played MOTION PAGE 1 (i.e. Actuator Position set to 600—closed gripper
position).

 (c) Else if the user pushed on Button 1 of the Virtual RC-100, the controller
played MOTION PAGE 3 (i.e. Actuator Position set to 512—neutral
position).

 (d) Also within this loop the program printed out the actuator Present Position,
Joint Offset and Present Load for monitoring purposes.

 3. The “size-adjusting” algorithm was implemented by a CALLBACK function
which was executed by the controller every 8 ms. The interested reader should
check the ROBOTIS e-Manual for more details about CALLBACK at http://
support.robotis.com/en/software/roboplus/roboplus_task/programming/
command/roboplus_task_cmd_callback.htm . This algorithm essentially read out
the Present Load (Address 40) and compared this value:

 (a) To “128”. If it was less or equal to 128, parameter Adjustment was set to 0
(i.e. the gripper had not encountered the object yet, or it was only starting to
squeeze on the object).

7.3 A Load Sensing Gripper

http://support.robotis.com/en/product/bioloid/premiumkit/tutorial/bioloid_prem_tutorial_gripper.htm
http://support.robotis.com/en/product/bioloid/premiumkit/tutorial/bioloid_prem_tutorial_gripper.htm
http://support.robotis.com/en/software/roboplus/roboplus_task/programming/command/roboplus_task_cmd_callback.htm
http://support.robotis.com/en/software/roboplus/roboplus_task/programming/command/roboplus_task_cmd_callback.htm
http://support.robotis.com/en/software/roboplus/roboplus_task/programming/command/roboplus_task_cmd_callback.htm

108

 (b) To parameter MaxSqueezeTorque (= 750), if it was greater than
MaxSqueezeTorque, meaning that it was squeezing “hard” on the object
then parameter Adjustment was decremented by 1 (i.e. the gripper was made
to “open-up”).

 (c) The fi nal value for Adjustment (whether 0 or a negative value) was assigned
to JOINT OFFSET to affect a controlled “opening and closing” of the grip-
per so as to maintain a PRESENT LOAD “around” the value set by
MaxSqueezeTorque.

 The video fi le “Video 7.5 ” illustrated how this application translated out in
practice.

 The reader should note that this section was a very basic attempt at “Force
Control”, Villani and Schutter (2008) have a more thorough treatment of the issues
involved.

7.4 Review Questions for Chap. 7

 1. What is the cycle time for execution of the CALLBACK function?
 2. How many CALLBACK functions can be used in a TASK program?
 3. What are the two steps needed to exclude a Dynamixel actuator from the effects

of MOTION PAGES?
 4. If the PRESENT POSITION of an actuator is at 512 and considering that its

JOINT-OFFSET is set at −100, what is its fi nal position when a TASK command
is issued for it to go to GOAL POSITION 800?

 5. What is the procedure to use to allow a manual adjustment of a typical Dynamixel
actuator when it is powered?

 6. The parameter “Present Load” can tell us about the current mechanical loading
on a given actuator. (T-F)

7.5 Review Exercises for Chap. 7

 1. Start from the program “Gerwalk_LoadAdjust.tsk”, modify it so that:

 (a) It can also print a TIMER value along with the existing parameters. Use the
High-Resolution Timer if you happen to work with a CM-530.

 (b) Try different combinations of SLOPE, MARGIN and PUNCH values to see
changes in performance of the robot.

 (c) Capture the data streams and plot the data with respect to the Timer counts.

 2. Start from the program “Gerwalk_LoadAdjust_Fast.tsk”, modify it so that:

 (a) It can also print a TIMER value along with the existing parameters. Use the
High-Resolution Timer if you happen to work with a CM-530.

7 Advanced Position Control

http://dx.doi.org/10.1007/978-3-319-20418-5_7
http://dx.doi.org/10.1007/978-3-319-20418-5_7

109

 (b) Try different MARGIN values to see changes in performance of the robot.
Also try different values for the Gap divisor (currently set at 2).

 (c) Capture the data streams and plot the data with respect to the Timer counts.

 3. Use the program “AX-12Gripper.tsk” with different value combinations of the
parameters “GrippingPower” and “GrippingSoftness” and let the gripper
“chomp” on your fi nger. Note the differences in feeling on your fi nger.

 References

 Burdet E et al (2013) Human robotics. MIT, Cambridge
 Jazar RN (2010) Theory of applied robotics. Springer, Heidelberg
 Niku SB (2011) Introduction to robotics. Wiley, Hoboken
 Villani L, Schutter D (2008) Force control. In: Siciliano B, Khatib O (eds) Springer handbook of

robotics. Springer, Heidelberg, pp 161–185

References

111© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_8

 Chapter 8
 Wireless Communications Programming

 For its popular robotics systems, ROBOTIS offered three types of wireless
 communication protocols, NIR, ZigBee and BlueTooth:

• NIR was the default mode for its remote controller RC-100/A/B (http://www.
robotis.us/rc-100b/) using the NIR Receiver OIR-10. The user could add the
ZIG-100 module to it to get ZigBee capabilities (1-to-1, many-to-one, or broad-
cast), or the BT-100/BT-210 to get BlueTooth capabilities (1-to-1).

• The CM-5 system could only use the ZIG-100 module (or NIR via its AX-S1
module), while the CM-510, CM-530 and OpenCM-904 systems could interface
with all three types of communication hardware.

• For ZigBee interfacing from Windows PCs to ROBOTIS systems, the user
needed to use the hardware combination of USB2DYNAMIXEL/ZIG2SERIAL/
ZIG-100/ZIG-110A. For BlueTooth interfacing, the user could use any PC
BlueTooth devices (V. 2.0 and above) and either BT-110A, BT-210 or BT-410
(available after Summer 2015 and see Sect. 3.2.3).

 Although ROBOTIS’ NIR, ZigBee and BlueTooth communications hardware
were different, their software application approach was standardized and based on a
16-bit message wrapped up in a 6-byte communication packet (http://support.robotis.
com/en/product/auxdevice/communication/rc100_manual.htm). Section 5.6 pre-
sented the basic communication concepts of transmitting and receiving data from the
RC-100 (Virtual and Physical) on a 1-to-1 basis. Later in this chapter, we will take
on more advanced concepts such as broadcast programming and message shaping.

 This chapter’s main topics are listed below:

• Hardware channel differences between ZIG-100 and ZIG-110A.
• Embedding signals to control multiple robots with a single RC-100 (NIR or

ZigBee).

 Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-
319- 20418-5_8) contains supplementary material, which is available to authorized users.

http://www.robotis.us/rc-100b/
http://www.robotis.us/rc-100b/
http://dx.doi.org/10.1007/978-3-319-20418-3
http://support.robotis.com/en/product/auxdevice/communication/rc100_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/rc100_manual.htm
http://dx.doi.org/10.1007/978-3-319-20418-5
http://dx.doi.org/10.1007/978-3-319-20418-5_8
http://dx.doi.org/10.1007/978-3-319-20418-5_8

112

• Message shaping concepts as applied to Leader/Follower grippers and robots
(bilateral control), and to multiple-user situations.

• PC to robot communications via Manager tool and via C/C++ programming tools.
• Comparing ZigBee and BlueTooth performances.

8.1 ZigBee Broadcast Channel Differences

 ROBOTIS designed their ZigBee modules to operate on four possible broadcast
channels, 1–4. ZIG-100 is defaulted to Channel 1, but could be changed to the other
channels by modifying the status of Pins 7 and 8 (http://support.robotis.com/en/
product/auxdevice/communication/zigbee_manual.htm). On the other hand, ZIG-
110A was defaulted to Channel 4 and it was unchangeable. A further complication
arose if the user needed to have ZigBee communications on the PC side by using the
combination USB2Dynamixel/ZIG2Serial/ZIG-100 through an USB port, as the
ZIG2Serial could also be set into four possible broadcast channels by opening or
shorting three resistors R5, R6 and R7 (http://support.robotis.com/en/product/
auxdevice/communication/zig2serial_manual.htm and see Fig. 8.1).

 When using the ZigBee modules, either ZIG-100 or ZIG-110A, in a 1-1 mode
such as in this example:

• ZIG-100 on an RC-100 or on a combo as shown in Fig. 8.1 on a PC.
• ZIG-110A on a CM-510 or CM-530.

The user only had to make sure that the ZigBee IDs matched via the MANAGER
tool or by programming them directly inside a TASK program (http://support.
robotis.com/en/product/auxdevice/communication/zigbee_manual.htm).

 Also when the user needed to have broadcast ZigBee from the PC to other ZIG-
100 modules, there would be no need for the user to do anything special at all as
ZigBee modules involved were defaulted to Channel 1 already.

 However when the user needed to have ZigBee broadcast capability from the PC
to a set of ZIG-110A modules, the user needed to modify a ZIG2Serial module
“permanently” in such a way the ZIG2Serial from then on would broadcast only on
Channel 4 (see Fig. 8.2).

 Fig. 8.1 USB2Dynamixel/ZIG2Serial/ZIG-100 combo

8 Wireless Communications Programming

http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zig2serial_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zig2serial_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm

113

8.2 Broadcast Use of RC-100 (NIR and ZigBee)

 The goal of this section was to illustrate the extended use of a single RC-100 in the
selective control of multiple robots. Please note that this project would work prop-
erly only when NIR or ZigBee communications hardware were used, as the
BT-100/110A/210/410 hardware sets could only be used on a 1-to-1 basis (http://
support.robotis.com/en/product/auxdevice/communication/bt100_110.htm).

 A typical BIOLOID kit would come with an RC-100/A/B (http://www.robotis-
shop- en.com/?act=shop_en.goods_view&GS=1487&GC=GD080302) and an NIR
receiver OIR-10 (http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=
1291&GC=GD080301). The user could set the RC-100/A/B in NIR mode to
eight distinct 1-to-1 channels (http://support.robotis.com/en/product/auxdevice/
communication/rc100_manual.htm). To complete the “communication loop”, the
user would also need to set the matching channel inside the TASK program (for
example, in case Channel 3 was used). However the special
Channel 0 () would make the robot “listen” to any channel,
effectively allowing several robots to receive commands from a single RC-100
remote controller (and so, in a way, achieved broadcast control via NIR). The user
should also take note that NIR communications was constrained physically to a
“line-of-sight”, thus the group of robots would need to stay “close to one another”.

 If ones used the ZigBee route, i.e., using ZIG-100/110A, the “line-of-sight” con-
straint would be removed (http://support.robotis.com/en/product/auxdevice/
communication/zigbee_manual.htm). However, the setting of the “broadcast” mode
(Remote ID = 65535) on the ZIG-100/110A hardware would be more involved.
The ZIG-100 module would need to be mounted on a ZIG2SERIAL+
USB2DYNAMIXEL hardware combination (as modifi ed in Sect. 8.1) and set to
“broadcast ID” from inside MANAGER using its ZIG2SERIAL Management
tool (see Fig. 8.3 and review the video fi le “Video 8.1 ” and the “TestZigBee.tsk”
program).

 Fig. 8.2 ZIG2Serial
module with R7 removed

8.2 Broadcast Use of RC-100 (NIR and ZigBee)

http://support.robotis.com/en/product/auxdevice/communication/bt100_110.htm
http://support.robotis.com/en/product/auxdevice/communication/bt100_110.htm
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1487&GC=GD080302
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1487&GC=GD080302
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1291&GC=GD080301
http://www.robotis-shop-en.com/?act=shop_en.goods_view&GS=1291&GC=GD080301
http://support.robotis.com/en/product/auxdevice/communication/rc100_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/rc100_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm

114

 Furthermore a matching ZIG-110A module would need to be mounted on a
 typical CM-510/530 controller, and its “broadcast ID” (65535) would need to be set
from the “Controller” panel inside the MANAGER tool (see Fig. 8.4). Currently,
the MANAGER tool does not support such operation with the OpenCM-904-C
controller.

 The RC-100 had 10 buttons: U-D-L-R and numerical 1–6. In this application, the
intent was to keep the U-D-L-R buttons for directional control of the movements of
a typical robot, while the numerical buttons (1, 2, 3) were used to select a specifi c
robot among three BIOLOID STEM robots (see Fig. 8.5): BugFighter (i.e., button 1),
Droid (i.e., button 2) and Hexapod (i.e., button 3).

 Fig. 8.3 Setting ZIG-100 to Broadcast mode (Remote ID = 65535)

 Fig. 8.4 Setting ZIG-110 to Broadcast mode (Remote ID = 65535)

8 Wireless Communications Programming

115

 To be exact, when the user used only the U-D-L-R buttons, all three robots would
perform the same commanded maneuver, but if the user added one, two or all three
(1, 2, 3) buttons, then only the selected robot(s) would perform the commanded
maneuvers. Please review the four TASK programs (RC_1_BugFighter.tsk, RC_1_
BugFighter_NIRReceiver.tsk, RC_2_Droid.tsk, RC_3_Hexapod.tsk) and also the
video fi le “Video 8.2 ” for more details.

8.3 Message “Shaping” Concepts

 When using the RC-100 as previously described, we were using only 10 bits out of
16 bits possible that were transmitted or received via ROBOTIS communication
protocols (NIR, ZigBee or BlueTooth) within a single communication packet. In
this section, several applications would be described, exploiting this capability:

• Mimicking grippers.
• Leader and Follower GERWALKs.
• Multiple users and multiple robots (ZigBee only).

8.3.1 Mimicking Grippers

 In this sub-section, two applications of 1-to-1 ZigBee message-shaping techniques
would be described using two single-actuator grippers, each controlled by its own
CM-5XX controllers as shown in Fig. 8.6 .

 Fig. 8.5 Remote control of three BIOLOID STEM robots

8.3 Message “Shaping” Concepts

116

 The fi rst application was of an “Open Loop” system as the command structure
went only one way—from Leader to Follower. Please review the TASK programs
(“CM5XX-MimicGripperL_OpenLoop.tsk” and “CM5XX- MimicGripperF_
OpenLoop.tsk”), MOTION fi les (“BasicGripper16.mtn” and “BasicGripper17.
mtn”) and watch the video fi le “Video 8.3 ” for demonstration purposes, but the key
concepts would be explained in the following paragraphs.

 First, the only difference between the two MTN fi les mentioned earlier was that
the Leader gripper had ID = 16, while the Follower gripper had ID = 17. The actual
Motion Pages inside these MTN fi les had the same information:

• Page 1 (Close Grip) corresponded to Actuator Position 600 on the used AX-12s
(ID = 16 or ID = 17).

• Page 2 (Open Grip) corresponded to Actuator Position 430 on either AX-12.
• And Page 3 (Neutral Pose) corresponded to Actuator Position 512 on the same

AX-12s.

 Next the feature called “Torque Limit” (or “Goal Torque”), fi rst described in
Sect. 7.1.2 , was applied to both grippers but in a differential manner:

• The Leader gripper had its “Torque Limit” set to 1, so as to allow the user to
manipulate this gripper as needed (Statement 26 in “CM5XX- MimicGripperL_
OpenLoop.tsk”).

• The Follower gripper had its “Torque Limit” set to 1023 so as to allow it to do
the real work (Statement 11 in “CM5XX-MimicGripperF_OpenLoop.tsk”).

 The most important procedure was how to shape the 16-bit message so that a
single communication packet could contain as many pieces of information that were
needed to accomplish a given job. For this “Open Loop” application, the need was

 Fig. 8.6 Leader and follower grippers using 1-to-1 ZigBee

8 Wireless Communications Programming

http://dx.doi.org/10.1007/978-3-319-20418-7

117

for the Leader to send its Actuator ID (=16) and its Present Position (variable value)
over to the Follower which would then mapped the Leader’s Actuator ID (=16) to
match with its own corresponding ID (=17) and to set its Goal Position to the same
value as the Leader’s Present Position as received in the 16-bit message:

• On the Leader side (“CM5XX-MimicGripperL_OpenLoop.tsk”), the goal was to
confi gure the 16-bit message so that it contained the Actuator ID in the highest
6 bits and the Actuator’s Present Position (Address 36, and numerical range
[0–1023]) in the lowest 10 bits. This meant that the ID value needed to be
shifted 10 bits to the left of the 16-bit message which was accomplished by
 “multiplying” ID with the binary constant 0000 0100 0000 0000 (statement 31).
Next the current Present Position value was added to the same 16-bit message
(statement 33). This fi nal combined message was then sent to the Follower with
the “Remocon_TXD” function (statement 35). In the rest of this TSK fi le, minor
procedures were written to cycle through all actuators used if more than one were
used (statements 38–46), and to include some do-nothing code so as not to over-
helm the ZigBee channel (statements 49–53).

• On the Follower side (“CM5XX-MimicGripperF_OpenLoop.tsk”), the goal was
to unpack the received 16-bit message so that it contained the Actuator ID in the
highest 6 bits, by fi rst bit-wise ANDing it with “1111 1100 0000 0000” (state-
ment 23) and then by shifting right this temporary result by 10 bits with its divi-
sion by “0000 0100 0000 0000” (statement 25). Statement 27 was used to adjust
for the difference between the IDs used for the Leader and Follower grippers (the
user may not have to perform this step if he or she chose the same ID for the
actuators). Next the lowest 10 bits was fi ltered out into the parameter
TargetPosition by ANDing the 16-bit message with “0000 0011 1111 1111”
(statement 29). Lastly, a precautionary step was taken to check the TargetPosition’s
value to see if it was less or equal to 1023 before actually assigning it to the
Follower’s Goal Position (i.e., address 30 in statement 34).

 The second application would be a “Closed Loop” system whereas information
fl owed both ways between Leader and Follower. Please review the TASK pro-
grams “CM5XX-MimicGripperL_ClosedLoop.tsk” and “CM5XX- MimicGripperF_
ClosedLoop.tsk” and the video fi le “Video 8.4 ” for demonstration purposes, but the
key concepts would be explained further in the following paragraphs.

 In addition to the features/concepts already explained for the “Open-Loop” case,
there were additional codes created to handle the bilateral fl ow of messages:

• On the Follower side (CM5XX-MimicGripperF_ClosedLoop.tsk), statements
40–76 were added to handle:

 1. Prepare the 16-bit message with the ServoID value in the highest 6 bits
 (statement 41).

 2. Save the Present Load value (address 40) into parameter LoadData and if
LoadData was larger than LoadLimit (=512), i.e., there was some obstruction
present, then the Follower needed to open up the gripper (statement 47) and
sounded an audio alarm (statements 48–57). Next the Follower added its

8.3 Message “Shaping” Concepts

118

LastPosition (address 36) into the 16-bit message and sent it away to the
Leader (statements 58–61). Finally it went into a While Loop waiting for the
user to push the “R” button on the CM-5XX controller (essentially to reset
this alarm situation—statements 64–68). When “R” was eventually pushed,
the Follower sounded the “All Clear” (statements 69–75) and got back to its
Main Loop waiting for messages to come in from the Leader gripper.

 3. If LoadData was less than LoadLimit, i.e., no obstruction encountered, the
Follower just got back to its Main Loop and waited for messages to come in
from the Leader gripper.

• On the Leader side (CM5XX-MimicGripperL_ClosedLoop.tsk), statements
59–102 were created to handle possible messages coming from the Follower (in
case of an obstruction occurring to the Follower):

 1. After parsing the Follower’s 16-bit message into the ID and TargetPosition
components (statements 61–69), the Leader “stiffened” up by setting its
Torque Limit setting to 512 (statement 71) and by going to the “Open” posi-
tion while sounding an audio alarm (statements 72–84). At this point, the user
would no longer be able to manipulate the Leader gripper as before.

 2. Next it went into a While Loop waiting for the user to push the “R” button on the
CM-5XX controller (essentially to reset this alarm situation—statements 86–90).

 3. When “R” was eventually pushed, the Follower went “soft” again by resetting
its Torque Limit to 1 (statement 92) and sounded the “All Clear” (statements
95–101) and got back to its Main Loop generating 16-bit messages to send
over to the Follower gripper, according to the user’s manipulations of the robot.

8.3.2 Leader-Follower GERWALKS

 This sub-section extended the previous message-shaping and bilateral control con-
cepts to a more complete robot such as the GERWALK. In this closed-loop applica-
tion, both Leader and Follower robots were supposed to be ID’d identically (ID = 1
to ID = 7 in this particular case).

 Similarly, please review the TASK programs (Gerwalk_L_ClosedLoop.tsk) and
Gerwalk_F_ClosedLoop.tsk), GerwalkDemoMotion.mtn fi le and the video fi le
“Video 8.5 ” for demonstration purposes, and the key concepts would be explained
in the following paragraphs.

 In this application, as we were dealing with seven actuators on the Leader robot,
the overall plan was to send “ID” and “Present Position” information for only one
actuator in each 16-bit message as before, and additionally used a scheme to cycle
through the IDs from 1 to 7:

• On the Leader side (Gerwalk_L_ClosedLoop.tsk):

 1. Parameter ID started at 1 (statement 8) and all “Torque Limits” were set to 1
(statement 19) to allow user to manipulate the Leader robot at will.

8 Wireless Communications Programming

119

 2. The ID component was shifted to the highest 4 bits this time around
(statements 23–25).

 3. Statements 27–34 were used to update Parameter ID and cycle it through
from 1 to 7.

 4. The 50-count delay section (statements 35–40) was critical to the behavior of
the Follower. For any shorter delay used, the Follower would loose its syn-
chronization, as it could skip on the message received and consequently could
also skip setting up properly one or more of its seven actuators.

 5. Statements 42–53 were used to decode potential messages from the
Follower (when some or all its actuators detected an overload at a certain
TargetPosition). In this situation, the Leader would “stiffen” up the corre-
sponding actuator (defi ned by MotorID) by raising its Torque Limit value to
512 and by holding it at the TargetPosition sent over by the Follower (state-
ments 48–49), but only for 0.128 s, and then by resetting it back to 1 (statements
50–52). The net “physical” result would be that the human user would feel
this particular actuator “twitch” or “tremble” in his or her hand.

• On the Follower side (Gerwalk_F_ClosedLoop.tsk):

 1. Similarly as for the Follower gripper, statements 22–29 decoded the message
from the Leader GERWALK and set the corresponding actuators to the
TargetPosition values received.

 2. Statements 31–46 essentially cycled through the Follower’s seven actuators to
see which one had its Present Load value (address 40) higher than the
LoadLimit of 512. If such a situation arose, the Follower would transmit its
own message to the Leader regarding this overloading actuator along with its
ID and Current Position (address 36). Please note that this process was per-
formed independently of the setting of the TargetPosition values as required
in the messages sent by the Leader (previous paragraph 1.). In other words,
messages were constantly “prepared” but not necessarily “sent” by the
Follower to the Leader.

 This sub-section was a very basic introduction to the bilateral control concept
used often in tele-operation systems designed to work in hazardous environments or
in medical robot systems. A few selected references are: Vertut (2012), Minh (2013)
and Milne et al. (2013).

8.3.3 Multiple Users and Multiple Robots (ZigBee Only)

 This sub-section extended the message-shaping technique developed by Mr.
Matthew Paulishen (during his student days at my laboratory) for his Mobile
Wireless Sensor Network project (see Thai and Paulishen (2011)).

 Figure 8.7 illustrated the targeted situation where we would have several users
(i.e., several RC-100s with ZigBee being used in broadcast mode) trying to control

8.3 Message “Shaping” Concepts

120

their own robots (Twin GERWALK) which also had 2 independent controllers in
their design (Leader and Follower, also set to broadcast mode). Please see enclosed
video fi le “Video 8.6 ” for a solution by Duke TIP students.

 Figure 8.8 described the detailed bit assignment when using the RC-100s to send
messages out to Leader robots. Essentially, each user was allowed to use the U-D-
L-R buttons for maneuvering and the numerical buttons 1 and 2 for special instruc-
tions (i.e., 2 2 − 1 = 3 separate special instructions allowed). Each user used buttons

 Fig. 8.7 Multiple users controlling multiple twin GERWALKs

 Fig. 8.8 Bit confi guration for 16-bit messages broadcasted from RC-100s

8 Wireless Communications Programming

121

3–6 to denote the specifi c Leader robots that would be assigned to particular users
(with 4 bits, that would amount to 15 potential Leaders).

 The reader should note that this was a broadcast environment so all the distinc-
tions to be made had to be embedded in the 16-bit messages which were “con-
stantly” broadcasted among the RC-100s and robots at play. Also the reader
probably already noted the “honor” system that would have to be followed as any
user could “jam” or “misdirect” the other user’s robot with the above scheme.

 Figure 8.8 also showed that if a message came from the RC-100s, its highest
6 bits would be set to 0 and this feature would be used to distinguish the messages
coming out the RC-100s from the ones coming out from either Leader or Follower
robots as shown in Fig. 8.9 .

 Essentially, codes running on the robots would look for the pattern “000000”,
“101010” or “010101”in the highest 6 bits of every message that they received:

• If this pattern was “000000”, then this message came from the RC-100s and
would need to be processed further by the Leader robots only . Then the Leader
robots would investigate the lowest 10 bits according to Fig. 8.8 to decode what
actions their assigned users wanted them to do.

• When executing those user-assigned actions, the Leader robots would defi nitely
need to send their own messages to their matching Followers to coordinate the
required physical actions between Leader and (matching) Follower to perform a
given maneuver. These messages would have the pattern “101010” embedded in
the highest 6 bits. The lower 6 bits would contain the “true” message between
matching Leader and Follower, while the mid-4 bits would be used to distin-
guish which Leader-Follower units (among the 15 possible) that this message
pertained to.

• When the Follower robots needed to send their own messages to their matching
Leaders, they would use the pattern “010101” in the highest 6 bits.

 Fig. 8.9 Bit confi guration for 16-bit messages broadcasted from Robots

8.3 Message “Shaping” Concepts

122

8.4 PC to Robots Communications via C/C++

 If the reader wanted to do some communications programming between the PC and
ROBOTIS’ robots, but still stayed within the RoboPlus environment, then he or she
could use the “Zig2Serial Management” sub-tool inside RoboPlus’ Manager tool.
As its name indicated, the “Zig2Serial Management” sub-tool was created to help
the user with managing the Zig2Serial module when used with a ZIG-100. This sub-
tool would allow the user to set the ZIG-100’s communication mode (1 to 1, many
to 1 and broadcast—as shown in the previous video fi le “Video 8.1 ”) and also to
send numerical data via the associated Windows COM port regardless of which
wireless hardware was actually used—ZigBee or BlueTooth (as will be used in
Chap. 11 for the ROBOTIS-MINI). As we were using the ROBOTIS’ protocol with
the standard 6-byte packet, we would also have to stay with the closed-fi rmware
option on the robot side, i.e., operational with all the CM-5XX systems and
OpenCM-904-C (closed-fi rmware mode), but not workable with OpenCM-904-A/B
as they used OpenCM IDE.

 If the reader wished to use C/C++ programming on the PC side for more fl exi-
bility, but still stayed with the closed-fi rmware option on the robot side to benefi t
from the TASK and MOTION features of the RoboPlus Suite, then he or she
needed to have a closer look at the contents of the enclosed fi le “WirelessRobot.
zip”. This ZIP fi le contained all source codes and workspace fi les needed when
using MicroSoft Visual Studio Express (2010, 2012 and 2013 editions and even
Visual C V.6). This package was created by Mr. Matthew Paulishen with a simple
command-line interface with the goal of introducing C/C++ constructs needed to
properly integrate with the “ZigBee” and “Dynamixel” SDKs from ROBOTIS
(http://support.robotis.com/en/software/zigbee_sdk.htm and http://support.robotis.
com/en/software/dynamixelsdk.htm). After unzipping this fi le, the folder
“WirelessRobot\code\app\WirelessRobot DataLogger Binaries” contained the
various executables for the DataLogger projects and the TASK fi les
“WirelessCarbot.tsk” and “CM5xxDataLogger.tsk” for the reader to try out (Note:
Depending on what DLLs were installed on the reader’s PC, not all executable
programs would work properly, but the VC6 version should work for all Windows
OS from XP to 8.1).

 The video fi le “Video 8.7 ” illustrated the use of the “DataLogger” executables
with a CM-5 CarBot running the “WirelessCarbot.tsk” program via ZigBee
 hardware. First it demonstrated how the Zig2Serial Management sub-tool (of
ROBOPLUS MANAGER) worked with the “WirelessCarbot.tsk” program. Next, it
showed how the Visual C/C++ executable “DataLogger.exe” program worked with
the same TASK program.

 The much longer video fi le “Video 8.8 ” illustrated the various C/C++ constructs
for understanding ZigBee Communications programming for Visual Studio Express
2012 (but it should applicable to the 2013 edition also). This video also referred to
the “CM5XXDataLogger.tsk” fi les.

8 Wireless Communications Programming

http://dx.doi.org/10.1007/978-3-319-20418-5_11
http://support.robotis.com/en/software/zigbee_sdk.htm
http://support.robotis.com/en/software/dynamixelsdk.htm
http://support.robotis.com/en/software/dynamixelsdk.htm

123

8.5 ZigBee and BlueTooth Performances

 ROBOTIS ZigBee hardware was of an older design so its maximum baud rate was
115,200 bps, while the latest BT-210 module could potentially go to 400,000 bps
(but operated around 250 kbps) and besides BlueTooth devices are widely available
in current PCs and mobile devices. Surprisingly, the newer BT-410 series would
operate lower at 128 kbps to save energy on mobile devices. Thus if the reader plans
to work with only one robotic system from ROBOTIS, and if he or she already has
BlueTooth on their computing platforms, then BlueTooth is the obvious choice for
accessibility and cost. However, BlueTooth usually takes rather a long time to con-
nect as compared to ZigBee. BlueTooth also required two COM ports on the PC for
each BT connection (one outgoing and one incoming) while ZigBee required only
one COM port. This “feature” could become important if the user is interested in
controlling teams of robots from a central PC. Hughes et al. (2013) shared some
hands-on knowledge for BlueTooth applications to teams of LEGO NXT robots that
the reader might fi nd useful. Huang and Rudolph (2007) have essential information
for BT programmers in Windows and Linux environments.

 In Sect. 4.3 , the author had shown that for situations with fast changing commu-
nication data, ROBOTIS ZigBee hardware/software outperformed ROBOTIS
BlueTooth hardware/software (at least for now).

 Lastly, from the point of view of educational fl exibility, the option of changing to
different ZigBee modes (1 to 1, many to 1 and broadcast) clearly favored ZigBee
over BlueTooth. Thus overall, the author still preferred ZigBee over BlueTooth if
the development environment can accommodate USB/ZigBee communications.

 On mobile devices, all of us would have no choice but to use BlueTooth! The
newer BT-410 is supposed to allow one master controlling several slave devices
(due late Summer 2015), so another “seesaw” battle!

8.6 Review Questions for Chap. 8

 1. List the three types of wireless communication protocols that are available with
ROBOTIS systems.

 2. How many NIR communication channels are available with the combination of
RC-100 and OIR-10 modules?

 3. Describe how to set up a chosen RC-100 Channel inside a TASK program.
 4. The MANAGER tool can be used to set up ZigBee communication IDs (T-F)
 5. The MANAGER tool can be used to set up BlueTooth communication IDs

(T-F)
 6. Describe how to set up a chosen RC-100 Channel on an RC-100 Remote

Controller.
 7. On ROBOTIS systems, NIR communications are strictly on a 1-to-1 basis (T-F)
 8. On ROBOTIS systems, BlueTooth communications are strictly on a 1-to-1

basis (T-F)

8.6 Review Questions for Chap. 8

http://dx.doi.org/10.1007/978-3-319-20418-4
http://dx.doi.org/10.1007/978-3-319-20418-5_8

124

 9. Describe the current options for getting BlueTooth communications among
ROBOTIS systems.

 10. Describe the hardware hook-up needed to communicate between two CM-530s
via BlueTooth communications.

 11. Describe the hardware hook-up needed to communicate between a CM-530
and a PC via BlueTooth communications.

 12. Describe the hardware hook-up needed to communicate between a CM-530
and an RC-100 via BlueTooth communications.

 13. How many COM port(s) are open on the PC side for each BlueTooth module?
 14. How many COM port(s) are open on the PC side for each ZigBee module?
 15. Describe the hardware hook-up needed to communicate between two CM-5s

via NIR communications.
 16. Describe the hardware hook-up needed to communicate between two CM-5s

via ZigBee communications.
 17. Describe the hardware hook-up needed to communicate between a CM-5XX

and an RC-100 via ZigBee communications.
 18. Describe the hardware hook-up needed to communicate between a CM-5XX

and a PC via ZigBee communications.
 19. What are the three modes of communications for ROBOTIS ZigBee protocols?
 20. Can the Zig2Serial sub-tool inside the MANAGER tool be used with BlueTooth

communications between the PC and a robot?
 21. Describe the standard packet confi guration used by ROBOTIS for its wireless

communications network.
 22. Within a standard communication packet, how many bits does the actual “mes-

sage” component contain?
 23. Assuming that Parameter B = , what is the result for

Parameter A, after this TASK command was executed?

 A = B &

 24. Assuming that Parameter B = , what is the result
for Parameter A, after this TASK command was executed?

 A = B *

 25. Assuming that Parameter B = , what is the result for
Parameter A, after this TASK command was executed?

 A = B /

 26. Describe procedure(s) to achieve broadcast communications with ROBOTIS
NIR hardware and software.

 27. Describe procedure(s) to achieve broadcast communications with ROBOTIS
ZigBee hardware and software.

 28. Describe procedure(s) to achieve broadcast communications with ROBOTIS
BlueTooth hardware and software.

8 Wireless Communications Programming

125

 29. Review the information found from the following web links and design an
alternate approach to obtain ZigBee broadcast capability from the PC to a group
of ZIG-110A devices:

 (a) http://support.robotis.com/en/product/auxdevice/communication/zigbee_
manual.htm .

 (b) http://support.robotis.com/en/product/auxdevice/communication/zig2
serial_manual.htm .

 (c) http://support.robotis.com/en/software/roboplus/roboplus_manager/
testandconfi gure/etc/roboplus_manager_zig2serial.htm .

8.7 Review Exercises for Chap. 8

 1. Adapt the programs “Gerwalk_L_ClosedLoop.tsk” and “Gerwalk_F_
ClosedLoop.tsk” to your own favorite multi-linked robots.

 2. Add to the previous programs features of audio alarms using the ideas proposed
in “CM5XX-MimicGripperL_ClosedLoop.tsk” and “CM5XX- MimicGripperF_
ClosedLoop.tsk”.

 3. Starting from the Visual C++ fi les inside “WirelessRobot.zip”, the goal of this
assignment is twofold:

 (a) To create a new TSK fi le “WirelessCarbot.tsk” that can accept “U-D-L-R”
(for motion directions) and “1–2” (for Low-High speed settings) com-
mands from the PC keyboard via ZigBee (as already shown in the example
“CMDatLogger.TSK” and “main.CPP” fi les included in “WirelessRobot.
zip). Additionally and independent of the previous “direction” and
“speed” commands, when receiving a special command from the PC, it
should respond back to the PC with the designated NIR sensor reading(s)
corresponding to the “Left-Center-Right” sensors of the AX-S1 module.

 (b) To modify the “main.cpp” fi le so that it can do the following procedures:

• It does not have to “echo” the various “U-D-L-R-1-2” commands onto the
run-time PC display anymore, as the user can see those effects directly on
the Carbot’s behaviors.

 Initially, it should display an option menu telling the user various key-
board actions that are available to the user:

 – “W-A-S-D” keys for “U-L-D-R” directions.
 – “1–2” keys for carbot speed setting.
 – “O” for a request to do a 1-time scan (and PC-side display) of the user-

hosen NIR sensor(s) on the Carbot.
 – “C” for a request to do a continuous scan (and PC-side display) of the

 user- chosen NIR sensor(s) on the Carbot.

8.7 Review Exercises for Chap. 8

http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zigbee_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zig2serial_manual.htm
http://support.robotis.com/en/product/auxdevice/communication/zig2serial_manual.htm
http://support.robotis.com/en/software/roboplus/roboplus_manager/testandconfigure/etc/roboplus_manager_zig2serial.htm
http://support.robotis.com/en/software/roboplus/roboplus_manager/testandconfigure/etc/roboplus_manager_zig2serial.htm
http://dx.doi.org/10.1007/978-3-319-20418-5_8

126

 – When either “O” or “C” options are in effect, the PC-side program
should also ask the user for “how many” and “which” sensors for the
Carbot to scan and transmit the data back to the PC.

 – “S” should stop the “continuous scan” mode.

 4. Mobile Wireless Sensor Network Project. Using the Thai and Paulishen (2011)
IEEE paper, design a wireless mobile sensor network with one PC acting as the
control station, and three Carbots acting as mobile scouts that can send back to
the control station data from its three NIR sensors located in the AX-S1 module.
The 2011 IEEE paper describes in fairly good details a possible approach to be
used that you can adapt or come up with your own scheme as you wish:

• Your system should be able to issue commands for the three Carbots to
 disperse and spread themselves out as far as possible from the base station,
but without losing ZigBee communications with each other (PC and Carbots).
Essentially, the Carbots will string themselves out so as to form a relay system
whereas the furthest- out Carbot will send its data to the middle Carbot which
would then relay those messages to the one nearest to the base station which
would next relay those messages to the base station as the last step. A similar
relay scheme should be applicable for the middle and nearest Carbots with
less data hops to perform.

• The base station would then display on the PC display the information that it
got from each specifi c Carbot.

• Not implemented in the 2011 IEEE paper was the capability to steer a particu-
lar Carbot from the PC (a laptop would be best)—as the human user would be
able to see where the Carbots were going down a hallway for example (see
enclosed video fi le “Video 8.9 ” to see a completed project).

 References

 Huang AS, Rudolph L (2007) Bluetooth essentials for programmers. Cambridge University Press,
Cambridge

 Hughes C, Hughes T, Watkins T, Kramer B (2013) Build your own team of robots with LEGO
MINDSTORMS NXT and Bluetooth. McGraw-Hill, New York

 Milne B et al (2013) Design and development of teleoperation for forest machines: an overview.
In: Habib MK, Davim JP (eds) Engineering creative design in robotics and mechatronics. IGI
Global, Hershey, pp 186–207

 Minh VT (2013) Development and simulation of an adaptive control system for the teleoperation
of medical robots. In: Habib MK, Davim JP (eds) Engineering creative design in robotics and
mechatronics. IGI Global, Hershey, pp 173–185

 Thai CN, Paulishen M (2011) Using ROBOTIS BIOLOID systems for educational robotics. http://
thai.engr.uga.edu/PDF/SE_IEEE_2011.pdf . Accessed 29 Dec 2014

 Vertut J (2012) Teleoperation and robotics: applications and technology. Springer, Heidelberg

8 Wireless Communications Programming

http://thai.engr.uga.edu/PDF/SE_IEEE_2011.pdf
http://thai.engr.uga.edu/PDF/SE_IEEE_2011.pdf

127© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_9

 Chapter 9
 Advanced Sensors

 In Chap. 3 , advanced sensors such as the AX-S20, GS-12, FPS and HaViMo2 were
briefl y described. In this chapter, more application details would be provided
whereas the CallBack function was a critically needed tool.

 This chapter’s main topics are listed below:

• Static balance of humanoid robot using the AX-S20 (2-Leg and 1-Leg
versions).

• Dynamic balance of humanoid robot using the GS-12 for Walking Enhancement
and Fall Detection.

• FPS application to a humanoid robot’s feet (1 Leg balance).
• HaViMo2 application to CarBot.

9.1 Humanoid Static Balance with AX-S20

 In this section, a Humanoid A robot from the BIOLOID PREMIUM kit was used as
the test platform (see Fig. 9.1). It actually had the AX-S20 mounted in its head and
the GS-12 mounted inside the robot, just above the hip’s actuators.

 As the AX-S20 had a magnetometer, it had to be installed as far away as possible
from the actuators which were generating strong and fl uctuating magnetic fi elds
which would interfere with the workings of this sensor. Thus it was mounted in its
head (fortunately there was enough room in it). On the other hand, as the GS-12
(designed by ROBOTIS Vice-President In-Yong Ha) was based on MEMS sensors,
there was no need to worry about magnetic interferences from the actuators, so it
was mounted as much as possible near the center of gravity of the robot (i.e., on top
of the hip’s actuators).

 Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-
319- 20418-5_9) contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-3-319-20418-5_3
http://dx.doi.org/10.1007/978-3-319-20418-5_9
http://dx.doi.org/10.1007/978-3-319-20418-5_9

128

9.1.1 2-Leg Static Balance with AX-S20

 Figure 9.2 showed how the AX-S20 would appear inside the MANAGER tool as a
Dynamixel-compliant sensor. Please note the various parameters (i.e., addresses)
accessible to the user from inside a TASK program (using “Custom” commands
with a Word size):

• Azimuth angle with respect to Z-axis, in degrees [0–359] (address 26).
• Pitch (with respect to Y-axis) and Roll (with respect to X-axis) angles in degrees,

[−89 to 89], at addresses 28 and 30 respectively. Please see Fig. 9.3 for the coor-
dinates system used by the AX-S20.

• “Real-time” X-Y-Z acceleration values could also be read via addresses 38, 40
and 46 respectively, [−2048 to 2048], i.e., at 0.01225 m/s 2 per count. The AX-S20
has about a 20 Hz refresh rate (i.e., rather slow, as it was designed around 2009).

 The fi rst AX-S20 application derived from a ROBOTIS demo program (c. 2009)
which described how to read its Pitch and Roll angles and use those real-time data
to adjust the Joint Offsets of selected actuators of both legs so that the Humanoid
robot could maintain its “static” balance even though the platform, where it was
standing on, was changing its inclination angles with respect to the Pitch and Yaw
axes (see video fi le Video 9.1 and Fig. 9.4).

 This application used the following fi les: “BalAct_2Legs_AXS20_Balance.tsk”
and “BalAct_2Legs.mtn”. The basic steps in the balance control algorithm used
were as follows:

 1. Get the robot into the initial pose as smoothly as possible by “playing” Motion
Page 1 and then Motion Page 129 (statements 6–9 in the “BalAct_2Legs_
AXS20_Balance.tsk” fi le).

 Fig. 9.1 Premium Humanoid A with AX-S20 and GS-12

9 Advanced Sensors

129

 Fig. 9.2 AX-S20 panel inside MANAGER tool

 Fig. 9.3 Coordinates system used by the AX-S20

9.1 Humanoid Static Balance with AX-S20

130

 2. Collect 10 consecutive values of the X and Y components of gravity (addresses
38 and 40) and save their average values respectively into the parameters
“FBBalCenter” and “RLBalCenter” (statements 10–20).

 3. Next play Motion Page 128 (balance position at statement 27) which had the
same Goal Position values for all the actuators as Motion Page 129, except that
“128” would keep on calling itself indefi nitely, essentially enabling the Joint
Offset functions to work in maintaining the robot balance position, when the user
started to modify the inclination angles of the supporting platform, as shown in
the video fi le “Video 9.1 ”.

 4. Effectively, “FBBalCenter” and “RLBalCenter” became the set points for this
control algorithm which would seek to minimize future deviations of these val-
ues by triggering appropriate Joint Offset Values of the following actuators with
ID numbers:

 a. (11, 13, 15) for the right leg and (12, 14, 16) for the left leg. Please note that
these actuators infl uenced most directly the forward-backward motions (see
Fig. 9.5).

 b. (17) and (18) which respectively infl uenced the right-left motions of the
“ankles”.

 c. In other words, this robot would seek to balance itself by adjusting its “ankles”
and “knees” and by “crouching” up or down differentially between its right
and left legs. Of course other solutions would also be possible by bringing
actuators 9 and 10 in the mix for side-shifting of the hip.

 Fig. 9.4 Humanoid Type
A 2-leg balancing using
AX-S20

9 Advanced Sensors

131

 5. This control algorithm was actually carried out “in parallel” of the main
program by a CALLBACK function (statements 47–117) (http://support.robotis.
com/en/software/roboplus/roboplus_task/programming/command/roboplus_
task_cmd_callback.htm). ROBOTIS designed CALLBACK to be activated
every 8 ms which happened to be the hardware refresh cycle time for all
Dynamixels. Because of this rather short time period, the programmer could not
use logical constructs such as loops and was limited to a maximum of two hard-
ware calls, and furthermore the size of the CALLBACK function could not
exceed 512 bytes.

 The main sections of the CALLBACK function were as follows:

 a. Re-init “FBBalCenter” and “RLBalCenter” (statements 54–55).
 b. Read in new data for “FBBalData” and “RLBalData” (statements 59–60).
 c. Compute the current errors, “FBBalError” and “RLBalError” (statements

63–64) and ignore small errors by dividing them with 16, i.e., low byte dis-
carded, to get the “Scaled” error parameters (statements 67–68).

 d. Next, these “Scaled Balance Error” parameters got “summed up” (i.e., inte-
grated over time) with an upper limit (=2048) and a lower limit (= −2048) for
both the FB and RL “Scaled Balance Error” parameters (statements 70–88).

 Fig. 9.5 IDs of actuators used for the BIOLOID Humanoid Type A robot

9.1 Humanoid Static Balance with AX-S20

http://support.robotis.com/en/software/roboplus/roboplus_task/programming/command/roboplus_task_cmd_callback.htm
http://support.robotis.com/en/software/roboplus/roboplus_task/programming/command/roboplus_task_cmd_callback.htm
http://support.robotis.com/en/software/roboplus/roboplus_task/programming/command/roboplus_task_cmd_callback.htm

132

 e. Statements 91–104 represented a complex “Gain Application” algorithm that
sought to convert the “Balance Error Sums” parameters (i.e., angle values in
degrees) into “appropriate” AX-12 Joint Offset values [−255 to 255] that
depended on which part of the leg did that particular servo belong to. For
example, adjustments to the “side-to-side ankle” servos (IDs 17 and 18)
depended only on the “RL” errors and were numerically small as they repre-
sented the pivot point of an “inverted pendulum” (statements 92, 98, 102, 115
and 116). While adjustments to the “hip”, “knee” and “forward-backward
ankle” servos (IDs from 11 to 16) depended on both “FB” and “RL” error
terms (statements 107–113), and they were numerically larger as they were
further away from the pivot point of the “inverted pendulum”. The reader
could also note the “mirror image” effect used in the mathematical expres-
sions used for the “right” leg (statements 107–109 for servos 11, 13 and 15)
vs. the “left” leg (statements 111–113 for servos 12, 14 and 16). For more
advanced analysis of bipedal walking motions, the reader would need to con-
sult such works as Chevallereau et al. (2009) or Kajita et al. (2014).

9.1.2 1-Leg Static Balance

 This work was done by Mr. Matthew Paulishen during his UGA student years. It
used the two fi les “BalAct_1Leg_AXS20.mtn” and “BalAct_1Leg_AXS20_
Balance.tsk” (see Fig. 9.6 and video fi le “Video 9.2 ”).

 This application did all the data acquisition and joint-offset computing inside the
main TSK program and no CALLBACK function was used:

 1. After zeroing out all previous joint-offsets (statement 13), this TASK program
waited for the user to push the “Up” button for the fi rst time to set the robot into
Motion Page 13 which made the robot stand on its left leg while curling up its
right leg. The user could now set the 1-legged robot onto the test platform
 (statements 18–22).

 2. When ready to begin the actual balancing act, the user would push the “Up”
 button for the second time (statements 25–27) to trigger the function
“ReCenterAXS20” (statements 128–154) which would acquire ten consecutive
values of the FB and RL acceleration parameters (addresses 38 and 40 respec-
tively) and saved the average values into “FBAccelCenter” and “LRAccelCenter”
parameters (statements 148–149).

 3. The robot was then ready to play Motion Page 12 (which called itself indefi -
nitely) and got into an infi nite loop to balance itself (statement 34–96) as the user
changed the angles of the platform triggering changes in the values of the FB and
RL acceleration parameters.

 4. Similarly to the approach used in Sect. 9.1.1 , the FB and RL acceleration error
terms were then converted into appropriate joint-offsets for the legs’ servos.
Please note that while the “left knee” (ID = 14) was locked in place, the “left hip”

9 Advanced Sensors

133

(IDs = 10, 12) and “left ankle” (IDs = 16, 18) were “key players” in this balancing
act, while the “right leg” lent its support via servos 9 and 11 for larger FB and RL
error values, i.e., for larger angles of the standing platform (statements 77–90).

 As previously mentioned in Chap. 3 , the AX-S20 is no longer available from
ROBOTIS, and the author is not aware if ROBOTIS is working on a similar sensor
for the CM-5XX series. For the OpenCM-9.04-B controller, a more recent inertia-
measuring device such as the SEN-11486 (MPU-9150) (https://www.sparkfun.com/
products/11486) was incorporated into the OpenCM IDE V.1.0.2, but so far the
author is not aware of an adaptation of this IMU device to the OpenCM-9.04-C or
the CM-5XX series.

9.2 Humanoid Dynamic Balance with GS-12

 A “2-legs balance” application, similar to the one made for the AX-S20 (see
Sect. 9.1.1), could be created for the GS-12 also. Please review the enclosed fi les
“BalAct_2Legs.mtn” and “BalAct_2Legs_Gyro_Balance.tsk”. The enclosed video
clip “Video 9.3 ” explained the algorithm used and showed the performance obtained
on a Humanoid Type A and a CM-530 controller.

 Fig. 9.6 Humanoid Type
A 1-leg balancing using
AX-S20

9.2 Humanoid Dynamic Balance with GS-12

http://dx.doi.org/10.1007/978-3-319-20418-5_3
https://www.sparkfun.com/products/11486
https://www.sparkfun.com/products/11486

134

 A more extensive application of the GS-12 sensor to the operations of a Humanoid
A robot was also illustrated in the example TSK and MTN fi les provided by
ROBOTIS (see fi les “BIO_PRM_Humanoid_A.tsk” and “BIO_PRM_Humanoid_A.
mtn”). Figure 9.7 showed Ports 3 and 4 being used for the GS-12 in our demonstra-
tion robot Bal’Act.

 The GS-12 measured angular rates with respect to the (X, Y) axes (see Fig. 9.8)
and the range of possible values for its outputs were from “45” (i.e., −300°/s) to
“455” (i.e., +300°/s), with “250” corresponding to “0°/s” (a condition very hard
to obtain in practice as the GS-12 was very sensitive to vibrations and signal
noises).

 In the TASK fi le “BIO_PRM_Humanoid_A.tsk”, the function “InitializationGyro”
(statements 840–873) collected ten consecutive readings of Ports 3 and 4 and com-
puted their average values “FBBalCenter” and “RLBalCenter” respectively. Next, it
used these average values to ascertain whether the GS-12 actually existed or not
(statements 861–864). If the GS-12 existed, the parameters “ExistGyro” and
“GyroUse” would be set to TRUE, also the “Slip” parameter would be set to “0”
(statements 860, 871 and 872). The “Slip” parameter was used to detect whether a
“fall” had occurred to the robot (discussed later in Sect. 9.2.2).

 Fig. 9.7 GS-12 panel inside MANAGER tool

9 Advanced Sensors

135

9.2.1 Walk Enhancement with GS-12

 If the GS-12 sensor was properly installed and working (parameters “ExistGyro”
and “GyroUse” set to TRUE), the CALLBACK function inside the example code
“BIO_PRM_Humanoid_A.tsk” was designed to stabilize the FB and RL motions
when the robot was performing its programmed actions.

 This CALLBACK function illustrated a similar data processing approach to the
one used for the AX-S20, but with some important differences:

 1. Read in current data from Ports 3 and 4 and compute the error signals
“FBBalError” and “RLBalError” (statements 879–883).

 2. Scale these error values appropriately and apply these scaled values to the joint
offsets of the servos corresponding to the “hip” (IDs = 9, 10), “knee” (IDs = 13,
14) and “ankle” (IDs = 15–18) parts of the robot (statements 890–907).

 3. The reader could still see the “mirror” characteristic in setting the joint-offsets of
the “left” and “right” matching servos (for example, statements 899 and 901 for
the “knee” servos).

 4. Importantly, the reader should note that FB error signals were applied only to
servos affecting the FB rotational direction, i.e., servos 13, 14, 15 and 16
 (statements 899–902). While the RL error signals were applied only to those
servos affecting the RL rotational direction, i.e., servos 9, 10, 17 and 18 (state-
ments 904–907). Please contrast this approach to the one used for the AX-S20
which incorporated both FB and RL error terms in computing the servos
 joint-offset values (Sect. 9.1.1).

 Fig. 9.8 Coordinates system used by the GS-12 for Bal’Act robot

9.2 Humanoid Dynamic Balance with GS-12

136

9.2.2 Fall Detection with GS-12

 The CALLBACK function inside the “BIO_PRM_Humanoid_A.tsk” program was
also designed to detect a “fall” of the robot via the parameter “FBBalError” (state-
ments 885–888):

 1. If the robot fell forward, its FBBalData’s value would be close to 45 (see
Fig. 9.8), i.e., smaller than the value for FBBalCenter (which should be around
250) (statement 882). Thus FBBalError’s value would be less than “−200”, and
consequently parameter “Slip” would be set to “1” (statements 887–888).

 2. Conversely, if the robot fell backward, its FBBalData’s value would be close to
455, thus FBBalError’s value would be more than “200”, and consequently
parameter “Slip” would be set to “−1” (statements 885–886).

 3. Once the controller fi nished its CALLBACK cycle and got back to the main
code, an IF structure (statements 307–319) would detect this condition and acted
on it by fi rst stopping all walking motions (statements 309–310), and then played
either Motion Page 27 or 28 depending on whether the robot fell forward
(Slip == 1) or backward (Slip == −1), respectively. Once the robot fi nished with
either Motion Page 27 or 28, parameter Slip was reset to 0 and the controller
continued on with this TSK program. Please note that there was no way for the
robot to check if it actually stood back up successfully into its normal standing
position, after playing Motion Pages 27 or 28, without the use of a sensor equiva-
lent to the AX-S20.

9.3 Humanoid Balance with FPS

 As previously mentioned in Chap. 3 , the foot pressure sensor FPS from HUV
Robotics is no longer available commercially, but it illustrates an important class of
sensor needed for bipedal motion, so it still has some instructional value. This work
was also done by Mr. Matthew Paulishen.

 The HUV-FPS sensor is Dynamixel-compliant and it actually had four sensing
pads, thus acquiring data from them presented a small challenge as the CALLBACK
function would only allow two device calls in its code section. Section 9.3.1 showed
how to adapt this constraint to the FPS sensor.

9.3.1 FPS Data Acquisition

 As an illustration of the approach used, the reader is referred to the two fi les
“BalAct_1Leg_FPS.mtn” and “BalAct_RLeg_FPS_DA.tsk” fi les. Figure 9.9
showed the Dynamixel IDs and addresses scheme used in these demonstration
codes.

9 Advanced Sensors

http://dx.doi.org/10.1007/978-3-319-20418-5_3

137

 In the “BalAct_1Leg_FPS.mtn” fi le, Motion Pages 1 and 2 were used for a right
instrumented foot during the “initialization” and “balance” phases respectively.
While Motion Pages 5 and 6 were used in case of a left instrumented foot. Motion
Pages 2 and 6 were set to get into a continuous play mode.

 The “BalAct_RLeg_FPS_DA.tsk” program started out by making the robot go
through Motion Pages 1 then 2, i.e., to put the robot into a similar posture as in
Fig. 9.6 , but on its right leg (see video fi le Video 9.4). Next, if the user pushed the
“Up” button, the bot would collect data from the four pressure pads (addresses 26,
28, 30 and 32) and average them out into four parameters:

 1. IFFSR (address 26) for the Inside-Front FSR.
 2. OFFSR (address 28) for the Outside-Front FSR.
 3. IRFSR (address 30) for the Inside-Rear FSR.
 4. ORFSR (address 32) for the Outside-Rear FSR.
 5. These initial values were then displayed in the Output Window (statements

57–60).

 Then, if the user also pushed the “Right” button, the CALLBACK function
would be activated. As there was a limit of two device calls in each 8 ms cycle of
the CALLBACK function (statements 80–81), the data collecting and processing
scheme used was to rotate through the relevant addresses (26≫28≫30≫32), via
the setting of parameter “CurAdd”, one at a time, during each consecutive cycle
(statements 84–103). Thus during each CALLBACK cycle, two values of the “cur-
rent” FSR data were collected (statements 80–81) and its average value saved into
the appropriate parameters IFFSR, OFFSR, IRFSR or ORFSR as controlled by the
value of “CurAdd” parameter via the IF-ELSE-IF structure.

 Fig. 9.9 Dynamixel IDs and Addresses scheme for HUV FPS sensor

9.3 Humanoid Balance with FPS

138

9.3.2 Humanoid 1-Leg Balance with FPS

 The “BalAct_1Leg_FPS_Balance.tsk” program was designed to be used with the
“BalAct_1Leg_FPS.mtn” fi le to achieve a 1-Leg balance solution for a Humanoid
A robot, using the HUV FPS sensors instead of the AX-S20 as previously done in
Sect. 9.1.2 .

 This TSK program started out by initializing parameters UseBalance and
HUMANOID and by zeroing out the joint-offsets of all 18 servos (statements
19–21).

 Next, the robot needed to detect how many feet were instrumented and to help
the user in deciding which one to serve as the balance foot. It accomplished this task
by reading from address 0 of each of the 2 possible Dynamixel IDs (121 and 122,
via statements 24 and 25). Then the robot went through an IF-ELSE-IF structure to
fi gure out four possible outcomes (statements 26–74):

 1. If no FPS was detected, the robot would play Melody 16 twenty times and quit
the TSK program entirely (statements 26–36).

 2. If the right FPS was detected, the robot would set parameter FOOT to 1 and play
Melody 0 (statements 38–45).

 3. If the left FPS was detected, the robot would set parameter FOOT to 5 and play
Melody 1 (statements 46–53).

 4. If both FPS were detected, the robot would play Melody 0 and then waited on the
user to enter his or her choice of either the Left or Right leg to balance on, via the
Left or Right buttons respectively (statements 61–73).

 The robot next settled into its initial Motion Page (1 or 5 depending on the
 balance foot—statements 77–81) and waited for the user to push button “Up” (state-
ment 83). And once “Up” was pushed, the robot activated its Balance Motion Page
(2 or 6) and called the function “NOIBAL” (statements 109–279).

 The function “NOIBAL” was essentially an endless loop wherein the robot could
execute several possible tasks:

 1. The user could push the “Down” button to make the robot stop balancing (i.e.,
set UseBalance to FALSE), and to reset all joint offsets by calling the function
ZeroJoints (statements 268–276). Then the user could push the “Up” button to
set UseBalance to TRUE and call for a new set of reference values for the FSR
by calling function ReferenceFootSensorValues (statements 113–119).

 2. When UseBalance was set to TRUE, the robot enter a large code segment (state-
ments 120–277), whereas it computed the average value of fi ve FSR readings
and compared them to the respective reference values (i.e., “nom” parameters) in
order to fi gure out how much to adjust the joint-offsets of appropriate servos
among the servos 11, 12 and 15 for FB balance, and the servos 9, 10 and 17 for
LR balance.

 The video fi le Video 9.5 showed the actual performance of this solution.

9 Advanced Sensors

139

9.4 HaViMo2 Applications

 The HaViMo2 color video camera (Fig. 9.10) was developed by Dr. Hamid
Mobalegh for RoboCup applications (http://www.havisys.com/?page_id=8). It was
Dynamixel compliant (3-pin TTL) and had a locked ID = 100, which happened to be
the default ID for a typical AX-S1 sensor also, thus the user would need to make
proper ID adjustment on the AX-S1 if he or she planned to use these two sensors on
the same robot.

 This camera was compatible with the CM-5/CM-510/CM-700/CM-530 control-
lers via RoboPlus Task or directly via ROBOTIS’s Embedded C tools (see Chap. 10).
It was known that this camera had some latency issue with the CM-530 fi rmware
(V. 1.1969) and users would need to install an alternate CM-530 fi rmware (http://
www.havimo.com/?p=130).

 It also worked with the Open-CM IDE on the CM-9.00 and CM-9.04 controllers
(see Chap. 10).

9.4.1 HaViMo2 Features and Usage

 The HaViMo2 camera was based on the CMOS image sensor HV7131RP
(MagnaChip Semiconductor, c. 2005) and had on-chip image processing capabili-
ties (http://www.havimo.com/?page_id=32).

 Fig. 9.10 Dynamixel-
compliant color camera
HaViMo2

9.4 HaViMo2 Applications

http://www.havisys.com/?page_id=8
http://dx.doi.org/10.1007/978-3-319-20418-5_10
http://www.havimo.com/?p=130
http://www.havimo.com/?p=130
http://dx.doi.org/10.1007/978-3-319-20418-5_10
http://www.havimo.com/?page_id=32

140

 The following RoboSavvy.com web site had practical documentation and soft-
ware downloads for this camera (http://robosavvy.com/store/product_info.php/
manufacturers_id/21/products_id/639). Its video frame resolution was at 160 × 120
pixels, with color depth at 12 bits YCrCb and it had a maximum frame rate of 19 fps
(interlaced). Its capabilities were better realized on a faster MCU such as the ARM
controller used in the CM-530 and Open-CM-9.00/9.04. This camera required a
PC-side application called HaViMoGUI (downloadable from RoboSavvy) to get
itself calibrated to the light source used (a very important step) and to set its color
look-up table LUT (up to eight distinct colors, i.e., background + 7 user-created).
Once the LUT was set, up to 15 contiguous objects (regions) could be identifi ed
during run-time. For each of these regions, the camera could report on its Color,
row-column coordinates of its Center of Mass, Number of Pixels and its Bounding
Box. The user is recommended to consult the enclosed fi le “HaViMo2UserManual.
pdf” for more details Mobagleh (2010).

9.4.2 HaViMo2 Application to a CM-5 CarBot

 Figure 9.11 showed the CM-5 robot platform used to illustrate how to interface and
program a HaViMo2 camera using the RoboPlus software suite.

 Fig. 9.11 HaViMo2 camera with CM-5 and USB2Dynamixel

9 Advanced Sensors

http://robosavvy.com/store/product_info.php/manufacturers_id/21/products_id/639
http://robosavvy.com/store/product_info.php/manufacturers_id/21/products_id/639

141

 As the HaViMo2 camera required rather lengthy procedures for its calibration
and programming tasks, two video tutorials were made to inform the reader about
those procedures:

 1. In “Video 9.6”, the goal was to show how to access the camera via an
USB2Dynamixel module (a more direct approach preferred by the author over
other “through-connections” via the controllers CM-5XX). The reader is referred
to page 3 of the document “HaViMo2UserManual.pdf” for more details on other
possible hardware setups. This video also showed how to use the HaViMoGUI
application to calibrate the camera and defi ne the LUT to characterize the colors
of four painted wooden dowels. Additionally, it illustrated the use of the program
“Carbot_Visual_Track.tsk” to track those same wooden dowels.

 2. In “Video 9.7”, more fi ne-tuning of the controlling parameters inside the pro-
gram “Carbot_Visual_Track.tsk” was performed, and the program “Carbot_
Find&Approach.tsk” was demonstrated. Essentially, the Carbot was
programmed to fi nd a user-designated colored dowel and drove up to get closer
to it.

 The reader readily noticed that the color tracking work was performed rather
slowly, this was because the CM-5 was an Atmel AVR MCU running only at
16 MHz and we were using the TASK tool which had some computing overhead.
When the HaViMo2 was used on a pan-tilt apparatus using a CM-530 and a TASK
program, the performance was improved perceptively (https://www.youtube.com/
watch?v=pog2gzpjo7g&list=UUGIds85x7Q_nBOReZ818LJQ) because of a faster
clock rate and a more effi cient MCU were used. When switching to an embedded C
version on a CM-510, the performance got further improved showing the power of
direct C control of the Atmel AVR MCU (https://www.youtube.com/watch?v=pMb
SqkshNZo&list=UUGIds85x7Q_nBOReZ818LJQ&index=35). Finally, on an
OpenCM-9.04B, the performance was much more improved, combining faster
MCU clock rate and effi cient architecture (https://www.youtube.com/watch?v=kC
H8F4lXXZM&list=UUGIds85x7Q_nBOReZ818LJQ).

 As the tutorial videos might not have enough resolution to allow the readers to
see individual lines of codes, the author would like to revisit some of the more
important image capture and processing concepts shown in the TSK programs
“Carbot_Visual_Track.tsk” and “Carbot_Find&Approach.tsk” (both created by Mr.
Matthew Paulishen), in a more text-based manner:

 1. “Carbot_Visual_Track.tsk” . The most important statement in this TSK pro-
gram was Line 21 as shown in Fig. 9.12 . It was used to capture a new video
frame and to start the process of fi nding the regions as defi ned by the “colors”
chosen by the user in the calibration process with the HaViMoGUI tool (see
video “Video 9.6 ”).

 Parameter CamID was hardware-set to 100 and Address 0 was used to trigger
the frame capture process, although the function recommended in the
“HaViMo2UserManual.pdf” was “CAP_REGION” (i.e., Address 0x0E) as
shown in Table 1 of Page 6 of that PDF document. Next was a “do-thing” loop

9.4 HaViMo2 Applications

https://www.youtube.com/watch?v=pog2gzpjo7g&list=UUGIds85x7Q_nBOReZ818LJQ
https://www.youtube.com/watch?v=pog2gzpjo7g&list=UUGIds85x7Q_nBOReZ818LJQ
https://www.youtube.com/watch?v=pMbSqkshNZo&list=UUGIds85x7Q_nBOReZ818LJQ&index=35
https://www.youtube.com/watch?v=pMbSqkshNZo&list=UUGIds85x7Q_nBOReZ818LJQ&index=35
https://www.youtube.com/watch?v=kCH8F4lXXZM&list=UUGIds85x7Q_nBOReZ818LJQ
https://www.youtube.com/watch?v=kCH8F4lXXZM&list=UUGIds85x7Q_nBOReZ818LJQ

142

for 0.256 s (lines 22–23) to allow the fi rst image capture process to go through
before the TSK program went into its Endless Loop to fi nd the wanted color
object and track it with the Carbot’s AX-12s.

 Line 28 called the function “Get_Bounding_Box” (defi ned at lines 81–113)
which looked at the data structure returned by the HaViMo2 to see if any valid
region, defi ned by the user’s “Color” parameter as set on Line 14 of this TSK
program, was actually found. Figure 9.13 displayed the FOR loop used to go
through the 15 possible regions provided by the HaViMo2 fi rmware for each
frame captured and processed (see line 84). Thus, for example, “Index” equaled
“1” for the fi rst region and “Addr” correspondingly equaled “16”. Next the TSK
program looked at the “Byte” found at Address “Addr” (line 87), and if this
“Byte” was non-zero, this was a valid region. Essentially, this “Byte” corre-
sponded to the parameter “Index” as shown in Fig. 3 of the “HaViMo2UserManual.
pdf” document.

 The information in this Fig. 3 was also reproduced below for the reader’s
convenience:

• Index (1 byte)—zero if the region is invalid and nonzero otherwise.
• Color (1 byte)—color code of the detected region (0 = Unknown, or 1–7).
• Pixels (2 bytes)—number of detected pixels inside the region.
• SumX (4 bytes)—sum of the X coordinates of the detected pixels.
• SumY (4 bytes)—sum of the Y coordinates of the detected pixels.
• MaxX (1 byte)—bounding box right margin.
• MinX (1 byte)—bounding box left margin.
• MaxY (1 byte)—bounding box bottom margin.
• MinY (1 byte)—bounding box top margin.

 Now that the TSK program had read in the value for parameter Index (line 87)
and found that Index was non-zero, it would next increment Addr by 1 to get to
the Color member of this 16-byte data structure. If this Color member matched
with the Color parameter (set back in line 14), it incremented Addr again by 1 to
get to the Size of the current detected region (2 bytes = 1 word, see lines 92–93).
In this particular example, we were interested in tracking only ONE object/region,
thus the use of the IF structure to fi nd the biggest one among the 15 regions (see

 Fig. 9.12 Line 21—CUSTOM Command to capture and process a new video frame with
HaViMo2

9 Advanced Sensors

143

lines 94–98). At the completion of the FOR LOOP, parameter Max would con-
tain the Size of the largest valid region with the matching Color, and parameter
MaxAddr would contain the current pointer address (i.e., still pointing at the
Pixels data member of the 16 byte data structure for this largest valid region).

 Next, if Max was non-zero (i.e., valid region), the TSK program started from
the MaxAddr value and jumped ahead by 10 bytes to get to the MaxX data mem-
ber and saved that value in parameter Maxx (lines 104–105). Then it incremented
Addr by 1 byte to get to MinX and therefore Minx (lines 106–107). Parameters
Maxx and Minx would be used later in the main function to compute the appro-
priate steering commands for the CarBot in order to keep the user-defi ned object
in front of the HaViMo2 camera as much as possible (lines 29–73).

 2. “Carbot_Find&Approach.tsk” . This TSK program used the same function
“Get_Bounding_Box” to fi nd the largest region of interest, but this implementa-
tion used the RC-100’s buttons 1-2-3-4 to set the color wanted by the user on the
fl y (lines 31–61). It also added new codes to check on the current Size of the
target (i.e., region of interest) and from there it could decide whether to com-

 Fig. 9.13 Function “Get_Bounding_Box” to extract data out of the 15 regions

9.4 HaViMo2 Applications

144

mand the carbot to get closer or to back away from the target to maintain a user-
given TargetSize (lines 103–126).

9.5 Review Questions for Chap. 9

 1. Why was the AX-S20 sensor mounted in the head of the Humanoid robot?
 2. Why was the GS-12 sensor mounted in the abdomen of the Humanoid robot?
 3. How many device calls are allowed in the CALLBACK function?
 4. Is there a size limitation on the CALLBACK function?
 5. What was the resolution in degree of the Azimuth, Pitch and Roll angles

 provided by the AX-S20?
 6. How many bits were contained in the X-Y-Z acceleration data provided by the

AX-S20?
 7. What is the refresh rate for data provided by the AX-S20 sensor?
 8. What is the refresh rate for data provided by the GS-12 sensor?
 9. What was the procedure used to activate the Joint Offsets of the actuators used

in the balancing of the Humanoid robot whether one uses the AX-S20 or
GS-12?

 10. The AX-S20 is a Dynamixel-compliant sensor. (T-F)
 11. The GS-12 is a Dynamixel-compliant sensor. (T-F)
 12. What is the value range for the digital output from the GS-12 sensor?
 13. The HUV Robotics FPS sensor is a Dynamixel-compliant sensor. (T-F)
 14. The HaViMo2 camera is a Dynamixel-compliant sensor. (T-F)
 15. What is the pixel resolution of the HaViMo2 camera?
 16. What is the maximum video frame rate for the HaViMo2 camera?
 17. What is the color space used by the HaViMo2 camera? What is its color depth

in terms of binary bits?
 18. How many distinct colors can be saved in the color look-up table for the

HaViMo2 camera?
 19. How many contiguous objects/regions can the HaViMo2 search for during each

cycle of operation?

9.6 Review Exercises for Chap. 9

 1. Starting from the program “Carbot_Find&Approach.tsk”, the reader could
develop a slalom negotiating Carbot project using the HaViMo2 camera to weave
around colored dowels, as shown in this video clip from a University of Georgia
student (see video fi le “Video 9.8”).

 2. Other National Taiwan University students mounted the HaViMo2 camera onto
a PREMIUM GERWALK to perform the same Find and Approach feature for a

9 Advanced Sensors

http://dx.doi.org/10.1007/978-3-319-20418-5_9
http://dx.doi.org/10.1007/978-3-319-20418-5_9

145

given color patch. This work was more challenging as the GERWALK was
always “jiggling” the camera, thus it could only capture and process images dur-
ing a short time when the camera was level. The students also used the DMS
sensor to command the robot to stop when close enough to the target (view fi le
“Video 9.9” or https://www.youtube.com/watch?v=HWxMwvFriMc).

 References

 Chevallereau C et al (2009) Bipedal robots. Wiley, Hoboken
 Kajita S et al (2014) Introduction to Humanoid robotics. Springer, Heidelberg
 Mobagleh H (2010) HaViMo2 image processing module. http://robosavvy.com/RoboSavvyPages/

Support/Hamid/HaViMo2.pdf . Accessed 29 Dec 2014

References

https://www.youtube.com/watch?v=HWxMwvFriMc
http://robosavvy.com/RoboSavvyPages/Support/Hamid/HaViMo2.pdf
http://robosavvy.com/RoboSavvyPages/Support/Hamid/HaViMo2.pdf

147© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_10

 Chapter 10
 Embedded C Options

 Chapter 9 showed that in order to get the maximum performance out of ROBOTIS
systems, ones must consider the “Embedded C” routes which happened to be quite
numerous. Some of the resources that I know of are listed below (and I know that I
have missed many):

• Vanadium Labs had been supporting the ArbotiX RoboController line, Atmel
AVR-based (http://www.vanadiumlabs.com/arbotix.html). It is supported by the
ROS organization (http://wiki.ros.org/arbotix).

• The Humanoid Lab provides C libraries for the Bioloid Premium (http://apollo.
upc.es/humanoide/trac/wiki/bioloidCframeworks) via Windows and Linux.

• BioloidCControl is an alternative fi rmware for BIOLOID PREMIUM Humanoids
A/B/C (https://code.google.com/p/bioloidccontrol/).

• “Software Souls” also offer another approach (http://softwaresouls.com/
softwaresouls/series/programming-robotis-bioloid-hardware/).

• Another interesting product is the USB2AX which is equivalent to the
USB2Dynamixel module (http://www.xevelabs.com/doku.php?id=product:usb2
ax:usb2ax) for Windows, Linux and MacOS systems.

• As far as Arduino books go, there are many in existence to suit the reader’s
skills and goals, but I would recommend the classic “Arduino Cookbook” by
Margolis (2011).

 However this chapter’s main topics would stay with the offi cial ROBOTIS
Embedded C routes. Historically speaking, Embedded C was fi rst available for the
CM-5 via its BIOLOID Expert Kit (c. 2006, but it is no longer available) and
 currently Embedded C functionality is offered only for the CM-510/700/530
and the OpenCM-9.00/9.04 series.

 Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-
319- 20418-5_10) contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-3-319-20418-5_9
http://www.vanadiumlabs.com/arbotix.html
http://wiki.ros.org/arbotix
http://apollo.upc.es/humanoide/trac/wiki/bioloidCframeworks
http://apollo.upc.es/humanoide/trac/wiki/bioloidCframeworks
https://code.google.com/p/bioloidccontrol/
http://softwaresouls.com/softwaresouls/series/programming-robotis-bioloid-hardware/
http://softwaresouls.com/softwaresouls/series/programming-robotis-bioloid-hardware/
http://www.xevelabs.com/doku.php?id=product:usb2ax:usb2ax
http://www.xevelabs.com/doku.php?id=product:usb2ax:usb2ax
http://dx.doi.org/10.1007/978-3-319-20418-5_10
http://dx.doi.org/10.1007/978-3-319-20418-5_10

148

 Chronologically and for the international market, the Embedded C utilities for
the CM-510 came out fi rst in early 2010, next were the ones for the CM-530 in
Spring 2012. While the OpenCM-9.00/9.04 systems came out in 2012–2013 and the
last hardware component OpenCM-485-EXP came out in Summer 2014. However,
for a better fl ow of the topics in this book, I would start with the OpenCM IDE for
the OpenCM-9.00/9.04 series and end this chapter with Embedded C for the
CM-510/530 systems, as I expect that most readers of this book would start with the
RoboPlus system and the CM-5XX series for their ROBOTIS journey. I also realized
that I would have to assume that the reader had some prior knowledge of C/C++
programming or had access to a good C/C++ programming resource, as that topic
would be outside the scope of this book. Thus my overall goal for this chapter was
to contrast similarities and differences in usage between RoboPlus and Embedded
C tools regarding:

• General use differences to note between RoboPlus TASK and Embedded C.
• OpenCM IDE for the OpenCM-9.00/9.04 family.
• Embedded C options for the CM-510 and CM-530 systems.
• Motion Programming and Embedded C.

10.1 Embedded C vs. RoboPlus’ TASK

 The TASK tool was designed for beginners in robotics and also in computer pro-
gramming skills, thus its interface shielded the user from important details that
could not be ignored when switching to Embedded C interfaces:

 1. Data Types . A TASK programmer only needed to declare a parameter’s name
and started to use it anywhere in the TSK code, and this parameter could only
handle integer values anyhow. Embedded C would allow all the standard data
types—integer, fl oating-point and more complex data structures. The TASK pro-
grammer could already get a taste of things to come with the CUSTOM com-
mand for Controller and Dynamixel (see Figs. 9.12 and 9.13) whereas one had to
choose between a BYTE (8 bits) or a WORD (16 bits) data type to properly read
or write to a given parameter or device (such as for the HaViMo2 camera in
Chap. 9).

 2. Assignments and Function (Method) Calls . Typically, about 90 % of all the
statements used in a TASK program would be of the Assignment type (A = B,
i.e., the value of parameter B is assigned to parameter A). For example, to set a
Goal Position on an AX-12 with ID = 3 to a value of 800, the TASK user would
type in the following statement:

 ID[3]: Goal Position = 800

 Switching to Embedded C, the C/C++ user would use a Function (Method)
Call instead:

10 Embedded C Options

http://dx.doi.org/10.1007/978-3-319-20418-9
http://dx.doi.org/10.1007/978-3-319-20418-9
http://dx.doi.org/10.1007/978-3-319-20418-5_9

149

 Dxl.writeWord(3, 30, 800);

 where argument “3” corresponded to the ID, while argument “30” corresponded
to the address of the Goal Position parameter as defi ned in the Control Table of
the AX-12 (see web link at http://support.robotis.com/en/product/dynamixel/
ax_series/dxl_ax_actuator.htm), and argument “800” was the desired value for
the Goal Position. In other words, the majority of the statements used in
Embedded C would be Method Calls which required the proper setting of many
formal parameters to properly use that Method. Therefore it would require the
user to be familiar with the Control Table of each type of ROBOTIS actuators
and sensors that were used in the robot being considered. This Control Table
would also inform the user of the proper Data Type to use (BYTE or WORD).

 An alternative Method Call, with a syntax much closer to the one used in the
previous TASK statement, could also be used:

 Dxl.goalPosition(3, 800);

 3. Devices . In the previous sub-section, the reader might have noticed the “Dxl.”
notation used in the Method Call Dxl.goalPosition(3, 800). Actually, there were
two other statements that must have been asserted before a C/C++ programmer
could use the Method goalPosition() properly:

 (a) Dynamixel Dxl(1); to defi ne the object “Dxl” as a “Dynamixel” device that
was associated with Serial Bus “1” (i.e., argument “1” within the parenthe-
ses) which corresponded to the 3-pin TTL bus on each ROBOTIS controller
(from CM-5 to OpenCM-9.04—see Fig. 10.1).

 (b) Dxl.begin(3); to initialize the communication with the object “Dxl” (i.e.,
with the Dynamixel 3-pin TTL bus) at a baud rate of 1 Mbps (i.e., argument
“3” within the parentheses).

TTL 3-pin & RS485 4-pin
Serial 1

4-pin
Serial 2 4-pin

Serial 2

TTL 3-pin
Serial 1

5-pin
GPIO

 Fig. 10.1 OpenCM-9.00V. 1 (left) and OpenCM-9.04/B (right)

10.1 Embedded C vs. RoboPlus’ TASK

http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm
http://support.robotis.com/en/product/dynamixel/ax_series/dxl_ax_actuator.htm

150

 For devices using the 5-pin bus (see Fig. 10.2), a similar process needed to be
used, but with the OLLO device:

 (a) OLLO myOLLO; to defi ne the object “myOLLO” as an “OLLO” device
corresponding to the GPIO 5-pin bus on ROBOTIS controllers such as
CM-510/530 and OpenCM-9.04/A/B/C.

 (b) myOLLO.begin(2); to initialize the particular “myOLLO” device that was
hooked up to the GPIO port “2” (as an example).

 (c) myOLLO.read(2); to read the device’s current response at port “2” as a
digital value.

 Please note that a TASK programmer would never have to worry about this kind
of details, as the TASK tool took care of associating and initializing Dynamixel
and OLLO devices in the background. The video fi le “Video 10.1 ” was a side-
by-side comparison of a TSK program (on a CM-530—“TSKvsIDE.tsk”) and a
C program (on an OpenCM-9.04/B—“TSKvsIDE.ino”) designed to do the same
operations on an AX-12 actuator and a DMS sensor. This video fi le also showed
how to adapt this “TSKvsIDE.ino” sketch to the situation when the AX-12 was
connected to the TTL bus on the 485-EXP board (see next paragraph on
 communication ports for more details).

 4. Communication Ports . Just as “Dynamixel” devices were connected via Serial
Bus 1, per-se “communication” devices such as the LN-101 (wired) and ZIG-
110 or BT-110/210 (wireless) were programmed to connect via Serial Bus 2 (i.e.,
through the 4-pin connector (see Figs. 10.1 and 10.2). At present (i.e., November
2014), only the OpenCM 485-EXP expansion shield is assigned to Serial Bus 3
(see Fig. 10.2) and it can be programmed with the OpenCM IDE but NOT with
the TASK tool.

TTL 3-pin
Serial 3RS485 4-pin

Serial 3
OpenCM-9.04/C

 Fig. 10.2 OpenCM- -
9.04/C on top on a 485
EXP shield

10 Embedded C Options

151

 5. Dynamixel Communication Protocols 1 and 2 . Previously, all ROBOTIS
Dynamixels used the same communication protocol (http://support.robotis.com/
en/product/dynamixel/dxl_communication.htm), but with the introduction of
the PRO line in 2012 and then the XL-320 in 2013, a second communication
protocol was needed with different instruction/status packet design and faster
baud rates (http://support.robotis.com/en/product/dynamixel_pro/ communication.
htm). At present, ROBOTIS supports mixed-protocol programming only on the
OpenCM IDE (i.e., with the OpenCM-9.04/A/B/C) and it would require the use
of the Method setPacketType (DXL_PACKET_TYPE) whereas the parameter
DXL_PACKET_TYPE is set (as expected) to “1” for Protocol 1 and “2” for
Protocol 2. Most importantly, the Method setPacketType() had to be used to set
the appropriate DXL_PACKET_TYPE before any communication to the respec-
tive type of Dynamixel (protocol 1 or 2)—see example code below:

 // Dynamixel with ID_1 uses Protocol 1
 Dxl.setPacketType(1);
 Dxl.goalPosition(ID_1, 512); // go to position 512
 delay(1000); // delay 1 second
 // Dynamixel with ID_3 uses Protocol 2
 Dxl.setPacketType(2);
 Dxl.goalPosition(ID_3, 1023);
 delay(500); // delay 0.5 second

10.2 Embedded C for the OpenCM-9.00/9.04

 The current version for the OpenCM IDE is version 1.02, available since early
2014 (http://support.robotis.com/en/software/robotis_opencm.htm) and a User’s
Manual for the OpenCM-9.04 system and other hardware information are available
at http://support.robotis.com/en/product/controller/opencm9.04.htm . Although the
OpenCM-9.00 controller is no longer available commercially, enclosed with this
book is a ZIP fi le that has technical information for this system (OpenCM-900-
Manuals.zip). Other “community” resources exist such as “robotsource.org”,
 “trossenrobotics.com” and “robosavvy.com”, just to name a few. Also as the
OpenCM IDE was based on the Arduino architecture, there are numerous resources
in print and on the web for Arduino that the user could consult to go beyond the
ROBOTIS manuals.

 As the ROBOTIS manuals and web sites were already providing good instruc-
tions for installing the OpenCM IDE and for its basic and advanced uses, this section
would only illustrate two example projects that hopefully will be useful to the
beginning Embedded C programmer:

 1. The video fi le “Video 10.2 ” described the remote control of a CarBot equipped
with BT-210 by the Virtual RC-100 from inside the ROBOPLUS MANAGER

10.2 Embedded C for the OpenCM-9.00/9.04

http://support.robotis.com/en/product/dynamixel/dxl_communication.htm
http://support.robotis.com/en/product/dynamixel/dxl_communication.htm
http://support.robotis.com/en/product/dynamixel_pro/communication.htm
http://support.robotis.com/en/product/dynamixel_pro/communication.htm
http://support.robotis.com/en/software/robotis_opencm.htm
http://support.robotis.com/en/product/controller/opencm9.04.htm

152

tool on the PC side. The corresponding Arduino Sketch fi le was named
“CM9_Carbot_RC.ino” and included with this book.

 2. The video fi le “Video 10.3 ” described the use of a 485-EXP expansion shield
with an OpenCM-9.04/B and also the mixing of Dynamixel protocols. The cor-
responding Arduino Sketch fi le was named “CM9_Mixed_Protocols.ino” and
included with this book.

 In Sect. 9.4.2 , an early model of OpenCM-9.04/B was shown to have worked
well with the HaViMo2 camera using the ROBOTIS IDE V.1 (c. 2013) (https://
www.youtube.com/watch?v=kCH8F4lXXZM&list=UUGIds85x7Q_nBORe-
Z818LJQ). Unfortunately, the author had been not able to reproduce the same
results using the current model of the OpenCM-9.04/B and the current ROBOTIS
IDE V.1.0.2. The attempted sketch “CM9_CarbotHaViMo2.ino” was enclosed with
this book for the reader’s reference. This sketch compiled successfully but the
HaViMo2 never responded to the fi rst ping to this Dynamixel, invoked in a call to
the method hvm2.ready().

10.3 Embedded C for the CM-510 and CM-530

 The current C/C++ programming SDK (V. 1.02) for the CM-510/CM-700 is
accessible at http://support.robotis.com/en/software/embeded_c/cm510_cm700.htm
while the corresponding one for the CM-530 can be found at http://support.robotis.
com/en/software/embeded_c/cm530.htm .

 These two web sites also have detailed information about installing the needed
tool chains for these two controllers:

 1. The CM-510/CM-700 tool chain recommended by ROBOTIS is WinAVR and
Atmel Studio (http://support.robotis.com/en/software/embeded_c/cm510_
cm700/embeded_c_start.htm). Although it is also possible to use the Eclipse
IDE with WinAVR (see Sect. 10.3.1).

 2. The CM-530 tool chain recommended by ROBOTIS is JRE, WinARM and
Eclipse (http://support.robotis.com/en/software/embeded_c/cm530/embeded_c_
start_stm.htm).

10.3.1 Tutorials for CM-510

 ROBOTIS provided tutorial information for the programming of the CM-510 at
(http://support.robotis.com/en/software/embeded_c/cm510_cm700/program-
ming.htm) using the Atmel Studio tool. ROBOTIS also provided many worked
out examples at (http://support.robotis.com/en/software/embeded_c/cm510_cm700/
example.htm).

10 Embedded C Options

http://dx.doi.org/10.1007/978-3-319-20418-9
https://www.youtube.com/watch?v=kCH8F4lXXZM&list=UUGIds85x7Q_nBOReZ818LJQ
https://www.youtube.com/watch?v=kCH8F4lXXZM&list=UUGIds85x7Q_nBOReZ818LJQ
https://www.youtube.com/watch?v=kCH8F4lXXZM&list=UUGIds85x7Q_nBOReZ818LJQ
http://support.robotis.com/en/software/embeded_c/cm510_cm700.htm
http://support.robotis.com/en/software/embeded_c/cm530.htm
http://support.robotis.com/en/software/embeded_c/cm530.htm
http://support.robotis.com/en/software/embeded_c/cm510_cm700/embeded_c_start.htm
http://support.robotis.com/en/software/embeded_c/cm510_cm700/embeded_c_start.htm
http://support.robotis.com/en/software/embeded_c/cm530/embeded_c_start_stm.htm
http://support.robotis.com/en/software/embeded_c/cm530/embeded_c_start_stm.htm
http://support.robotis.com/en/software/embeded_c/cm510_cm700/programming.htm
http://support.robotis.com/en/software/embeded_c/cm510_cm700/programming.htm
http://support.robotis.com/en/software/embeded_c/cm510_cm700/example.htm
http://support.robotis.com/en/software/embeded_c/cm510_cm700/example.htm

153

 If the reader is more interested in using Eclipse with the CM-510, the reader
needs to review the series of 4 video tutorials created by Dr. Yanfu Kuo from
National Taiwan University on YouTube:

 1. https://www.youtube.com/watch?v=csgotzBhbmI —Tutorial 1 described the
basic architecture of the Atmel AVR ATmega2561 and showed how it was imple-
mented on the CM-510. It also showed the detailed steps for programming the
CM-510 from creating an Eclipse project, coding and downloading to the con-
troller using the ROBOTIS Terminal tool. Tutorial 1 showed how to control
devices such as LEDs, buttons, serial communication, buzzer and microphone
already built-in on the CM-510 controller.

 2. https://www.youtube.com/watch?v=OIUkl6iBUfM —Tutorial 2 dealt with sen-
sor interfacing issues using the OLLO NIR sensor as the example. It continued
on showing how to control Dynamixel actuators such as the AX-12, and ended
with a ZigBee communications programming example.

 3. https://www.youtube.com/watch?v=6jZtmN3PXEY —Tutorial 3 showed how to
program the HaViMo2 video camera to track colored objects using a pan-tilt
platform constructed with two AX-12 actuators. The source code is enclosed in
the ZIP fi le “HaViMo2.zip”.

 4. https://www.youtube.com/watch?v=GGjeCOuua9M —Tutorial 4 demonstrated
how to interface the Gyro sensor on a CarBot platform and how to integrate the
Gyro’s angular rate data to obtain an estimate of how much of an angle (in
degrees) that the CarBot had rotated after a given maneuver. The source code is
enclosed in the ZIP fi le “GyroCompass.zip”.

10.3.2 Tutorials for CM-530

 ROBOTIS provided tutorial information for the programming of the CM-530 at
(http://support.robotis.com/en/software/embeded_c/cm530/programming_stm.
htm) using the Eclipse-WinARM tool chain. ROBOTIS also provided several pro-
gramming examples at (http://support.robotis.com/en/software/embeded_c/cm530/
example_stm.htm).

 Unfortunately, there no video resources, known to the author, showing how to
use of the Eclipse-WinARM tool chain for the CM-530, but the CM-510 tutorial
series provided by Dr. Yan-Fu Kuo should serve as a good starting point as they
were also using Eclipse.

10.3.3 Future Support for Embedded C for CM-510/530?

 At present, ROBOTIS had not been updating the CM-510/530 libraries for the new
sensors such as the IR Sensor Array, Color and Magnetic sensors, nor for the 485-
EXP Expansion module, but they did recently release the new Windows and Linux

10.3 Embedded C for the CM-510 and CM-530

https://www.youtube.com/watch?v=csgotzBhbmI
https://www.youtube.com/watch?v=OIUkl6iBUfM
https://www.youtube.com/watch?v=6jZtmN3PXEY
https://www.youtube.com/watch?v=GGjeCOuua9M
http://support.robotis.com/en/software/embeded_c/cm530/programming_stm.htm
http://support.robotis.com/en/software/embeded_c/cm530/programming_stm.htm
http://support.robotis.com/en/software/embeded_c/cm530/example_stm.htm
http://support.robotis.com/en/software/embeded_c/cm530/example_stm.htm

154

Dynamixel Communications Protocol 2.02 (http://support.robotis.com/en/software/
dynamixel_sdk/usb2dynamixel/usb2dxl_windows.htm#bc-1).

10.4 Motion Programming and Embedded C

 With Embedded C SDKs, ROBOTIS had graciously shared their knowledge and
expertise for their robotic systems (BIOLOID and OpenCM) with robotics enthusi-
asts everywhere. However, ROBOTIS still kept their Motion Programming tech-
nologies pretty much proprietary, and this move was very understandable by anyone
who had a closer look at what Motion V.2 could do (more on this tool in Chap. 11).
At present, there are only a few resources dealing with Motion Programming with
the OpenCM IDE.

 Included with the OpenCM IDE (V.1.0.2) were 2 ROBOTIS examples showing
the basics of creating Motion Pages and how to synchronize-play these Motion
Pages:

 1. The fi rst sketch “q_Motion_Page_Play” is accessible via the “File” pull-down
menu≫Examples≫06.Dynamixel≫q_Motion_Page_Play.

 2. The second sketch “s_Manipulator_4DOF” is accessible via the “File” pull-
down menu≫Examples≫06.Dynamixel≫s_Manipulator_4DOF.

 The video fi le “Video 10.4 ” demonstrated the operation of the “q_Motion_Page_
Play” sketch, modifi ed to work with the RC-100 on a set of 4 AX-12s mounted in a
CarBot, but these actuators could also be constructed into a robotic arm such as the
one shown in Fig. 10.3 .

 Mr. Matthew Paulishen had contributed many advances for our UGA robotics
laboratory as shown in earlier Chaps. 8 and 9 . In 2013, he adapted the PyPose tool
from Vanadium Labs (http://vanadiumlabs.github.io/pypose/) into the OpenCM
IDE as the library CM9_BC which could convert a standard MTN fi le into PyPose
data sets. A presentation of his work can be found on YouTube at https://www.
youtube.com/watch?v=iPD5oOFYq3Y . The application of the CM9_BC tool to an
OpenCM-9.00 V.1 can be viewed at this link https://www.youtube.com/watch?v=4X-
KbiOPE4s , while an application on the OpenCM-9.04/B can be watched at this web
site https://www.youtube.com/watch?v=EdlTAVn2d3s .

 Fig. 10.3 4-DOF robotic
arm from BIOLOID STEM
EXPANDED kit

10 Embedded C Options

http://support.robotis.com/en/software/dynamixel_sdk/usb2dynamixel/usb2dxl_windows.htm#bc-1
http://support.robotis.com/en/software/dynamixel_sdk/usb2dynamixel/usb2dxl_windows.htm#bc-1
http://dx.doi.org/10.1007/978-3-319-20418-5_11
http://dx.doi.org/10.1007/978-3-319-20418-5_8
http://dx.doi.org/10.1007/978-3-319-20418-5_9
http://vanadiumlabs.github.io/pypose/
https://www.youtube.com/watch?v=iPD5oOFYq3Y
https://www.youtube.com/watch?v=iPD5oOFYq3Y
https://www.youtube.com/watch?v=4X-KbiOPE4s
https://www.youtube.com/watch?v=4X-KbiOPE4s
https://www.youtube.com/watch?v=EdlTAVn2d3s

155

 More recently (April 2014), Dr. Hamid Mobalegh created a direct walking
engine into an OLLO biped, with four XL-320s, as a sketch for the OpenCM-9.04/B
(http://www.havisys.com/?p=148).

 In conclusion, the Open-CM IDE seemed to be well accepted by a still small
community but interested in developing Open Motion Programming capabilities for
the OpenCM-9.04 systems.

10.5 Review Questions for Chap. 10

 1. Variables in TASK programs can be of the fl oating-point types. (T-F)
 2. An assignment statement in a TASK program would be equivalent to a function

call in Embedded C. (T-F)
 3. What ROBOTIS database would an Embedded C programmer consult in order

to user proper data types for variables used?
 4. What is the most important object in Embedded C for ROBOTIS hardware?
 5. Which type of data bus is the device type Dynamixel associated to?
 6. Which type of data bus is the device type OLLO associated to?
 7. How many serial channels does the OpenCM9.04 systems provide?
 8. Which serial channel is the shield 485 EXP board associated with?
 9. Which serial channel are the GPIO ports associated with?
 10. Which serial channel are the Dynamixel ports associated with?
 11. Which serial channel is associated with communication devices such as ZigBee

and BlueTooth?
 12. Which Dynamixel Communication Protocol does an MX-28 actuator

respond to?
 13. Which Dynamixel Communication Protocol does an XL-320 actuator

respond to?
 14. Describe the tool chain needed to use Embedded C on the CM-510.
 15. Describe the tool chain needed to use Embedded C on the CM-530.
 16. Describe the tool chain needed to use Embedded C on the OpenCM-9.04/B.

10.6 Review Exercises for Chap. 10

 ROBOTIS had created extensive Embedded C example programs for their control-
lers CM-510, CM-530 and OpenCM-9.04/A/B/C that the readers can refer to when
they install these resources on their own PCs.

 Reference

 Margolis M (2011) Arduino cookbook. O’Reilly Media, Sebastopol

Reference

http://www.havisys.com/?p=148
http://dx.doi.org/10.1007/978-3-319-20418-5_10
http://dx.doi.org/10.1007/978-3-319-20418-5_10

157© Springer International Publishing Switzerland 2015
C.N. Thai, Exploring Robotics with ROBOTIS Systems,
DOI 10.1007/978-3-319-20418-5_11

 Chapter 11
 ROBOTIS-MINI System

 In the Spring of 2014, the DARWIN-MINI system was released internationally
using a new controller (OpenCM-9.04-C), with a new communication device (BT-
210) and the new RoboPlus 2.0 suite: TASK, R+ DESIGN and R+ MOTION (V.2).
So far (March 2015), the RoboPlus Manager tool (V.1.0.33.2) could only serve as a
fi rmware updater to the 9.04-C, but the RoboPlus Dynamixel Wizard tool (currently
at V.1.0.19.5) had been modifi ed to work with OpenCM-9.04-C quite well as a
Firmware Update/Recovery tool for the XL-320 actuators as well as for the 9.04-C
controller (see Sect. 4.2.2). The OpenCM-9.04-C could also be used with the
OpenCM IDE V.1.0.2, but it would need a fi rmware recovery (via Manager only and
the micro USB port) to make it work again with the RoboPlus 2.0 suite. In November
2014, the second edition of this system with an improved XL-320 (metal pinion
gear) was renamed ROBOTIS-MINI.

 The robot programming concepts behind ROBOTIS MOTION tools could be
generalized to a research area named Programming by Demonstration (PbD), also
known as Imitation Learning or Apprentice Learning. The interested reader is
referred to Billard et al. (2008), Calinon (2009) and also these web links:

• http://www.scholarpedia.org/article/Robot_learning_by_demonstration
• http://programming-by-demonstration.org/

 This chapter’s main topics are listed below:

• PC wireless options for the MINI.
• New motion concepts in MOTION V.2.
• PC motion control with TASK and MOTION V.2.
• LED integration with TASK and MOTION V.2.
• Choreography for two MINIs.

 Electronic supplementary material: The online version of this chapter (doi: 10.1007/978-3-
319- 20418-5_11) contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-3-319-20418-4
http://www.scholarpedia.org/article/Robot_learning_by_demonstration
http://programming-by-demonstration.org/
http://dx.doi.org/10.1007/978-3-319-20418-5_11
http://dx.doi.org/10.1007/978-3-319-20418-5_11

158

11.1 PC to MINI Wireless Options

 On a mobile device, such as an Android tablet, BlueTooth comes standard thus
mobile users can only use BlueTooth with the ROBOTIS-MINI. However on the
PC, users could choose between ZigBee (ZIG-110A) and BlueTooth (BT-110A or
BT-210).

 The ZIG-110A by default worked at 57.6 Kbps but it could only go up to
115.2 Kbps as it was an older ROBOTIS product (c. 2009), but it could emulate
three modes of communications: 1 to 1 (1:1), 1 to many (1:N) or broadcast (N:N).
In the author’s experiences, upon powering up ZigBee usually achieved connections
much quicker and more reliably than BlueTooth. On the PC side, the user had to use
a combination of three modules (USB2Dynamixel + Zig2Serial + ZIG-100) to make
the connection, but it used only one Serial COM port on the PC side. The ZigBee
N:N option, once set up properly (see Sects. 8.1 and 8.2), could be particularly con-
venient if ones needed multiple robots to communicate with each other without
involving the PC and this work could be done via the current TASK tool.

 The BT-110A (BT specifi cation 2.0) by default was also set to 57.6 Kbps but
could reach out to 230.4 Kbps, while the BT-210 (BT specifi cation 2.1) could get up
to 400 Kbps. On the PC side, most new PCs would come with a built-in BlueTooth
server (specifi cation 4.0 at present) or a small USB device could be purchased to
fulfi ll this role on an older PC. Upon connection to the PC, the PC OS would use
two Serial COM ports per BT device (see Fig. 11.1) and the user would have to take
care to pick only the OUTGOING COM ports to connect between the various
ROBOPLUS software tools (TASK, MANAGER, DYNAMIXEL WIZARD) and
multiple MINIs. However, since V.2.2.3, the R+MOTION tool fi ltered out the
INCOMING COM port, and thus presented only the OUTGOING COM port to the
user, which was a good step forward.

 Fig. 11.1 BT settings on
PC with 1 BT-110A and 2
BT-210 connected

11 ROBOTIS-MINI System

http://dx.doi.org/10.1007/978-3-319-20418-8
http://dx.doi.org/10.1007/978-3-319-20418-8

159

 Figure 11.1 also implied that BT communications between multiple robots
would have to be mediated via the BT server on the PC, which would require more
programming resources and skills beyond the TASK tool. As a matter of fact,
ROBOTIS recently released a technical note regarding the pairing of BT-210s
using the ROBOTIS IDE and an OpenCM-9.04/B controller (http://support.
robotis.com/en/techsupport_eng.htm#product/auxdevice/communication/bt-210_
setting.htm).

 Summing up, it really depended upon the user’s needs, monetary funds and cur-
rent programming expertise to choose the proper wireless protocol to use with the
ROBOTIS-MINI system. Working with only one MINI, the BT-210 would be the
most economical way to go for PC and Android platforms.

 Around Summer 2015, ROBOTIS plans to release the new BT series BT-410
Master and Slave modules to allow 1:1 and 1:N communications. The BT-410 series
would be based on BlueTooth 4.0 Low Energy (see Sect. 3.2.3).

11.2 New Motion Concepts in MOTION V.2

 Between Version 1 and Version 2 of the MOTION tool, ROBOTIS had made quite
a few fundamental changes such as: fi le suffi x change from MTN to MTNX, remov-
ing size limitation on the physical fi le, changing internal data structures for easier
motion design and editing, synchronization between the 3-D simulated robot moves
and the actual physical moves of the demonstration robot.

 The English version of the user manual for MOTION V.2 is available at (http://
support.robotis.com/en/software/roboplus2/r+motion2/rplus_motion2.htm) and has
many detailed procedures that the reader should review as needed. The ROBOTIS
Development Team also hosted a YouTube channel where the reader could
watch more tutorial videos at https://www.youtube.com/channel/UCuHS2rd-
R6LjKyw3yTKXObA/videos .

11.2.1 Unlimited File Size for MTNX

 The old MTN motion fi le had a maximum fi le size that was linked to the working
memory size of the respective CM-5XX controllers, i.e., 127 motion pages for
CM-5 and 255 motion pages for the CM-510 and CM-530.

 The new MTNX fi le no longer has an upper limit for its physical size thanks to a
new Motion Data structure being implemented (see next Sect. 11.2.2). The MTNX
fi le was also now referred to as a “Project” in ROBOTIS’ technical documents.

11.2 New Motion Concepts in MOTION V.2

http://support.robotis.com/en/techsupport_eng.htm#product/auxdevice/communication/bt-210_setting.htm
http://support.robotis.com/en/techsupport_eng.htm#product/auxdevice/communication/bt-210_setting.htm
http://support.robotis.com/en/techsupport_eng.htm#product/auxdevice/communication/bt-210_setting.htm
http://dx.doi.org/10.1007/978-3-319-20418-3
http://support.robotis.com/en/software/roboplus2/r+motion2/rplus_motion2.htm
http://support.robotis.com/en/software/roboplus2/r+motion2/rplus_motion2.htm
https://www.youtube.com/channel/UCuHS2rd-R6LjKyw3yTKXObA/videos
https://www.youtube.com/channel/UCuHS2rd-R6LjKyw3yTKXObA/videos

160

11.2.2 Effi cient Motion Data Structure

 Motion data in Version 1 (see Fig. 11.2) could be described hierarchically as:

 1. POSE—specify a set of user-defi ned goal position values for all actuators used
by the demonstration robot and at an instant in time.

 2. STEP—specify a set TIME interval for the robot to reach a given POSE. Up to a
maximum of seven STEPS could be defi ned per motion PAGE which could be
considered as a small move by the robot. A PAUSE time interval could also be
defi ned for “between” STEPS.

 3. PAGE—each motion PAGE can be linked to a NEXT page to create more elabo-
rate robot gestures. An EXIT page could also be defi ned to ensure a stable posi-
tion for emergency stops. The PAGE NUMBERS defi ned could be triggered or
“played” from a controlling TASK program, resulting in the actual performance
of the robot’s moves.

 Figure 11.3 was a screen capture of the main Motion Editing interface for
MOTION V.2 which used the Unity graphics engine (http://unity3d.com/).

 MOTION V.2 used a Global Time Line where the smallest Time Frame allowed
was 8 ms which corresponded to the refresh cycle time for all ROBOTIS Dynamixels
(see Fig. 11.3). This 8 ms timing also explained the synchronization process between
the simulation graphics and the real timing of the robot’s executed moves.

 Each robot POSE still stood for a set of goal position values of the robot’s actua-
tors which could be manipulated singly or as a group using the POSITIONING tool,
located in the lower right corner of Fig. 11.3 , with full 3-D graphical feedback on
the robot model. Once satisfi ed with a given POSE, the user could insert it into a
wanted time frame on the Global Time Line to make it become a KEY
FRAME. Several KEY FRAMES would form a MOTION UNIT (see Fig. 11.4).

 Fig. 11.2 Motion Data Structure used in Motion V.1

11 ROBOTIS-MINI System

http://unity3d.com/

161

 Fig. 11.3 Motion Unit Editing Interface in Motion V.2

 Fig. 11.4 Listing of user-created Motion Units

11.2 New Motion Concepts in MOTION V.2

162

 Several MOTION UNITS could then be edited into a MOTION LIST which
essentially performed the Flow Control task for the selected MOTION UNITS (see
Fig. 11.5).

 The next step for the user was to create a custom MOTION GROUP which had
user-selected MOTION LISTS as “independent” members of this Motion Group
(see Fig. 11.6).

 Fig. 11.5 Editing Motion Units into a Motion List

 Fig. 11.6 Creating Motion Group with user-selected Motion Lists

11 ROBOTIS-MINI System

163

 The user could create several MOTION GROUPS to be saved in the same MTNX
fi le (because its physical size on the PC is now unlimited), but the user could
DOWNLOAD only ONE Motion Group to the MINI at any one time, because the
working memory on the MINI was still fi nite (see Fig. 11.7)

 The INDEX parameter (see Fig. 11.7) was the one that the TASK tool can access
to activate selected robot moves from inside a companion TSK program (INDEX
was therefore equivalent to the PAGE NUMBER when using V.1).

 The video fi le “Video 11.1 ” showed how to use MOTION V.2 for various
functions.

11.3 PC Control of Robot Moves

 This little exercise was created to illustrate the basics on integrating PC to MINI
communications, TASK and MOTION programs all together in one application.

 Most folks likely had used the RoboPlus Manager tool only to update fi rmware
or to have a quick check on actuators and sensors attached to the controller in use
(as it was originally intended to). But the Manager tool also had a very handy sub-
tool called Zig2Serial Management which was originally created to help manage
the ZIG-100 (circa 2009). But as it turned out, this was a very general communica-
tions tool that can be used on the PC regardless whether ones use ZigBee or
BlueTooth (just use the appropriate Windows COM port—see Fig. 11.8).

 Fig. 11.7 Downloading chosen Motion Group

11.3 PC Control of Robot Moves

164

 Fig. 11.8 Zig2Serial Management sub-tool of RoboPlus Manager

 This application used the enclosed fi les “DARWIN-MINI-1.MTNX” and
“DARWIN-MINI-RC.TSK”. The DARWIN-MINI-RC.TSK programming struc-
ture was quite simple (see Fig. 11.9):

 (a) Lines 6–7. Set all actuators to JOINT MODE (i.e., “2”) and TORQUE to be ON
(TRUE).

 (b) Lines 10–11. The robot next played Motion Index “1” which was the READY
Pose.

 (c) Lines 14–23. Then the robot entered an endless loop where it waited for an
input number coming from the PC and saved it in parameter “MotionGroupNo”
(lines 16–19). The robot sent this “MotionGroupNo” value back to the PC for
confi rmation (line 20) and triggered this Motion Group’s moves and waited
until that was done (lines 21–22).

 From practice, the author had found that there was a very particular order that
these fi les had to be downloaded to the MINI for them to work together properly:

 1. Download the DARWIN-MINI-RC.TSK fi le fi rst, via the TASK tool and the
appropriate COM port. Close the TASK window to release this COM port.

 2. Download the DARWIN-MINI-1.MTNX fi le next, via the MOTION V.2 tool
and the same COM port. Close the MOTION window and make sure to turn the
POWER OFF the MINI.

 3. Turn power back on the MINI so that the TASK program get executed before
starting the Zig2Serial sub-tool from inside the Manager tool. If the reader used
BlueTooth, it might take 10–15 s for the Zig2Serial sub-window to come up (see
Fig. 11.8)—ZigBee would connect much quicker than BT.

11 ROBOTIS-MINI System

165

 4. The user could now enter a number into the SEND fi eld of the Zig2Serial
sub- window and clicked away on the SEND button. The same number should
appear under the SENT DATA list and then also in the RECEIVED DATA list
(this indicated that 2-way communications had been established between PC and
MINI). This “number” of course had to correspond to a valid INDEX number of
the MOTION GROUP that had been downloaded (see Fig. 11.7).

 The video fi le “Video 11.2 ” illustrated such as a session as described above.

11.4 Synchronizing LEDs to Motion

 The XL-320 actuators on the MINI were equipped with programmable LEDs. In
this next exercise, these LEDs would be programmed to turn on only for those
actuators involved in a chosen robot’s move to emphasize this particular move to the
audience.

 This application would use the “DM-LED-Synch.tsk” fi les and the Motion Group
List named “LED Sync 1” in the “DARWIN-MINI-1.MTNX” fi le (see Fig. 11.10).

 Fig. 11.9 Program DARWIN-MINI-RC.TSK

11.4 Synchronizing LEDs to Motion

166

This Motion Group List had two Motion Groups labeled “Initial Pose” (Index = 1)
and “Test Moves” (Index = 2).

 Figure 11.11 displayed the timing of the Key Frames used in the “Test Moves”
Motion Group, and also the ON/OFF timings of the LEDs of the right arm (IDs = 1,
3, 5) and of the left arm (IDs = 2, 4, 6):

 1. Time = [0, 390] ms—The robot turned its head to the right and all LEDs OFF.
 2. Time = [390, 796] ms—The robot raised its right arm, thus right LEDs ON.
 3. Time = [796, 1195] ms—The robot raised its left arm, thus right LEDs OFF and

left LEDs ON.
 4. Time > 1195 ms—The robot brought both arms down, thus all LEDs OFF.

 These four (actually only the fi rst three) time periods were monitored using the
Hi-Resolution Timer of the OpenCM-9.04-C to trigger the needed ON/OFF actions
for the LEDs involved. In the “DM-LED-Synch.tsk” fi le, the control logic imple-
mented was quite simple:

 1. Play the Motion Group “2” (line 33), and start the Hi-Res Timer for 390 ms and
essentially do nothing during this time period as the LEDs were set to OFF at the
beginning of this program already (lines 35–36).

 2. Lines 39–46—Start the Hi-Res Timer for 406 ms (line 39) and during this time
period, turn ON the LEDs of the right arm (IDs = 1, 3, 5). When the Hi-Res
Timer “timed out”, turn OFF all LEDs (line 46).

 3. Lines 49–56—Start the Hi-Res Timer for 399 ms and turn ON the left arm LEDs
(IDs = 6, 4, 2) and then turn them OFF at time-out (line 56).

 The video fi le “Video 11.3 ” illustrated the operation of this program using the
Zig2Serial Management tool to trigger user-wanted events.

 Fig. 11.10 Motion Group List “LED Sync 1”

ALL LEDs OFF Right LEDs ON
Left LEDs OFF

Right LEDs OFF
Left LEDs ON

ALL LEDs OFF

 Fig. 11.11 LEDs ON/OFF timings for Right and Left Arms

11 ROBOTIS-MINI System

167

11.5 Fight Choreography for two MINIs via ZigBee

 This last application illustrated a possible choreography framework for coordinat-
ing the interactions between two MINIs performing some Karate moves. One MINI
served as the Lead Fighter while the other acted as the Counter Fighter.

 This application used the Motion Group List named “AttackCounter” found in
the “DARWIN-MINI-1-ZB.mtnx” fi le (see Fig. 11.12).

 This Motion Group List had seven Motion Groups:

 (a) Index 1 corresponded to the Ready Pose.
 (b) Index 2 corresponded to Attack1 moves while Index 3 corresponded Counter1

moves.
 (c) Indices 4 and 5 corresponded to Attack2 and Counter2 moves, while indices

6 and 7 corresponded Attack3 and Counter3 moves.

 The TASK fi les “DM-LeadFighter-ZB.tsk” and “DM-CounterFighter-ZB.tsk”
were designed to work with the previous seven Motion Groups. This application
was designed for a ZigBee Broadcast environment whereas the operator/judge
would issue a “Ready” command (i.e., a “1”) or a “Fight” command (i.e., an “11”)
from the PC via the Zig2Serial Management tool. The interesting feature of the
Lead-Fighter program was that it used the Random Number utility available on the
OpenCM-9.04 series to trigger at random one of its three possible attack moves,
while the Counter-Fighter program would trigger the appropriate non-randomized
counter moves (of course the reader can modify the Counter-Fighter code to provide
randomized counter moves or added more sensor-based counter moves).

 The main logic in the “DM-LeadFighter-ZB.tsk” program was implemented via
an endless loop that would “listen” for a ZigBee packet and processed it to fi gure
out whether a “1” or an “11” was actually received:

 (a) If a “1” was received, parameter “MotionGroupNo” was set to “1”.
 (b) If an “11” was received, the controller would throw the dice once and got a value

for “RandomNo” between 0 and 255 (line 27). Next, a UNIFORM statistical

 Fig. 11.12 Motion Group List “AttackCounter” with seven Motion Groups

11.5 Fight Choreography for two MINIs via ZigBee

168

distribution was assumed, thus there would be a 33 % chance for the parameter
“MotionGroupNo” to get its fi nal value of 2, 4 or 6 (lines 28–43 and see
Fig. 11.13).

 (c) The next step (line 45) was crucial because as we were using a broadcast envi-
ronment, therefore the PC and the Counter-Fighter would receive all communi-
cation packets. Thus we had to “special-code” the information meant for the
Counter-Fighter, by shifting it left by 4 bits (i.e., multiply it with 16) and saved
this special information as parameter “MotionNoCounterFighter”.

 (d) Then the “LeadFighter” controller was instructed to broadcast the parameter
“MotionNoCounterFighter” (line 47) which was really meant for the
CounterFighter, and lastly triggered its own Attack move as refl ected in the
actual value of “MotionGroupNo” (line 50 and see Fig. 11.14).

 The main logic in the “DM-CounterFighter-ZB.tsk” program was also imple-
mented via an endless loop that would “listen” for a ZigBee packet and processed
it (i.e., divide it by 16—statement 20) to fi gure out whether “DataIn” was “0” (i.e.,
coming from the PC) or a “2”, “4” or “6” (i.e., coming from the Lead-Fighter).

 Fig. 11.13 Logic for the LeadFighter program to decide on a randomized Attack move to
perform

11 ROBOTIS-MINI System

169

Next this program used that information to set parameter “MotionGroupNo” with
the correct Counter Motion Group’s Index value and fi nally triggered the appropri-
ate Motion Group (see Fig. 11.15).

 The video fi le “Video 11.4 ” showed the execution of the above programs with
two MINIs and within a broadcast ZigBee environment as described above.

11.6 Fight Choreography for two MINIs via BlueTooth

 The author also had designed an alternate procedure using R+Motion V.2 under a
BlueTooth environment to perform this choreography application.

 First, ROBOTIS wrote the R+Motion V.2 in such a way that the Windows PC
user can run multiple instances of this tool on their computer (this was not possible
with the RoboPlus Motion V.1 and Manager tools). Thus the author’s approach was
to spawn out two instances of the R+Motion V.2 application: one instance would
control the Lead-Fighter via a given BT outgoing COM port, while the second
instance would control the Counter-Fighter via a separate BT outgoing COM port.
As the commands to each fi ghter now came from a single PC, it was more a matter
of how fast the user could switch from one window application to the next and click
on the appropriate Motion Unit to activate the Attack and Counter moves onto the
respective robots (see fi le “DARWIN-MINI-1-BT.mtnx”). The video fi le “Video
 11.5 ” illustrated such an episode where the reader could see that “human” manual
synchronization of robot moves did not work very well, but that the ROBOTIS-
MINI system had lots of potentials.

 Fig. 11.14 Logic for the LeadFighter program to send information to CounterFighter

11.6 Fight Choreography for two MINIs via BlueTooth

170

 Thus it remains a challenge for all users and ROBOTIS to come up with a
ZigBee or BlueTooth environment that could be used for multiple MINIs. The
author is looking forward to the release of the BT-410 Master-Slave series in the
Summer of 2015.

 Fig. 11.15 Logic for the Counter-Fighter program to decide on an appropriate counter move to
perform

11 ROBOTIS-MINI System

171

11.7 Review Questions for Chap. 11

 1. What are the wireless communication options available with the ROBOTIS-
MINI system?

 2. What is the highest baud rate achievable with ROBOTIS ZigBee devices?
 3. What is the highest baud rate achievable with ROBOTIS BlueTooth devices?
 4. List advantages of ZigBee over BlueTooth.
 5. List advantages of BlueTooth over ZigBee.
 6. List advantages of the MTNX fi le format over the MTN fi le format.
 7. List the data components found in an MTN fi le.
 8. Describe the data architecture used in an MTN fi le.
 9. List the data components found in an MTNX fi le.
 10. Describe the data architecture used in an MTNX fi le.
 11. Describe how the Zig2Serial Management sub-tool can be used to execute

motion pages or groups stored on the ROBOTIS-MINI.
 12. List the TASK commands controlling the LEDs found on the XL-320

actuator.

11.8 Review Exercises for Chap. 11

 1. Create a custom MTNX fi le to allow the ROBOTIS-MINI go up and down a set
of stairs (see video fi le “Video 11.6 ”) (Fig. 11.16).

 2. Create a custom MTNX fi le to allow the ROBOTIS-MINI to dance and synchro-
nize to your favorite music, see example video at https://www.youtube.com/
watch?v=4VsNyzABXsQ .

 3. Combine the example MOTION UNITS into MOTION GROUPS of your own,
similarly to the approach used to choreograph the MINI fi ghters.

 4. Integrate sensors such as NIR and DMS sensors to help the MINI avoid obsta-
cles. Later in 2015, ultrasonic and proximity sensors should also be available for
the MINI.

 5. Practice programming the OpenCM-9.04-C using the ROBOTIS IDE and prac-
tice recovering the fi rmware to get back to programming with TASK and
MOTION again.

11.8 Review Exercises for Chap. 11

http://dx.doi.org/10.1007/978-3-319-20418-5_11
http://dx.doi.org/10.1007/978-3-319-20418-5_11
https://www.youtube.com/watch?v=4VsNyzABXsQ
https://www.youtube.com/watch?v=4VsNyzABXsQ

172

 References

 Billard A et al (2008) Robot programming by demonstration. In: Siciliano B, Khatib O (eds)
Springer handbook of robotics. Springer, Heidelberg, pp 1371–1394

 Calinon S (2009) Robot programming by demonstration: a probabilistic approach. EPFL Press,
Lausanne

 Fig. 11.16 ROBOTIS-MINI going up and down stair steps

11 ROBOTIS-MINI System

	Dedication
	Contents
	Chapter 1: Motivations and Instructional Approach
	1.1 Motivations
	1.2 Instructional Approach
	References

	Chapter 2: ROBOTIS’ Robot Systems
	2.1 General Systems Description
	2.2 Robotics Kits Considered in Book
	2.3 Micom Training Kit
	2.4 System(s) Selection Criteria
	2.5 Review Questions for Chap. 2

	Chapter 3: Hardware Characteristics
	3.1 The Atmel AVR Family
	3.1.1 CM-5 (Discontinued)
	3.1.2 CM-510 (Discontinued)

	3.2 The STM ARM Cortex M3 Family
	3.2.1 CM-530
	3.2.2 CM-900 (Discontinued)
	3.2.3 OpenCM-9.04 Series

	3.3 The Dynamixel Actuators Family
	3.3.1 The AX Series
	3.3.2 The MX Series

	3.4 ROBOTIS Sensors Family
	3.4.1 AX-S1 and IRSA
	3.4.2 AX-S20 (Discontinued)
	3.4.3 Foot Pressure Sensor (FPS: From HUV Robotics)
	3.4.4 HaViMo 2.0
	3.4.5 GPIO (5-Pin) DMS Sensor
	3.4.6 GPIO (5-Pin) Gyroscope Sensor GS-12
	3.4.7 Other GPIO (5-Pin) Sensors and Output Devices
	3.4.8 Recent Adaptations of Smart Phone Features

	3.5 Review Questions for Chap. 3
	References

	Chapter 4: Software Tools
	4.1 Dynamixel Wizard Tool
	4.1.1 TTL (3-Pin) and RS-485 (4-Pin) Dynamixels
	4.1.2 XL-TTL (3-Pin) Dynamixels
	4.1.2.1 OpenCM-9.04-C
	4.1.2.2 OpenCM-9.04-B

	4.2 Manager Tool
	4.2.1 CM-5, CM-510, CM-530
	4.2.2 OpenCM-9.04-A/B/C

	4.3 Task Tool
	4.3.1 CM-5, CM-510, CM-530
	4.3.2 CM-9.04-C

	4.4 Motion Tools (V.1 and V.2)
	4.5 R+ Design Tool
	4.6 “If I Were to Restart …”
	4.7 Review Questions for Chap. 4

	Chapter 5: Foundational Concepts
	5.1 “Sense-Think-Act” Paradigm
	5.2 Primer for MANAGER and TASK Tools
	5.2.1 MANAGER Capabilities
	5.2.2 Basic TASK Usage

	5.3 “Sequence Commander” Project
	5.4 “Smart Avoider” Project
	5.5 “Line Tracer” Project
	5.5.1 Mechanical Design Features
	5.5.2 IR Array Sensor (IRSA)
	5.5.3 Programming Maneuvers for Line Tracer

	5.6 “Remote Controlled CarBot” Project
	5.7 Review Questions for Chap. 5
	5.8 Review Exercises for Chap. 5
	References

	Chapter 6: Actuator Position Control Basics
	6.1 AX-12/18 Position Control with TASK
	6.2 Using Motion Editor (V.1)
	6.2.1 Characteristics of a Motion Page in Motion V.1
	6.2.2 Application to a GERWALK Robot

	6.3 Form and Function of Walking Robots
	6.4 Review Questions for Chap. 6
	6.5 Review Exercises for Chap. 6
	References

	Chapter 7: Advanced Position Control
	7.1 “Torque” Effects
	7.1.1 Torque Limit, Present Position and Present Load
	7.1.2 Adjusting Torque Limit Dynamically

	7.2 “Joint Offset” Effects
	7.3 A Load Sensing Gripper
	7.4 Review Questions for Chap. 7
	7.5 Review Exercises for Chap. 7
	References

	Chapter 8: Wireless Communications Programming
	8.1 ZigBee Broadcast Channel Differences
	8.2 Broadcast Use of RC-100 (NIR and ZigBee)
	8.3 Message “Shaping” Concepts
	8.3.1 Mimicking Grippers
	8.3.2 Leader-Follower GERWALKS
	8.3.3 Multiple Users and Multiple Robots (ZigBee Only)

	8.4 PC to Robots Communications via C/C++
	8.5 ZigBee and BlueTooth Performances
	8.6 Review Questions for Chap. 8
	8.7 Review Exercises for Chap. 8
	References

	Chapter 9: Advanced Sensors
	9.1 Humanoid Static Balance with AX-S20
	9.1.1 2-Leg Static Balance with AX-S20
	9.1.2 1-Leg Static Balance

	9.2 Humanoid Dynamic Balance with GS-12
	9.2.1 Walk Enhancement with GS-12
	9.2.2 Fall Detection with GS-12

	9.3 Humanoid Balance with FPS
	9.3.1 FPS Data Acquisition
	9.3.2 Humanoid 1-Leg Balance with FPS

	9.4 HaViMo2 Applications
	9.4.1 HaViMo2 Features and Usage
	9.4.2 HaViMo2 Application to a CM-5 CarBot

	9.5 Review Questions for Chap. 9
	9.6 Review Exercises for Chap. 9
	References

	Chapter 10: Embedded C Options
	10.1 Embedded C vs. RoboPlus’ TASK
	10.2 Embedded C for the OpenCM-9.00/9.04
	10.3 Embedded C for the CM-510 and CM-530
	10.3.1 Tutorials for CM-510
	10.3.2 Tutorials for CM-530
	10.3.3 Future Support for Embedded C for CM-510/530?

	10.4 Motion Programming and Embedded C
	10.5 Review Questions for Chap. 10
	10.6 Review Exercises for Chap. 10
	Reference

	Chapter 11: ROBOTIS-MINI System
	11.1 PC to MINI Wireless Options
	11.2 New Motion Concepts in MOTION V.2
	11.2.1 Unlimited File Size for MTNX
	11.2.2 Efficient Motion Data Structure

	11.3 PC Control of Robot Moves
	11.4 Synchronizing LEDs to Motion
	11.5 Fight Choreography for two MINIs via ZigBee
	11.6 Fight Choreography for two MINIs via BlueTooth
	11.7 Review Questions for Chap. 11
	11.8 Review Exercises for Chap. 11
	References

