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The model-based vision system described in this paper allows a
mobile robot to navigate indoors at an average speed of 8 to 10
m/min using ordinary laboratory computing hardware of approxi-
mately 16 MIPS power. The navigation capabilities of the robot
are not impaired by the presence of stationary or moving obstacles.
The vision system maintains a model of uncertainty and keeps
track of the growth of uncertainty as the robot travels toward the
goal position. The estimates of uncertainty are then used to pre-
dict bounds on the locations and orientations of landmarks ex-
pected to be seen in a monocular image. This greatly reduces the
search for establishing correspondence between the features visi-
ble in the image and the landmarks. Given a sequence of image
features and a sequence of landmarks derived from a geometric
model of the environment, a special aspect of our vision system is
the sequential reduction in the uncertainty as each image feature
is matched successfully with a landmark, allowing subsequent
features to be matched more easily; this is a natural by-product of
the manner in which we use Kalman filter-based updating. © 1992

Academic Press, Inc.
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1. INTRODUCTION

Fast navigation using vision feedback has been a quest
of researchers in sensor-based robotics for many years
now. Consider the fact that not too many years ago, in
1983, the fastest that a robot could navigate indoors un-
der vision control was 1 m per 15 min [Mor83]. Although
considered a pioneering contribution at that time, that
speed was simply not fast enough for useful applications.

In this paper, we present a vision-based reasoning and
control architecture that allows a robot to navigate in-
doors at an average speed of 8 to 10 m/min, this speed
being maintained in the presence of stationary and mov-
ing obstacles detected by ultrasonic sensors. This 120-
fold increase in speed is not solely due to advances in
affordable computing hardware and software, although
that certainly has helped. Much of the gain in speed is
owing to the use of model-based reasoning for scene in-
terpretation. While most recent contributions to model-
based scene analysis have relied solely on the geometric
models of objects for organizing the flow of control, in
this paper we show that, for the case of mobile robot
navigation, great efficiency in computation is achieved
when models of uncertainty are used in conjunction with
the geometric models of the environment.
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The key idea in our system, which we have christened
FINALE! for ease of reference, is simply that if it is
possible to model the uncertainties in the position of the
robot and how these uncertainties are transformed by the
different motions of the robot, then it should also be pos-
sible to place bounds on where one should look for
a landmark in the camera image. [Such position-
uncertainty models, constructed by analyzing the differ-
ences between the actual motions of the robot and the
commanded motions, involve the usual uncertainty pa-
rameters, such as the mean, the variances, and the cor-
relations, and spatial transformations corresponding to
the motions.] Although the precise details of how this is
done are discussed later, to motivate the reader Fig. la
shows the camera image from a certain position of the
robot in the hallway. On the other hand, Fig. 1b is an
expectation map rendered from a 3D model of the hall-
way assuming the robot is located at the center of its
uncertainty region. Given the uncertainty at this particu-
lar position of the robot, with the help of the dashed
ellipses we show in Fig. lc the uncertainties associated
with the vertices of the various edges in the expectation
of Fig. 1b. Each ellipse represents one unit of Mahalano-
bis distance, meaning that the probability of finding a
corresponding vertex within the ellipse is 39%.? In Sec-
tion 3, we show how we can derive edge uncertainty
regions from the vertex uncertainty regions; the search
for scene correspondents of model edges can then be
limited to these regions in the image and also in Hough
space. Now, if we analyze the camera image and process
this image only within the uncertainty regions associated
with the landmarks whose presence is sought for the self-
location exercise, we can quickly find the correspon-
dences between, say, the edges shown in Fig. 1b and
their counterparts extracted from Fig. 1a. What aids the
establishment of these correspondences is the fact that,
through the use of Kalman filtering, each match between
a landmark and an image feature reduces both the uncer-
tainty associated with the robot position and the size of
the uncertainty regions associated with the subsequent
landmarks.? After FINALE has computed the location
and the orientation of the robot using the data in Figs. 1a,
1b, and 1c, the accuracy of self-location can be tested by

' FINALE stands for Fast Indoor Navigation Allowing for Loca-
tional Errors.

2 As will be explained in Section 6, we limit our search regions to two
units of Mahalanobis distance. The probability of finding the correspon-
dent of a model feature within this uncertainty region is 86%. For picto-
rial displays of uncertainty, however, we use only one unit of Maha-
lanobis distance, since larger distances tend to clutter up the renditions
in displays like the one shown in Fig. lc.

3 Of course, there may be more than one image feature within the
specified uncertainty region for a given landmark. Such multiple possi-
bilities, which occur only when the uncertainties become large, can be
disambiguated by backtracking, as will be discussed later.
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reprojecting into the the camera image the expectation
map using the estimated values for the position of the
robot. Figure 1d shows, with the help of superimposed
white lines, such a reprojection for those model edges
that FINALE selected for the self-location exercise.

Our FINALE system should be considered in the con-
text of recent contributions by Ayache and Faugeras
[AyaFau89] and by Kriegman et al. [KriTri89]. Our use
of Kalman filtering for both uncertainty reduction and
position updating was inspired by the work of Ayache
and Faugeras. However, the focus of the work by
Avyache and Faugeras is less on autonomous navigation
in an already known—known via CAD or other geomet-
ric representations—maodel of the environment and more
on building 3D representations of the environment by
fusing binocular and trinocular stereo images. On the
other hand, while the overall goal of Kriegman et al. is
similar—but not identical—to ours, their approach is
quite different and entails vision processes that are differ-
ent from ours. Central to the work of Kriegman et al. is
the fast fusion of binocular images taken from two cam-
eras mounted on the robot. By keeping the optic axes of
the cameras horizontal and parallel, Kriegman et al.
show how it is sufficient to retain from the two camera
images thin strips in the middle and how binocular fusion
of vertical lines extracted from these thin strips can then
be used both for model building and for matching with
what are essentially two-dimensional depth models of
hallways.

In the work reported here, we are neither interested in
stereo processes, nor are we interested in building
models. We assume that geometric models of the hall-
ways are already available. [Anything in the scene that is
not in the models is treated as an obstacle.] Our focus is
more on matching landmarks derived from the geometric
models of the hallways with monocular images. A weak
analogy would be to a one-eyed person engaged in indoor
navigation.*

In Section 2 we present a survey of past work related
to ours. The main discussion of our system starts in Sec-
tion 3, where we present an overview of how uncertainty
maintenance is carried out in our system and how self-
location and navigation are then accomplished. In Sec-
tion 4, we discuss a framework for the representation and
transformation of uncertainties. Section 5 deals with the
model representation of hallways and with the rendering
of expectation maps as a robot navigates down the hall-

4 To some this analogy may seem excessively weak since even a one-
eyed human has many depth cues available to him/her. Although, of
course, we are not trying to capture the depth cues that may be attrib-
uted to phenomena such as shading, our formalism here definitely cap-
tures those cues that are generated by comparing a priori spatial expec-
tations with monocular images.
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FIG. 1. (a) A camera image taken from a position of the robot while it is engaged in hallway navigation. (b) Scene expectation map rendered
from a 3D model of the hallway. (c) The ellipses shown represent the uncertainties associated with the vertices of the edges in (b). From these
ellipses one can easily obtain the uncertainties associated with the edges themselves. The FINALE system uses the data in (a), (b), (c¢) for robot
self-location. Shown in (d) is a reprojection of those model edges into the camera image that were used for self-location after the robot determined

its position in the hallway.

ways. Although it would be simple to use a commercial-
type CAD system for the purpose of modeling, we show
that, for the purpose of indoor navigation, all the geomet-
ric information that is relevant for scene interpretation
can be captured in a simple data structure that lends itself
to fast rendering. We next discuss the subject of land-
mark detection in Section 6 and present a new technique
for a quick extraction of vertical lines in an image. This
technique is based on our derivation that in a perspective
image all the vertical world lines will have the same van-
ishing point regardless of the position of the robot, as-

suming that the robot is navigating on a flat floor. Subse-
quently, in Section 7, we present a formalism that allows
landmarks to be matched to image features in a Kalman
filter-based sequential scheme in which each match be-
tween a landmark and an image feature is used both to
update the position of the robot and to estimate the new
bounds on the various uncertainties. Section 8 then goes
into global path planning and perception planning, both
being necessary prerequisites to navigation in the pres-
ence of stationary and moving obstacles. Finally, in Sec-
tion 9 we discuss the experimental results.
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2. RELATED WORK

We now provide the reader with a brief review of past
research in sensor-based mobile robot navigation. Our
review is limited to indoor robots, especially those that
are designed for hallway navigation. For mobile robots
intended for outdoor applications, the reader is referred
to the articles by Thorpe et al. [ThoSha87], Davis and
Kunshner [DavKun87], Gat et al. [Gat90], and Zheng et
al. [ZheBar91].

Historically, research in indoor mobile robotics origi-
nated with the work of Moravec [Mor81, Mor83], who
focused on visual perception and control. The platform
used by Moravec was remote controlled and used a video
camera as its only sensor. To obtain 3D spatial informa-
tion, a slider stereo vision system was used. In a slider
stereo, a set of images taken when a single camera is
moved along a track generates the disparity fields, which
then can be transformed into depth maps. Next came
Hilare, a robot designed by Giralt et al. [GirSob79] and
Chatila and Laumond [Chal.au85]. This robot, equipped
with a suite of sensors (a video camera, a rotating sonar
sensor, and a laser range sensor mounted on a two-axis
scanning system), uses dynamic world modeling, mean-
ing that as the robot senses objects that it does not know
about, it enters them into the world model.

More recently, the Mobi robot developed by Kriegman
et al. [KriTri89] uses a pair of stereo cameras for 3D
vision. The stereo images are used both for building sim-
plified maps of the environment and for subsequent navi-
gation through the environment. As mentioned in the In-
troduction, in the Mobi system thin horizontal strips are
first extracted from the images and the vertical lines are
then extracted from these strips for the purpose of binoc-
ular fusion. Another recent system, by Ayache and
Faugeras [AyaFau89], uses extended Kalman filtering to
help a robot acquire robust estimates of visual features in
its environment. The function of the Kalman filter is to
optimally combine the information generated by a tri-
nocular stereo vision system from different locations.
This robot can successfully recognize polygonal objects
in the scene. It is useful to note that, as was done by
Ayache and Faugeras, empirically interesting object rec-
ognition strategies can be devised by exploiting the abil-
ity of a mobile robot to examine a scene from different
viewpoints.

Another approach to vision-based indoor navigation,
by Tsubouchi and Yuta [TsuYut87], reasons over scene
expectation maps and extracts from them those trapezoi-
dal regions that the image processor can be expected to
segment out from color camera images. The system then
attempts to establish a matching between the model trap-
ezoids and the trapezoids actually segmented out from
the camera image. Along similar lines, the PSEIKI sys-
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tem developed in our laboratory [AndKak88, KakAnd89]
also first renders scene expectation maps from a 3D CAD
model of the hallways and represents this expectation
map as a hierarchy of geometrical abstractions. The im-
age processor then tries to extract a similar geometric
hierarchy from the camera image. Finally, an evidential
approach using the Dempster—Shafer theory of evidence
is employed to compare the expectation map hierarchy
with the image hierarchy. The correspondences thus de-
rived help the robot determine its position. The main
advantage of PSEIKI-like approaches is that they seek to
carry out an evidential interpretation of the entire image.
But since, if the goal is self-location for a mobile robot, it
is not necessary to interpret the entire camera image, any
system that is designed primarily for image interpretation
would in most cases be too slow for navigation purposes.
Using comparable computing hardware, it would take
PSEIKI minutes to do what takes the FINALE system
only seconds.

Another recent contribution to hallway navigation is by
Fennema et al. [FenHan90]. They use a modification of
the gradient descent approach to implement a model-
driven grouping of edges extracted from the camera im-
age. The correspondences thus established are then fed
into an algorithm developed by Kumar and Hanson
[KumHang89] for the calculation of camera position and
orientation. The algorithm developed by Kumar and
Hanson is an extension, to the case of possibly incorrect
correspondences, of the work done by Liu er al
[LiuHua88] on the subject of how to determine the posi-
tion and the aim direction of a camera given a set of
correspondences, which may be supplied by a human,
between line features in the model and line features in the
camera image. Yet another contribution that might inter-
est the reader, by Sugihara [Sug87], presents a solution to
the determination of the robot location parameters by
first hypothesizing a possibie location on the basis of a
partial map between the features in a scene and the visi-
ble features in the camera image, and then verifying the
hypothesis by testing for the appearance in the image of
the other features in the model. Sugihara has verified his
approach by computer simulation studies using two-
dimensional model maps, which could correspond to
floor plans of hallways, and what could be called one-
dimensional camera images.

3. FRAMEWORK FOR NAVIGATION

Figure 2 depicts the overall reasoning and control ar-
chitecture of FINALE for vision-based navigation in the
presence of stationary and moving obstacles. This frame-
work is motivated by the observation, made by many
researchers before us, that it is indeed possible to con-
struct useful models of uncertainties associated with ro-
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FIG. 2. The FINALE reasoning and control architecture for simultaneous vision-guided navigation and collision avoidance. Module 2, in
conjunction with module 5, controls the reactive behavior of the robot, while the rest of the modules, again in conjunction with module 5, control

the deliberative behavior.

bot motion. A key aspect of FINALE is that the esti-
mated uncertainties are used to limit the region of a
camera image that must be analyzed and to severely con-
strain the choices of image features as candidates for the
landmarks expected to be seen by the robot. In the rest of
this section, we briefly touch on the functions of each of
the modules shown in Fig. 2, concentrating mainly on the
information that flows in the directed pathways between
the modules.

The Supervisor (module 1) is the human. His/her func-
tion is to supply the robot with the coordinates of the goal
position. Another important function of the Supervisor is
to quickly shut down the robot in case the navigation

process fails, especially when it seems that the robot is
headed for any unwary bystander.® The Supervisor also
must supply the robot with the robot’s initial position.
The initial position specification is rather loose. For ex-
ample, the supplied floor coordinates of the robot can be
off by as much as half a meter and the supplied orienta-

5 The navigation experiments succeed roughly 90% of the time. This
number was arrived at by conducting a large number of experiments
over a run of 50 m of hallways with two right-angled turns at both ends.
We believe the failures are caused by the wheels occasionally slipping
on the floor in a manner that is not consistent with the mathematical
model.
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tion can be off by as much as 15°. Before the robot starts
navigating, it uses its vision faculty to eliminate these
uncertainties in the supplied initial position.

The Path and Perception Planner (module 4) takes the
initial and the goal positions from the Supervisor and
plans out a path in the 3D geometric model of the hall-
ways that resides in module 3. Path planning in hallways
is arather simple exercise. The details of how it is done in
our system are given in Section 8. The Planner first calcu-
lates a sequence of motions, in terms of straight line tra-
versals and rotations, that would take the robot from its
current position to the goal position. The straight line
traversals are broken into segments so that the maximum
expected uncertainty at the end of each segment will not
exceed a threshold that itself is a function of the environ-
ment. As aresult, in tight spaces the straight line travers-
als are decomposed into shorter segments. The Percep-
tion Planner in module 4 plays a critical role during
obstacle avoidance when the robot must of necessity de-
viate from the originally planned path. The Perception
Planner is aware, on a real-time basis, of the growth in
the position-uncertainty as the robot maneuvers around
the obstacle and, when the uncertainty exceeds a prespe-
cified threshold, the Perception Planner brings the robot
to a halt for another exercise at self-location through
vision.

The Robot Controller (module 5) is the place where
each motion, a translation or a rotation, received from
the Path Planner is interpreted as a motion command.
These motion commands can be overridden by module 2
for Obstacle Detection and Collision Avoidance.® Yet an-
other important function of the Robot Controller is to
supply odometry information to the Uncertainty Man-
ager {module 6), whose function is to keep track of the
uncertainty in the position of the robot. The parameters
of the motion dependency of the uncertainty in the posi-
tion of the robot are stored in the Uncertainty Manager
module. These parameters, in conjunction with the odo-
metry information received from the Robot Controller,
help the Uncertainty Manager compute the latest posi-
tional uncertainty associated with the robot, specified by
a mean value and a covariance matrix, as explained in
Section 4.

6 This override mechanism, while smacking of the Brooksian notions
[Bro86, Con87], is actually in reverse of what would be implemented in
a subsumption architecture. In a truly subsumption architecture, vision
input would occupy a ‘‘higher layer”’ than the proximity signals corre-
sponding to obstacle detection. However, the type of vision needed in a
subsumption architecture would have to be fast enough for influencing
real-time behavior. In other words, the vision processes in a subsump-
tion architecture would have to be much faster than what is possible
today. The FINALE reasoning and control architecture tries to make
the best of what is possible today with vision sensing for what may be
referred to as deliberative behavior and uses ultrasonic sensing for the
reactive behavior for collision avoidance.
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FIG. 3. This figure illustrates how Landmark Predictor (module 7 of
Fig. 2) creates the uncertainty region for a single line segment. A single
line segment constructed from the two endpoints p, and p; is extracted
from the expectation map as shown in (a). Landmark Predictor then
outputs the mean vectors and the covariance matrices associated with
the two endpoints, forming the uncertainty ellipses shown in (b). A
convex hull, also shown in (b), of the two ellipses constitutes the uncer-
tainty region for the line segment.

In addition to supplying the positional uncertainty pa-
rameters to module 4, the Uncertainty Manager also sup-
plies this information to the Landmark Predictor whose
job is to decide where in the image one should look for a
given landmark. The means and covariances of the differ-
ent parameters of the robot motion are also needed in
module 9 for the operation of the Kalman filter, whose
function is to update the means and the covariances of
the robot position after each match between a landmark
and its corresponding image feature.

For each attempt at self-location, the first action of
Landmark Predictor is to render an expectation map, like
the one shown in Fig. 1b, given the current mean position
and orientation of the robot. By using the various trans-
formations discussed in Section 4 and by using the means
and covariances of the parameters of robot position, the
Landmark Predictor then calculates the mean and the
variances associated with the image features correspond-
ing to the various landmarks. Just to explain the function
of module 7, imagine there is a single line, as shown in
Fig. 3a, in the expectation map. For this line, Landmark
Predictor will output the mean vectors and the covari-
ances associated with the two end points of the line, as
shown pictorially in Fig. 3b. The Landmark Detector will
then search for an image line in a region formed by the
convex hull of the two uncertainty ellipses.”

The job of module 9 is to match the landmarks in the
image rendered from the geometric model with the fea-
tures extracted from the image taken by the camera;
more specifically, it matches the lines in the expectation

7 For computational efficiency, the search carried out by Landmark
Detector actually takes place in the smallest rectangular enclosure
whose sides are parallel to the image rows and columns and which
contains the two uncertainty ellipses.
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map shown in Fig. 1b with the edges extracted from the
appropriate uncertainty regions of the camera image.
Module 9 treats all the edges extracted from an uncer-
tainty region as candidates for matching with a landmark,
the choice of these candidates being constrained by edge
orientation considerations in the Hough space. Matching
of each candidate image edge with a model edge is fol-
lowed, via Kalman filtering, of recomputation of the un-
certainties associated with robot position. In general,
each match will reduce the uncertainties and further con-
strain the choice of candidate image edges as candidates
for subsequent model edges. If, despite the pruning of the
search space affected by the reduced uncertainties owing
to the prior matches, there still exist multiple image fea-
ture candidates for a given landmark, module 9 will select
one on a greatest likelihood basis, as explained in Sec-
tion 7.

4. UNCERTAINTY REPRESENTATION

In this section, the uncertainties involved in vision-
based mobile robotics are discussed in a systematic man-
ner. We first discuss the transformations in the parame-
ters of positional uncertainty as the robot undergoes
translational and rotational motions. We then show how
the uncertainty in the position of the robot translates into
uncertainty in the location and orientation of the image
features corresponding to a landmark in the scene.

4.1. Parameters of Robot Position

We assume the robot is navigating on a perfectly flat
floor that exists in the xy-plane of a world coordinate
frame (xw, Yw, Zw), as shown in Fig. 4. Local to the robot
will be a robot-centered coordinate frame (x,, y;, z,). We
assume that the (x;, y,) plane in the local frame is co-
planar with the (x., yw) plane of the world frame. What
that implies is that the vertical axes z and z, will always
be parallel.

As the robot travels down the hallways, its position is
defined as the position of the robot-centered frame with
respect to the world frame; the translational and the rota-
tional components of this position are all packaged in the
3-vector p = (p., py, ¢), where p, and p, describe the
translations of the robot and ¢ describes the rotation, the
latter defined as an angle measured counterclockwise
from the x,, axis of the world frame to the x, axis of the
robot frame.

Assume for the purpose of argumentation, although in
reality this is never the case, that initially the location and
the orientation of the robot are known without error. As
the robot travels down the hallway, its actual location
and orientation will always differ from the location and
the orientation that the robot is commanded to occupy.
This discrepancy between the commanded and the actual
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Yw

FIG. 4. A hallway with the robot located at world coordinates (p,,
p,) and with the orientation ¢. The axes marked x, and y, show the
robot-centered coordinate frame.

locations and orientations is presumably caused by the
differential slippage in the wheels, which in turn is a func-
tion of the weight distribution on the base of the robot,
the condition of the rubber on the wheels, the condition
of the floor, etc. We have noticed through experiments
that when the robot is commanded to travel perfectly
straight down the long hallway in Fig. 4, it eventually
veers off to one side or the other and eventually bumps
into one of the walls.® Of course, the distance between
the initial start point and the location where the robot
would bump into a wall is also dependent on the accuracy
with which the initial orientation of the robot is known.
However, after much experimentation and through re-
peated trials, we have observed that under the best possi-
ble alignment between the robot and the length of the
hallways, the robot would eventually bump into one of
the walls within about 15 m.

As the robot continues to travel down a hallway in a
dead reckoning mode, its positional uncertainty in-

8 This is called navigation by dead reckoning, meaning navigation in
which there is no sensory feedback regarding the current position of the
robot. Statistical analysis of the performance of the robot while it is
commanded to navigate by dead reckoning yields the parameters of the
uncertainty model that are then used for vision-driven navigation.
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creases. How should this uncertainty be modeled? While
there are no clear-cut answers to this question—at least
no answers that are founded soundly on physical phe-
nomena underlying the causes of uncertainty—we follow
our predecessors [SmiChe86, AyaFau89, FriTri89] and
assume the uncertainty can be described by a Gaussian
distribution whose mean p and covariances, denoted by
the matrix %, are given by

p = Elp]
2, =E[(p - pp -l

4.1)
4.2)

The pair (p, %,) will be called the robot position uncer-
tainty.

Although there is ample precedence for using Gaussian
distributions [SmiChe86], other possible ways for repre-
senting uncertainty in the robotic context do exist. For
example, as argued by Brooks [Bro85] for the general
case and as used by Gottschlich and Kak [GotKak91a]
for the case of assembly path planning, uncertainties can
be modeled by tolerance regions surrounding the objects
and obstacles. Since tolerance regions do not lend them-
selves to Kalman filter type schemes for estimating and
updating uncertainty parameters, we have not used them
in the work reported here.

4.2. Transformation of Uncertainty Parameters by
Robot Motion

In general, the functional relationship between the po-
sition p = (p,, py, ¢) before the start of a commanded
motion and the position p’ = (px, py, ¢') afterward can
be written as

p' = h(p). (4.3)
It is well known that when the transformation function h
can be considered to be linear, the uncertainty parame-
ters (p, 3,) and (p’, 2,) for before and after a commanded
motion, respectively, are related by [SmiChe86, Dur§87]

p = h@ (4.4)

%= ()= G

The derivative 8h/8p is the Jacobian of the transforma-
tion h. These equations form the foundation of how the
positional uncertainty can be propagated as the robot tra-
vels, assuming that the transformations corresponding to
the function h are linear, or approximately so.

As mentioned above, we assume that the positional
uncertainty can be modeled by a Gaussian distribution.
For such distributions, a useful metric for comparing a

(4.5)
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position vector p with its mean p is the Mahalanobis dis-
tance given by
dists, () = [0 — P73, (@ — PI2 (4.6)
Based on this assumption, we can consider a set of points
in R” such that
A(d) = {p € R" | disty 5 (p) = d}. 4.7)
A(d) creates a closed convex set in the 3-dimensional
(px, Py, &) space, this set being a hyperellipsoid. For any
given value of d, the surface of this hyperellipsoid is com-
pletely specified by the covariance matrix 2,,. The set of
points A(d) will be called the uncertainty region induced
by the Mahalanobis distance d.°
When, as before, the function h corresponds to the
transformation introduced by a commanded motion, the
shape of the uncertainty region undergoes a change, but
it continues to remain a hyperellipsoid under the assump-
tion that h is linear. Therefore, since a hyperellipsoid is
completely specified by the covariance matrix, in order
to compute the new uncertainty region all we need to do
is to keep track of the covariance matrix %,,, along with
the mean vector. As we show later, the Kalman filter
plays a central role in the calculation of the new p’s and
2,’s as the robot travels down the hallway.

The Case of Translations

So far in this section, we have addressed the transfor-
mation h induced by a commanded motion in a rather
abstract sense. We will now be more specific and con-
sider the case in which the commanded motion is a pure
translation. Recall that in our robot the translations and
rotations are two distinct motion commands.

Due to the manner in which the world and the robot-
centered coordinate frames were defined, a purely trans-
lation motion of the robot can occur only along the y,
direction. [Of course, a rotation of the robot will alter the
v, direction vis-a-vis the coordinate directions in the
world frame.]

Assume that the robot, located initially at O in Fig. 5a,
is commanded to move a distance d, along y.. In actual-
ity, due to the aforementioned phenomena, at the end of
the commanded motion the robot will occupy a position
at some radial distance d from the starting point; also, the
location of the robot will subtend an angle « with the
original y, direction. Furthermore, the new y, axis will
point in a direction different from the old y; axis; the

9 If the reader is not familiar with this approach to specifying un-
certainty regions, it might help if we pointed out that, for the one-
dimensional case, A(d) is the set of points within d standard deviations
from the mean.
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FIG. 5. To understand this figure, the reader should recali that the
robot can execute translational moves only along its own y, axis. When
the robot is commanded to translate by dy units, the differential slippage
in the wheels causes the robot to occupy the position shown in (a). To
facilitate uncertainty characterization, this position at the end of the
commanded travel is characterized by three parameters d, «, and 8.
Note that 8 represents the angle between the old y, axis and the new y,
axis. (b) The point being made here is that when the commanded dj is
long, the randomness of the differential slippage may cause the robot to
zig and zag, the result being the final value of « close to zero.

angle between the two will be denoted by 8. Although the
phenomena that result in the angle « are essentially the
same as the phenomena that result in 8, the two angles
will not in general be identical. To make this point
clearer, consider a commanded translational motion for a
large value of dy. It is entirely possible that in this case
the robot will zig and zag a little, as shown in Fig. 5b, but
when it comes to rest it will most probably point in a
direction different from the one at the start point. In this
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case, the value of « will be close to zero, while for 8 the
value may be any value within a range that is experimen-
tally significant.

Clearly, for a given dy, we may think of d, a, 8 as
random variables, with mean values of d, @, and B, and
the covariance matrix

2
04 Pda Od Oq

Pdp 04 0g
S(d, o, B) = | Pua TaTa ol Pep Ta Tp |,
Pag TdTp PapTa0lp Ufz

4.8)

where pu., pas, and p,g represent the correlation coeffi-
cients. Because what we really seek are the means and
the covariances of the vector p, we need to establish a
relationship between the random entities d, «, 8, and the
components p;, p,, ¢. To establish this relationship, let
us assume that at the moment the command to travel
straight through a distance d is issued, the position vec-
tor of the robot is (p,, py, ¢). Let us further assume that
after the execution of the commanded motion, the new
position vector is (px, py, ¢'). The two position vectors
are related by

Px Px —d sin(¢ + @)
pyl=1|p, | +| dcos(¢ + @ (4.9)
¢’ ¢ B

This shows that the components of the position vector at
the termination of the commanded motion are nonlinear
functions of the parameters of the new position of the
robot. For example, p, is a nonlinear function of p,, d, a,
and . Since the applicability of the covariance propaga-
tion formulas, such as the one shown in Eq. (4.9), is
limited to the case of linear relationships between the old
and the new positions of the robot, we must use a linear
approximation to Eq. (4.9). Since from Eq. (4.5) it is clear
that for the case of linear transformations we only need to
know the Jacobian of the transformation, the question
then becomes one of finding the Jacobian corresponding
to a linear approximation to Eq. (4.9). This Jacobian may
be found by taking differentials of both sides in Eq. (4.9)
and evaluating the coefficients of the differentials at the
mean values of the various parameters

8px 8px 8d
8py | =T, | 8py | + Ts, | B |, (4.10)
o' 8¢ 3B

where Jg, and J, are the Jacobians, these being given by
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1 0 —dcos(¢y + a)
J,=|0 1 —dsin(¢; + @) | and
[0 0 1
_—sin($ +a& —-d cos(¢—> +a) O
Js,=| cos(d + @ —dsind +a) 0. @411
0 0 1

Assuming that the initial position vector (p,, py. ¢) and
the parameters of the change in position, (d, «, 8), are
statistically independent, we obtain the following rela-
tionships for the mean vector and the covariance matrix
at the end of the commanded motion:

px P ~d sin($ + &)
py | =|py|+|—dcosd +a)| (4.12)
¢’ ¢ B

S(pis Py, $) =I5 2pys pys &) T3,

+J5,3(d, a, B) T, (4.13)
The derivation of the Jacobians above should cast light
on what is meant by a linear approximation to the trans-
formation that takes the robot from the initial position to
the destination position at the end of the commanded
motion. Clearly, the approximation would be valid if the
initial position is sufficiently close to the mean vector
(Dx> Dy» ¢) and the parameters of the change are suffi-
ciently close to their mean values d, @, B).

Equations (4.12) and (4.13) tell us how to propagate the
means and the covariances of the position vector p as the
robot travels down the hallway.

The Case of Rotations

By definition of the robot-centered coordinate frame,
the robot is always ‘‘facing’’ the positive y, direction,
meaning the ‘‘face” of the robot is always pointing in the
positive y, direction. A commanded rotation, denoted 8,
means that the robot should turn counterclockwise so
that its new y; axis subtends an angle of 8, with the old y,
direction.

In response to a commanded rotation, the differential
slippage in the wheels will cause the robot to undergo
some translation in addition to the rotation. Let the
change in the position of the robot in response to the
commanded rotation be given by (u, v, 8), where u is the
displacement in the direction of old x,, v the displace-
ment in the direction of old y;, and ¢ the angle of rotation
between the old y, and the new y,, the designations old
and new referring, respectively, to the positions of the
robots before and after the commanded rotation (see Fig.
6).
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FIG. 6. When the robot is commanded to execute a purely rota-
tional motion, the differential slippage in the wheels will cause the robot
to occupy a position like the one shown here. To facilitate the charac-
terization of the uncertainty associated with this final position, we again
use three parameters, u, v, and 6. Note that « and v are translations
along the old x; and y, axes.

For a given commanded rotation through 6y, the pa-
rameters u, v, and 8 need to be treated as random vari-
ables with mean values i, U, and 8, and covariances given
by the following matrix:

2
T Puww Ou Oy Pus Tu T
— 2
E(I/l, v, 0) = | Puw Ou Oy Ty Pou v T9 | (414)
2
Pup Ov Ty Pug Tv T4 Ty

where p.,, pug, and p,y represent the correlation coeffi-
cients.

Since our main interest is in the mean values and the
covariances of the components (p,, p,, ¢) of the posi-
tion vector, we need to make explicit the relationship
between the p vectors at the beginning and at the end of
the commanded rotation. As before, if (p;, py, ¢') are
the components of the position vector after the com-
manded rotation and (p,, py, ¢) the components before,
their relationships are given by

D Dy U Cos ¢ — vsin o
pyl=|py|+|using +vcosd (4.15)
@' ¢ 0

As is the case with the translational motion, the relation-
ships between the old and the new positions are nonlin-
ear. For example, the component p; is a nonlinear func-
tion of p,, u, v, and ¢. Again, as before, we are only
interested in linear approximations to these relationships,
linear in the vicinity of their average values. Moreover,
we are less interested in the exact forms of these linear
approximations and more in the Jacobians implied by
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them. Using derivational steps parallel to the case of the
translational motion, we obtain

opx 8D+ Su
8py | = Jg, | 8py | T Ir, | BV |, (4.16)
o' 3¢ 86
where the Jacobians Jg, and Jg, are given by
1 0 —using — Ucosdo
Je, =10 1 @cosd — Tsing and
0 0 1
4.17)
cosd —sing 0
Jo,=|sing cosd O
0 0 1

We then obtain the mean vector and the covariance ma-
trix as

DPx Dx i cos¢ — Usin ¢
py | =|py| +|@sing + vcos (4.18)
¢’ ¢ g

2(17(, p)”s ¢,) = JRI z(px’ p)” (b) J’11;| + JRZ 2(“’ U, d)) JT:'
(4.19)

Equations (4.12), (4.13), (4.18), and (4.19) give us the
necessary tools for updating the position uncertainty of
the robot after each commanded motion, the first two
applying to the case of commanded translations and the
latter two to the case of commanded rotations. For these
equations to be useful, we must find, through experimen-
tation, the values for the various variances and correla-
tion coefficients that appear in the matrices displayed in
Eqgs. (4.8) and (4.9). As the reader should be able to infer
quickly from the preceding discussion, these variances
and correlation coefficients are functions of d, for com-
manded translations, and of 8, for commanded rotations.

The functional dependence of the variances and the
correlation coefficients on dj and 6, is an important issue
in its own right and is discussed further in Section 9.
There we show that the functional dependences, as ob-
served empirically, tend to be smooth functions and
therefore easily amenable to either interpolation or ex-
trapolation.

Before concluding this subsection, we would like to
draw the reader’s attention to the fact that all the calcula-
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tions in Eqs. (4.12), (4.13), (4.18), and (4.19) for the prop-
agation of the means and variances of the position vector
p are simple matrix multiplications and therefore can be
carried out quickly.

4.3. Landmark Projection Uncertainty

Since the camera on the robot is calibrated in the robot-
centered coordinate frame, if there is no uncertainty in
the position of the robot in the world frame, it goes with-
out saying that we should be able to predict without error
the locations of the various hallway landmarks in the
camera image. But, since commanded motions will al-
ways cause the position of the robot to become uncertain,
we are naturally interested in analyzing the relationship
between the uncertainty in the robot position and the
resulting uncertainty in the location of a hallway land-
mark in the camera image.

Before studying the uncertainties associated with the
projection of a hallway landmark in the camera image,
one must specify a model for the formation of the camera
image, the choice of the model playing a central role in
the selection of the camera calibration procedure used.
Various camera models are available for this purpose.
For high-quality cameras with good lenses—most solid-
state cameras fall in this category—it usually suffices to
use what is frequently called the pinhole model. In this
model, for all objects located within the depth of focus of
the lens used and when sufficient illumination is available
so that a small aperture can be used, the camera is as-
sumed to be a pinhole located one focal length in front of
the sensor plane. When these assumptions cannot be sat-
isfied, which is frequently the case with the older vidicon
camera and for very high-precision work even with mod-
ern cameras, one must take a recourse to other models,
such as one that takes radial distortion into account
[Tsa87]. Another possibility when a lens cannot be as-
sumed to be a thin lens is to use the two-plane method for
camera calibration [MarBir81]. Should the reader be in-
terested in pursuing further the subject of camera model-
ing, we believe the best recent comparison of the differ-
ent camera models, with regard to accuracy and the ease
with which the physical parameters of a camera can be
calculated, appears in [LopKak89].

In the work report here, we have used the pinhole
model for image formation. This assumption, which as
we mentioned above appears well justified for modern
solid-state cameras, especially so in the context of mobile
robotics, was also used in [AyaFau89]. This assumption
implies that if (x,, y,, z,) are the coordinates of a scene
point in the robot-centered coordinate frame and if (X,
Y) are the coordinates of the image pixel corresponding
to the scene point, then, using homogeneous coordinates,
we have the relationship



for predicting the uncertainty in the camera image associ-
ated with a landmark consisting of a single point, such as
a hallway corner on the floor. Let us assume the uncer-
tainty associated with the robot at position p is character-
ized by the parameters (p, 2,), where p is the mean vec-
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X,

X W
Yr

YW |=T , (4.20)
Zr

w
1

where T is the calibration matrix associated with the cam-
era. Since the focus of this exposition is not on camera
calibration, the various components of T, which depend
on such physical parameters of the camera as focal
length, sampling rates, the location of the lens center,
etc. [KakNof85], will be left unspecified. When needed,
these components will simply be referred to as {z; | i = 1,
2,3, j=1,2,3, 4},

Consider a point (x, y, z) in the world frame. Let the
robot-centered coordinates of the same point be (x,, y,,
z,). If we invoke the assumption stated earlier that the
robot is confined to the z = 0 plane of the world frame—
more accurately stated, the origin of the robot-centered
frame is restricted to lie in the xy plane of the world
frame—we can write the following relationship between
the two sets of coordinates:

X, cos¢p singp 0O —p.,cos¢ —p,sing]||x
v, —sin¢p cos¢ O p.sind —p,cose |}y
Z - 0 0 1 0 z !
1 0 0 0 1 1
4.21)

where, as usual, (p,, py, ¢) are the components of the
position vector of the robot in the world frame. Let
cos¢dp sing 0 —p,cos¢d — p,sind
—sin¢p cos¢d 0 p,sin¢d — p,cos¢
0 0 1 0
0 0 0 1

(4.22)

Then we can write the following matrix—vector relation-
ship between points in the world frame and the pixels in
the image:

X W
y

YW |=TH . (4.23)
z

74

—_—

We now show that this relationship can be used directly

tor and %, the covariance matrix for the position vector.
As a result of the uncertainty in the position of the robot,
the pixel coordinates X and Y will become random vari-
ables, and so will the factor W, which captures the per-
spective effects of imaging through a pinhole. The func-
tional dependence of these random variables on the
components (p,, py, ¢) of the robot position vector is
given by

W = [t31 f3 33 134] X

xcos¢ + ysing — p,cos¢d — p,sin¢
—xsin¢ + ycos ¢ + p,sin ¢ — p, cos ¢

(4.24)
z
1
1
X = W [t ti2 ti3 1] X
X Ccos ¢ + ysing — p,cos ¢ — p,sin¢
—x sin ¢ + y cos ¢ + p, sin ¢ — p, cos
¢ pycosd (4.25)
z
1
1
Y= W Lta1 tn ta3 sl X
xcos¢ + ysing — p,cos ¢ — p,sin ¢
—xsin¢ + ycos¢ + p,sind — p, cos
¢ +y ¢ +p b = py ¢ 4.26)

z
1

Let X, Y, and W be the mean values of these random
variables. Evidently, these mean values are given by

W = [ 3 ta3 134] X

xcosd + ysind — p,cosd — p,sind
—xsin ¢ + y cos ¢ + p, sin ¢ — P, cos ¢
. 4.27)

1
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— 1
X = W [t11 t12 i3 4] X

xcos ¢ +ysing — p,cos d — p, sin

—xsin$ + ycos ¢ + p,sind — p, cos §

(4.28)
z
1
Y= W (21 12 123 124] X
xcos ¢ + ysing — p,cos ¢ — p, sin d
—xsin¢ +ycos¢d + p,singd — p,cos ¢ (4.29)
z
1

As is clear from Egs. (4.24), (4.25), and (4.26), for any
given point landmark at a fixed location (x, y, z) in the
world frame, the relationship between the pixel coordi-
nates (X, Y) and the robot position (py, py, ¢) is nonlin-
ear. As with the case of transformations corresponding to
robot motions, we will only be interested in the relation-
ships shown in Eqgs. (4.24), (4.25), and (4.26) when all the
random variables are in the vicinity of their mean values.
This assumption allows us to limit ourselves to linearized
approximations to the relations between W, X, and Y on
the one hand and p,, p,, and ¢ on the other. Since our

FIG. 7.

An image taken by the mobile robot positioned at the origin
of the world frame marked O in Fig. 4 and when the orientation of the
robot is 0°.
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interest is limited to the propagation of uncertainties from
the (p., py, ¢) parameter space to the image space, it is
not necessary to make explicit this linearized approxima-
tion; it is sufficient if we know the Jacobian associated
with the approximation. The Jacobian, by definition, re-
lates the differentials of X and Y with the differentials of
Px» Dy, and ¢ in the following manner:

8X = = J(X, p) op, (4.30)

where the Jacobian J is evaluated at the mean values of
the random variables involved. Taking the differentials of
both sides of the relations in Eqs. (4.24), (4.25), and
(4.26), we get for the Jacobian

. _
L, £
_ w w
JX, p) = C | x Tx
1 Y
0 jm— - —
w W
[ —cos¢ -—sing —xsind +ycosd
+ pysin @ — p, cos ¢
sing —cos¢d —-xcosd—ysing
L5 = _¢. — (4.31)
Dxcos ¢ + P, sin ¢
0 0 0
|0 0 0 i

The covariance matrix associated with the pixel coordi-
nates of a single point landmark in the scene may now be
written as

Sy = E[8X 8XT] = J(X, P) 3, JX, P)T,  (4.32)

where 3, is the covariance associated with the robot posi-
tion vector p.

Figures 7, 8, and 9 demonstrate how the uncertainty of
the image pixels corresponding to point landmarks in the
hallway is used. Assume the robot to be located at the
origin of the world frame with its orientation ¢ equal to
zero. Actually, this will be the mean position of robot in
its uncertainty description while the robot is situated at
the origin of the world frame. Therefore,

0.0m
p=100m
0.0°

(4.33)

Further assume the covariance 2, at this position of the
robot is given by
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FIG. 8. This figure shows an expectation map when the robot posi-
tion parameters are the same as in Fig. 7. (During actual navigation, as
will be explaining in Section 7, due to uncertainties the position of the
robot from where the camera image is taken will not coincide with the
position of the robot that is used for the construction of the expectation
map.) The upper part of the figure illustrates a rendering from a geomet-
ric model of the hallway. The lower part of the figure graphically illus-
trates the location of the robot in the hallway structure and the portion
of the hallway visible to the robot (thick lines).

©5mp 0 0
S,=| 0 ©5m2 0 (4.34)
0 0 (10

This uncertainty could be a consequence of the prior mo-
tions of the robot. Figure 7 is an actual camera image of
the hallway taken when the robot is physically located at
the origin of the world frame with its orientation ¢ set to
zero. The upper part of Fig. 8 illustrates a rendering from
a geometric model of the hallway, assuming the robot to
be positioned at the same location as for the image of Fig.
7. Using a 2D floor plan, the lower part of Fig. 8 illus-
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trates graphically the location of the robot in the hallway
structure—the origin of the robot frame is at the center of
the circle—and the solid line is a depiction of what the
robot should see from this position. Treating each corner
in the expectation map in the upper part of Fig. 8 as a
distinct point landmark, we have shown in Fig. 9 the
uncertainty regions corresponding to each corner of the
hallway that is expected to be visible. Also shown are the
uncertainty ellipses corresponding to the ceiling counter-
parts of these floor points. In keeping with our explana-
tion in Section 4.2, each ellipse in Fig. 9 corresponds to a
Mahalanobis distance of d = 1.

All formulas we have derived so far for the uncertain-
ties associated with the image pixels corresponding to the
point landmarks can be extended to more extended land-
marks, such as lines formed by the junctions of walls, by
the junctions of walls with either floors or ceilings, or by
the edges of doors and windows, etc. In order to find the
location of the line feature in the image let (x;, y;, z;) and
(x2, y2, 20) be the two endpoints of a line landmark in the
3D space of the hallway. From Egs. (4.27), (4.28), (4.29),
and (4.32), we obtain the location uncertainty associated
with the pixel coordinates corresponding to each of the
endpoints. The search for the image line corresponding to
the line landmark can now be confined to the convex hull
of the two uncertainty regions, as shown in Fig. 10. In
other words, to find in the image the pixels that corre-
spond to the line landmark joining the world points (xi,
v, z1) and (x2, y2, z2), we need not analyze the image
outside the convex hull shown in Fig. 10.

POI

S b i

i

......................................................

FIG. 9. The uncertainty ellipses for the vertices of the edges in the
expectation map of Fig. 8 are shown here; these ellipses correspond to
the covariance matrix of Eq. (4.34). The Mahalanobis distance d = 1 is
used to construct the uncertainty ellipses.
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FIG. 10. The left figure depicts the uncertainty ellipses correspond-
ing to one unit of Mahalanobis distance for the endpoints p;and p,. The
convex hull, shown in the right figure, of the two end-point uncertainty
ellipses specifies the uncertainty region for the line segment.

4.4. Feature Space Uncertainty

The preceding discussion showed how, if we know the
uncertainty in the position of the robot, we can limit the
region of the camera image in which we must search for
the pixels corresponding to a landmark. For obvious rea-
sons, this has the desired effect of making more efficient
the establishment of correspondences between the land-
marks and the image features.

For those landmarks whose corresponding image fea-
tures can be easily parameterized, a further speedup in
computations can be achieved by constraining the param-
eter space in the manner discussed here.

Consider, for example, the case of line landmarks. Re-
gardless of the location of the robot, all the straight lines
in the hallway will manifest themselves as straight lines in
the camera image. And, each straight line in the camera
image may be represented by a pair of parameters in the
Hough space. Let p and y be used as shown in Fig. 11 to
characterize a line feature in the image. The Hough space
accumulator will then be spanned by two axes, one corre-
sponding to p and the other to y. So, going back to the
case of a line landmark shown on the left in Fig. 10, to
find the image line feature corresponding to this land-

Y

o
b §

FIG. 11. The two parameters, p and v, that are used for parame-
terizing a line in the image for its detection by Hough transform.
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mark, we need to construct a Hough space representa-
tion of only those pixels that are in the uncertainty region
shown on the right in Fig. 10.

Filling up the Hough accumulator array can be compu-
tationally expensive, even when we limit processing to
only those pixels that are in a specified uncertainty region
of the image. To get around this difficulty, as shown in
this subsection, we propagate the uncertainty from the
robot position directly into the Hough space. We can
then quickly rule out most of the cells of the accumulator,
cells that are outside the uncertainty region. In other
words, what we did for the case of line landmarks in the
preceding subsection can be pushed one step further by
computing the mean values and the covariances of the p,
v parameters associated with the image lines correspond-
ing to the line landmarks, and then limiting search in the
Hough space to a small region defined by the estimated
means and covariances of p and 7.

To find the mean and the covariance of where an image
line corresponding to a line landmark might fall in the
Hough space, consider first a line landmark in the hall-
ways defined by the endpoints (x;, y;, z;) and (xz, y2, 22)
in the world frame. Let (X;, Y;) and (X,, Y,) be the image
pixels corresponding to these endpoints.'®

From this point on we will assume that the origin of the
image plane is located at the center of the image plane; in
other words, all the pixel coordinates will be measured
with respect to the center of the image plane. In actual
digitization of images, the pixel coordinates are usually
measured with respect to one of the corners; but, for the
purpose of using the formulas shown in this section, itis a
rather simple matter to enforce the assumption of the
origin being at the center by appropriate subtractions.

Under the assumption that Y; < ¥,, we may now write
the following expressions for the Hough space parame-
ters of the image line joining (X, Y;) and (X,, Y,):!

p =X cosy + Y;siny
_ Xi(Y, = 1)
VX, — X)) + (Y, — 1)
_ (X, — X))
V(X — X)) + (Y, — 1))

(4.35)

10 For the derivation here, it is not necessary that the points (X, ¥)
and (X,, Y,) be visible in the image. The final result of this derivation
will be in terms of the Hough space parameters of the image line corre-
sponding to the world line joining the endpoints (x,, y,, z;) and (x>,
Y2, 22)-

' These formulas for p and y will yield a positive value for the p
parameter whenever the image line intersects the positive X-axis in the
image plane; otherwise, the value of p will be negative. (Note that the
angle y is-measured positive counterclockwise from the X-axis.) This
expedient makes p differentiable at the point p = 0. Another advantage
is that the placement of the origin at the center halves the range of p,
which is significant from a computational standpoint.
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(4.36)

If we now substitute Eqs. (4.25) and (4.26) into the equa-
tions shown here, we obtain p and y as functions of the
robot position variables p,, p,, and ¢. Since the uncer-
tainty in robot position implies that p,, p,, and ¢ are
random variables, the above equations tell us that, for a
given line landmark in the hallway, p and vy will also be
random variables; furthermore, these equations show us
the functional dependence of the p, y random variables
on the p,, py, ¢ random variables. The functional depen-
dences yield the following expressions for the mean val-
ues of the random variables p and vy:

_ Xi(Y, - 1)
p= ,\/ — — — —
X = X)P+ (Y, — I)?
S X) (4.37)
VX, - X+ (Y, - Y\
. ?2 - Y] o
=tan~™! =——— + =, 4.38
Y X, _x 2 (4.38)

where the mean values of the intermediate random vari-
ables, X, Y, X», Y, are to be obtained from Egs. (4.28)
and (4.29).

The functional relationships between p and y on the
one hand and p,, p,, and ¢ on the other are nonlinear. As
was the case before with such relationships, we are only
interested in linear approximations to how these relation-
ships behave in the vicinity of the mean values of all the
random variables. Of course, as before, we are not inter-
ested in explicating the precise analytical forms of these
linear approximations, but only in deriving the relevant
Jacobian, since a knowledge of the Jacobian would then
help us propagate the robot position uncertainty into the
Hough space. As in the preceding subsection, the Jaco-
bian associated with the linear approximation relates the
following differentials:

83X

8[) ) Y]
= JXY B

Sy 85X,

oY,

(4.39)

the Jacobian to be evaluated at the mean values of the
random variables. Differentiating both sides of Eqgs.
(4.35) and (4.36) and evaluating the coefficients of the
partial derivatives at the mean values of the random vari-
ables, we obtain
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Jxy =

1 1 . 1 _ 1 .
REOS Y =sin ¥ ~RO0SY — psiny
(4.40)
where
R = \/(Xz - X))+ (Y, — V) (4.41)
C=X,siny— Y cosy (4.42)
. X, — X, Y, — ¥,
siny = — —ZR—I and cosy = 1 R Y‘. (4.43)
Now from Eq. (4.30), we already know
Opx dpx
8X, — 85X, _ P
=JXi, p) | dpy | and = J(Xz, p) | opy |>
6Y; 30
8¢ 8¢
(4.44)
where
W' = (13 tzy 133 t34] X
x; cos ¢ + y; sin ¢ — p, cos ¢ — p, sin ¢
—x;sin¢ + y, cos ¢ + p,sind — p, cos ¢ (4.43)
4
1
X, = 1 [ty t1a ty3 F1a] X
1 W] 11 612 £13 L14
x)cos ¢ + y;sin§ — p, cos ¢ — p, sin §
—x; sin ¢ + y; cos ¢ + p, sin g — p, cos ¢ (4.46)
F4)
1
- _ 1
Y, = Wl (221 12 1y3 4] X
X, €cos ¢ + y;sin¢d — Py cos d — p, sin ¢
1 b+ ¥ ¢ —-p ¢ — P ¢ 4.47)

—x; sin ¢ + y, cos ¢ + P, sin — p, cos ¢
21
1



FAST VISION-GUIDED MOBILE ROBOT NAVIGATION

Wy = [t 2 133 £34] X

X, COs @ + y;sind — p,cos ¢ — p, sin b

—X; sin ¢ + y; cos ¢ + p, sin ¢ — p, cos ¢ (4.48)
2
1
X, = [t tiz t3 ta] X
2 Wz 11 £12 £13 14
X208 P + y,sind — P, cos ¢ — p, sin @
2COS 28I G T Pcos TRENG | )
—X; sin ¢ + y, cos ¢ + p,sin¢p — p, cos ¢
22
1
Y, = L (21 ta tay tas] X
2 W 21 122 123 I
Xy c08 ¢ + y,sin ¢ — p, cos ¢ — p, sin
— —- = _1 (4.50)
—X; 8In ¢ + y; CoS ¢ + P, sin ¢ — p, cos ¢
22 '
1
Substituting Eqs. (4.44) in Eq. (4.39), we obtain
- _ ODx
8p JX, p) 0
= Jxr = || %py (4.51)
&y 0 J(Xz, p)
5¢

Therefore, the covariance matrix associated with the un-
certainty in the Hough space is given by

} y
{J&I P 0
L0 Xy, P)

JX,p) O

3, =J _
” XY[ 0 JXs, P)

(4.52)

T
:| JXYT .

To recapitulate what we have accomplished in this sec-
tion, given a line landmark in the hallway and given esti-
mates of robot uncertainty, we now know two things that
have a great bearing on the efficiency of computations:

(i) we now know how to limit the region of the image
which must be processed for the detection of the pixels
corresponding to the landmark; and

(ii) we also know how to gain a further speedup in
computations by limiting the region of the Hough space
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for the detection of the corresponding image line within
the already delimited piece of the image.

The delineations of both the image region and the Hough
space accumulator cells are carried out by putting thresh-
olds on the Mahalanobis distance, defined in terms of the
covariance matrix, from the mean. For example, if we
limit our search in the image plane to a region delineated
by two units of Mahalanobis distance, we are guaranteed,
with a probability of 86%, that we will find the image line
corresponding to the landmark line. Similarly, if, in the
Hough space, we only fill those accumulator cells that are
within two units of Mahalanobis distance from the cell
corresponding to the mean, we are again guaranteed,
with 86% probability, that we will detect our landmark
line. Figure 12 shows the Hough space uncertainty de-
rived from the robot position uncertainty. The horizontal
axis in the figure measures vy and the vertical axis p. The
ellipses shown correspond to a unit Mahalanobis dis-
tance.

Although our discussion has involved only point and
linear landmarks, the exact same arguments could be
made for any other type of landmark. The only difference
would be that instead of a (p, y) parameterization, one
will have to use generalized versions of the Hough trans-
form [Bal81]. Other ways of generalizing our formalism
include propagating the robot position uncertainty to in-
fer the uncertainties associated with the distance be-

HOUGH SPACE  (-48.588, 586.B667)

i

FIG. 12. The Hough-space uncertainty ellipses for the straight lines
in the expectation map of Fig. 8. The horizontal axis is the y parameter
depicted in Fig. 11, and the vertical axis the p parameter. Again, the
ellipses correspond to one unit of Mahalanobis distance.
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tween objects in the scene or the angle between the lines
joining the centroids of the objects.

5. LANDMARK REPRESENTATION AND
ENVIRONMENT MODELING

How the hallways are modeled affects the computa-
tional efficiency of the entire system. Perhaps the most
straightforward approach to hallway modeling would
consist of using the traditional tools of 3D computer
graphics. We could, for example, use a CSG (construc-
tive solid geometry) based representation, as was done in
the work reported in [KakAnd89], and model a hallway
as consisting of a Boolean combination of a small number
of volumetric primitives. Or, we could model a hallway
by a faceted boundary representation.

The generality and versatility of these traditional ap-
proaches to 3D object representation, while certainly a
virtue if the aim is to model complex industrial objects,
makes them ill-suited for the task at hand. For mobile
robot navigation, especially when navigation must be car-
ried out in a dynamic environment created by obstacles in
a state of motion, it is imperative that a hallway modeling
system allow fast rendering of what would be visible to
the camera from any given viewpoint. More precisely, a
good hallway modeling scheme will trade off the general-
ity of the more traditional CAD systems for the speed in
rendering.

In this section, we present a data structure for hallway
modeling. This data structure, while simple, contains all
the information that a rendering algorithm would need to
construct expectation maps for a vast majority of cases.
In contrast with, say, a CSG-based representation, the
shortcomings of our data structure is that it must be en-
tirely hand-compiled at the model building time.'? How-
ever, its main advantage is that after the data structure is
compiled, for any position of the robot a scene can be
rendered in less than a couple of seconds on a run-of-the-
mill 16 MIPS serial processor.

5.1. The Data Structure

Fundamental to the hallway data structure is the notion
of a basic face. It is assumed that a basic face is a vertical
planar entity of unspecified height bounded by two verti-
cal lines. (The height information becomes explicit even-

12 Tt is certainly possible to automatically extract all the simple land-
marks, such as the linear features formed by the junctions of faces, from
a CSG-based representation. However, such extraction requires what is
called boundary evaluation, which for a given viewpoint is the determi-
nation of the edges of a Boolean combination of solids whose edges are
already known [Til80]. Boundary evaluation, which usually involves
ray tracing along the edges of the solids participating in the Boolean
combination, would be too time consuming for our application.

KOSAKA AND KAK

bulletin board

FIG. 13. A wall section in the hallway.

tually through a pointer to one of the lines; this will be
explained later.) Therefore, a face is represented by the
following 3-tuple:

(BF, (x1, y1), (x2, ¥2)), (5.1)
where the first element, BF, is the symbolic name of the
basic face, and the next two elements are the world coor-
dinates of the line formed by the projection of the basic
face onto the xy-plane. For example, in the wall section
shown in Fig. 13, the geometric entity ABCD is a basic
face defined by the xy-coordinates of the vertices B and C
in the world coordinate frame.

A basic face points to all the lines that are deemed by a
human to be significant from the standpoint of scene in-
terpretation. For example, the basic face delineated by
dotted lines in Fig. 14 will point to the 13 lines shown in
the figure. While some of these lines help define the face
itself in 3D, the other lines are for visually interesting

FIG. 14. The node for this basic face will point to the 13 visually
significant lines, Lo through L.
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FIG. 15. A complete hallway is represented by a threaded-tree data
structure. The hallway consists of basic faces BF, through BF,,. Each
basic-face node points to the visually significant line segments that it
contains.

features contained in the basic face; for example, lines
formed by the outline of a door or by features on the
door. Each line is represented by a 4-tuple:

(Li, BF}, (x1, y1, 21), (x2, Y2, 22))» (5.2)
where L; is the symbolic name of the line, BF; a pointer to
the face which contains the line, (x;, y1, z1) and (x2, ¥2, 22)
the two end points of the line.

A complete hallway may therefore be represented by
the tree data structure shown in Fig. 15. A more precise
description of the data structure is that it is a threaded
tree, since each basic face node contains a pointer to the
next basic-face node in a clockwise traversal of the hall-
way when the observer is facing in the positive y direc-
tion in the world coordinate frame. The geometry corre-
sponding to just the basic-face level nodes in Fig. 15 is
shown in Fig. 16 for the hallway for which we will report
experimental results in Section 9.!* Each small square
shown in the figure represents a square 1 m on each side.

Obviously, this data structure will not be capable of
representing visually interesting features such as fire-
extinguishers, indoor plants, and flower pots. But, then,
a majority of hallways, for the most part, are devoid of
such objects; at least that is the case in our university. It
is important to realize that a nonrepresentation of iso-
lated objects is not really a shortcoming of our system,
since all objects not in the model will be treated as obsta-
cles by the system. Therefore, it is not critical that all that
can be seen is captured in the model, only that suffi-

13 The alcoves formed by the protruding face clusters in Fig. 16, like
the cluster {BF,y, BFy, BF,}, lead to doors to the laboratories on the
right side of the main hallway. The height of the ceiling in this alcove is
lower than the height of the ceiling in the main hallway. A consequence
of our simple data structure is that the horizontal line formed by the
lower ceiling would not be representable in the model. However, this is
not a matter of serious consequence, as explained later in the section.

289

ciently large portion of what can be used for matching
with features extracted from an image be present in the
model. The question of what constitutes sufficiency in
the modeling processes will not be pursued at this time,
except to say that if the final uncertainty in the robot
position calculated on the basis of the available modeling
information proves excessive, the robot turns and tries a
different viewpoint.

5.2. Rendering Expectation Maps from the Model

As stated before, by definition an expectation map is a
map of what the robot expects to see from a given posi-
tion. Since in our current implementation all the visually
interesting features are of the linear variety, the expecta-
tion map is obtained by rendering an edge image from the
data structure of the hallway model described in the pre-
vious subsection. We will now describe a particularly
simple algorithm that can quickly construct an expecta-
tion map given the robot position and the calibration ma-
trix of the camera in the robot coordinate frame.

The rendering algorithm consists of two stages. In the
first stage, we categorize all the basic faces with regard to
whether they are fully visible, fully invisible, or only par-

B Fs Yw

1 BFg

BF, BF, BF, BFy

BF; ™~

BF, BF,,
BF,, \lzq BFys / _-BFis

BF

BF, BF,

BF;;

BF,,
Y

| BE»

BF,

BF,,
BF,,

BF,,

. |BFa

A4 BE
BFy =

- BFz
o IBFzs Xor

BF,

FIG. 16. The geometry corresponding to the hallway data structure,
a generic example of which was shown in Fig. 15. Essentially this figure
shows the spatial arrangement, vis-a-vis the actual layout of the hall-
way, of the basic face nodes BF, through BFy in the data structure of
Fig. 15.
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tially visible. This determination is made by analyzing
only the basic-face level nodes in the data structure of
Fig. 15. What that means is that analysis is confined to
the two-dimensional basic-face representation shown in
Fig. 16. After the determination of those basic-faces that
are fully or partially visible has been made, in the second
stage the line features hanging from the corresponding
basic-face level nodes in Fig. 15 are then projected into
the camera plane using the calibration matrix of the cam-
era. This two-stage approach is more fully explained with
the help of the following steps:

Step 1: Specify the Frustrum

We associate a viewing frustrum with the camera in the
robot coordinate frame (Fig. 17). In the pinhole model the
frustrum is formed by projecting the sensor plane in the
camera out through the pinhole that is located one focal
length away. Only what is inside the frustrum will be
imaged onto the sensor plane.

The near and the far planes of the frustrum correspond
to the depth of field of the camera lens, which in turn is a
function of the spatial resolution of the sensor
[KakNof85]. The frustrum is also characterized by the
angles ¥, and ¥, shown in Fig. 17. Evidently (made obvi-
ous by the geometry shown in the figure) these angles are
directly a function of the size of the sensor plane. For the
camera we use on our mobile robot, these angles are
¥, = 52°, ¥, = 35°.

We will assume that all the relevant parameters of the
camera are already known, meaning that in the robot
coordinate frame we know the locations of the near and
far planes of the viewing frustrum, the calibration matrix
which incorporates information on parameters such as
the location of the camera lens center and the pan, tilt,
and swing angles associated with the direction of the op-
tic axis of the camera.

frustrum
sensor plane
focal point \0 —
|< v, optic axis
focal length
———
depth of field
FIG. 17. The geometry of the viewing frustrum for the pinhole
model.
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Step 2: Construct line_of_sight_space

The line_of_sight_space is the set of all the points in
the hallway that can be connected by straight lines with
the (x, y) location of the robot without interference from
any other parts of the hallway. It is important to note that
the line_of_sight_space does not take into account the
orientation of the robot.

For the construction of the line_of_sight_space, we
now assume that the tilt and the swing angles of the cam-
era are zero. It is important to realize that despite this
assumption we obtain correct expectation maps even
when the tilt angle is nonzero.™ That is so because even-
tually the actual contents of the expectation map are
found by taking into account the full calibration matrix of
the camera, which implies using the actual tilt angle.
Note that in Step 2, we only want to make quick and
coarse determination of which basic faces are visible and
to what extent. By assuming zero tilt and zero swing, we
can carry out a fast two-dimensional analysis of just the
mid-level nodes in the data structure of Fig. 15 to make
this determination.

To explain this two-dimensional analysis of the geome-
try implied by the mid-level nodes in Fig. 15, assume the
robot is located at position P shown in Fig. 18. Using the
lateral pointers at the basic face level, the system now
extracts from the threaded tree shown in Fig. 15 an or-
dered list of vertices defining the basic faces. This list,
shown in Fig. 19, is processed simuitaneously to yield

(i) the vertex that is closest to the current (x, y) loca-
tion of the robot; this vertex is called the distinguished
vertex and denoted v*,

(ii) the visibility status of each vertex, meaning
whether or not a vertex would be visible from the current
location of the robot regardless of its orientation.

In Fig. 18, we have displayed the distinguished vertex
v* and marked with heavy dots the visible vertices for the
location of the robot shown there. While finding the clos-
est vertex is simple as it only requires that the Euclidean
distances from each of the vertices to the current robot
location be computed, the computation of visibility is,
relatively speaking, slightly more cumbersome since we
must determine whether or not the line joining the vertex
with the robot location intersects any of the other base-
lines.”> The computational complexity of this computa-

14 For the type of research reported here, there is almost never a need
for a nonzero swing angle, unless one is experimenting with active
vision (now more frequently referred to as animate vision) where the
cameras must be free to point in almost any direction within a large
range. In all our experimentation, the swing angle is always kept at
Zero.

5 For a basic face defined by the tuple (BF, (x,, y;), (x2, y2), the
baseline is the line joining the points (x,, y;) and (x», y,) in the xy-plane
of the world coordinate frame.



FAST VISION-GUIDED MOBILE ROBOT NAVIGATION

yW
Vs Vo
V \Z ¥,
v; VYoVg > 1OV“ \Y Vi 13 v“‘v
B Vis
A
Va Vs Vs Vi7
MERL)
Ay
IV
A A A Yy
Pe
Va3
Vs
V-
vV, 5
v, Va6
V1 .
42 Vg
Yo [ o ]V29 R
Vs v,
FIG. 18. The line_of__sight_space for the position of the robot. It is

the set of all points on the hallway floor that would be visible from the
center of the robot regardless of the orientation of the robot.

tion is O(N?), where N is the number of basic faces in the
hallway.

Starting from the distinguished vertex v* and the visi-
bility status of each vertex in the linked list of Fig. 19, the
system then constructs the line_of _sight_space by using
the following steps:

(a) Scan the list of the visible vertices, starting from
the distinguished vertex v*.

(b) If two consecutive visible vertices belong to the
same basic face, as is the case with the vertices vy and vy
in Fig. 18, declare that part of the hallway that is enclosed
by this basic face and the lines joining its vertices to the
(x, y) location of the robot as belonging to the visible
space.

(c) If two consecutive visible vertices do not belong to
a single basic face, as is the case with the vertices v,3 and

Vo A1 Y A4 \ A

FIG. 19. The ordered list consisting of all the vertices that define the
basic faces of the hallway.
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vj+1 \"

FIG. 20. Case 1 for the construction of the line_of_sight_space.

Uy in Fig. 18, a portion of the hallway bounded by these
two vertices and the other vertices that are between them
in the ordered list of Fig. 19 must be partially invisible
from the current (x, y) location of the robot. Similar situa-
tions would arise with the visible pair of vertices vy; and
v, and with the visible pair vy and vy,. The following three
rules are used to delineate the visible fraction of the hall-
way when any of these situations arise:

Case 1. This case, corresponding to the situation at
the (uys, Uye) pair of visible vertices in Fig. 18, is depicted
more generally in Fig. 20. Let v; and v; be two consecu-
tive visible, but nonadjacent, vertices with i <j. Let Zv;
denote the angle /Pup*, the angles being measured
clockwise from the line Pv*. The test of Case 1 is that
Lvj—; < Luy;. If this condition is satisfied, a part of the
basic face defined by the vertices v,_;, v; must be visible.
This part is extracted by extending the line Puv; to the
baseline v;_i, v;.'¢ '

Case 2. This case, corresponding to the situation at
the (vy, U2y) pair of visible vertices in Fig. 18, is depicted
more generally in Fig. 21. Again let v; and v; be two con-
secutive visible, but nonadjacent, vertices with i <j. The
test of Case 2 is Zv;+; > Zv;. If this condition is satisfied,
a part of the basic face defined by the vertices v;, vy
must be visible. This fraction of the basic face is ex-
tracted by extending the line Py; to the baseline v;, ;4.

Case 3. If the consecutive but nonadjacent pair of
vertices v; and vj, i < j, does not satisfy either of the two
cases above, then Case 3 must apply. This case, which
corresponds to the visually consecutive vertices vy, v, in

16 Strictly speaking, this would only give use the visible part of the
physical hallway line corresponding to the base line v;_;, v;. What we
are doing is tantamount to assuming that the visible and the invisible
parts of a basic face are divided by a vertical line passing through the
visible/invisible transition on the baseline v;, v;. This assumption is
strictly true only when the tilt angle of the camera is zero. For nonzero
tilt angles, this assumption is capable of injecting tiny fragments of
some of the invisible edges into the frustrum. Since these extra edges
are visually insignificant, they have never caused any problems.
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FIG. 21. Case 2 for the construction of the line_of_sight_space.

Fig. 18, implies that the lines joining the robot center P
with the vertices v; and v; be extended until they both
intersect one of the baselines. The intersection points
thus obtained give us the visible region that must then be
included with the rest of the visible space (Fig. 22).

This is the end of Step 2. At the end of Step 2, we have
the line_of_sight_space for the current location of the
robot regardless of its orientation. In Fig. 18, we have
shown this space for the location of the robot marked
there. In the computer memory, the data structure for
representing the line_of_sight_space consists of ordered
list of vertices:

w*, v, . -

s Vie Vi o 1. Vi),

(5.3)

> Ukla Ukz, ..

where the v; nodes are the visible nodes corresponding to
the basic faces in the data structure of Fig. 18, and the V;
nodes are the new nodes corresponding to the intersec-
tion of the lines of sight with the baselines of the partially
visible basic faces (Fig. 18). To decide quickly whether or
not a given consecutive pair of vertices in the list shown
above corresponds to an actual basic face or to a segment
like AB in Fig. 18, we also store, in parallel with the list

Vi

FIG. 22. Case 3 for the construction of the line__of_sight_space.
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of vertices shown above, a list of status flags, each entry
in this list being either a 1 or a 0.

Step 3: Construct visible_space

Recall that the line_of_sight_space gives us the set of
all the points that would be visible from the current (x, y)
location of the robot without taking into account the
robot orientation. We now extract that portion of the
line_of_sight_space which would be visible for a specific
orientation ¢ of the robot. This latter space will be called
the visible_space. Clearly, the visible_space is the inter-
section of the line_of_sight_space with the frustrum of
the camera.

To compute this intersection, the system simply scans
the vertex data structure in Eq. (5.3) and compares the
angle Zv* P v; or the angle £v* P V;, as the case may be,
with the angles defining the projection of the frustrum on
the xy-plane. Basically, we want to make sure that the
angles corresponding to v; or V; are within the ¥, angle of
the direction in which the robot is facing.

Displayed in Fig. 23 is the visible_space for the posi-
tion and the orientation of the robot shown there.

Step 4: Construct Expectation Map

The expectation map is constructed by scanning from
left to right the visible_space data structure shown in Eq.
(5.3) and addressing the following cases:

(i) If the status flag associated with the current vertex
and the next vertex is 0, then this pair of vertices corre-
sponds to a line like AB in Fig. 18. Such delineations of
the visible_space do not contain any landmarks. So noth-
ing needs to be done.

(ii) If the status flag associated with the current vertex
and the next vertex is 1, this pair of vertices defines either
a fully visible or a partially visible basic face.!” We will
now discuss these cases separately.

Case 1. If the basic face is fully visible, we simply
project all the leaf nodes that hang from this basic face
node (Fig. 13) into the camera plane. Recall that the leaf
nodes are the visually significant straight-line features
contained in the basic face. Of course, the projections of
the linear features onto the camera plane must be fol-
lowed by clipping to remove fragments that are not
within the frame defining the image.

Case 2. If the basic face is only partially visible, as is
the case with the basic face BF; in Fig. 23, we must

7 As was mentioned before, the full and the partial visibilities are
only with respect to the horizontal extent of the frustrum. Any clipping
due to the vertical extent of the frustrum will be taken into account
automatically via the camera calibration matrix during the projection of
the landmarks onto the camera plane.
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FIG. 23. Visible_space for the location and the orientation of the

robot at point P. While the line_of_sight _space in Fig. 18 does not
take into account the orientation of the robot, the visible__space does.
Visible_space also takes into account the frustrum of the camera.

extract only those segments of the linear features that are
within the visible_space. Consider the example of single
basic face shown in Fig. 23, where the segment OR on the
floor describes the extent of what is visible in this basic
face. To extract the visible parts of the linear features, we
first parameterize the baseline in the manner:

X = x; + tlx; — xp)

(5.4)
(5.5)

y =y + Hy; — y).
Evidently, the point r = 0 corresponds to one end of the
baseline and the point ¢ = 1 to the other. The same pa-
rameterization is then used for all the other nonvertical
lines in the basic face. What we mean by that is the ¢ = 0
for any line feature will correspond to the intersection of
the line with the vertical boundary at (x;, y;), and t = 1 to
the vertical boundary at (x,, y,). This simple expedient
allows us to quickly extract just the visible parts of all the
nonvertical lines in the basic face. For a vertical line, we
simply examine its projection on the baseline; only if the
projection falls within the visible portion is it then pro-
jected into the camera plane.
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Figure 24 shows an expectation map made by this algo-
rithm for the position of the robot shown in Fig. 23.

6. A GEOMETRICAL PROPERTY THAT FURTHER
SPEEDS UP EXTRACTION OF VERTICAL HALLWAY
LINES FROM CAMERA IMAGES

We discussed in Section 4 two key points that expedite
the extraction of the image features required for matching
with the landmark features present in the expectation
map:

1. For each linear feature in the expectation map, the
delineation of the image region to which we may limit our
processing.

2. The delineation of a small region of the Hough
space to which we may confine the accumulation of pixel
counts.

FIG. 24. The combined result of Steps 1 through 3 for the construc-
tion of an expectation map when the robot is located and oriented as
shown in Fig. 23. While the upper part shows the expectation map, the
lower depicts the visible_space.
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Both these delineations were a result of our propagating
the uncertainty in robot position into the camera image
and then into the Hough space.

In this section, we demonstrate that a further reduction
in the computation burden can be achieved when the
landmark features in the expectation maps correspond to
the vertical hallway edges. Vertical hallway edges obey a
special property that makes it possible to further confine
the search in the Hough space. We state this property
with the help of the following lemma:

LemMMA. There exists a fixed vanishing point (Xg, Yr)
in the image plane such that the image lines correspond-
ing to all vertical world lines will pass through (Xg, Yg).
Furthermore, the coordinates (Xz, Yg) of the vanishing
point in the image plane are independent of the location
and orientation of the robot as long as the assumption of
a flat floor is satisfied.

Proof. Letl, be an arbitrary vertical line in the world
coordinate system. [/, can be described as

X 0 ' X
y|=0]u+ |yl 6.1)
Z 1 21

where (x,, ¥1, z;) is a point on the line and u« is a real
parameter. Then the image of the hallway line [, in the
camera frame is given by

X1
Xw
y
ywl|=T1e| |urTH|"|, 62
Z
W 1
0 1

where X and Y are the coordinates of the pixels that fall
on the image of the hallway line and W the perspective
effect factor. 7, the same as in Section 4, is the camera
calibration matrix in the robot-centered coordinate frame
- and H, as given by Eq. (4.22), is the 4 X 4 homogeneous
transformation matrix that for a given point in the world
coordinate frame gives us its coordinates in the robot-
centered coordinate frame.

Let (X, Y1) be the image pixel corresponding to the
point (x;, y;, z;) in the world coordinate system. Then

X1
X, W,
y
Y, w,|=TH|"' 6.3)
Z
W, '
1
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Subtracting Eq. (6.5) from Eq. (6.4), we get

0 0
Xw Xl W] I3
0 0
YwW/| - Y] Wl =TH 1 u=T 1 u=\tm|u,
w W I3
0 0
6.4)

where the second equality follows from the structure of
H shown in Eq. (4.22). The last equality above makes
explicit the elements of the third row of the 3 x 4 T
matrix; the precise values of these elements are not im-
portant for the proof here. Therefore,

XW-— X] W] =lisU (65)
YW-—-Y Wi=tsu (6.6)
W — W, = 53 u. 6.7)

Substituting the value of W from Eq. (6.7) in Egs. (6.5)
and (6.6), we get the following pair of equations:

i3 Wi [ tl3:l
x=y Wy I 6.8
ty  tau+ W LT gy 68
Iy W, [ 123]
Y=="4—1Y - = 6.9
tw  tau+ WL 1y 6.9)

Since u is arbitrary, we can define a new parameter s as

Wi

s = m‘l (610)

In terms of s, Eqs. (6.8) and (6.9) may be written as

X=t£+S[X1 —m} 6.11)

I33 133
Y—”—3+S[Y1—@] 6.12)

I33 133

Let
s _ I

Xg=— and Yp == (613)

33 t

Equations (6.11) and (6.12) tell us that the point (Xg, Yg)
will be on the image of the hallway line [, regardless of the
choice of the world point (x, vy, z;) and regardless of the
position of the robot since the expressions for Xr and Yg
are independent of the elements of the matrix AH. There-
fore, we may say that the point (Xg, Yg) is a vanishing
point for the images of the vertical hallway lines in the
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FIG. 25. (X, Yr) designates the vanishing point, meaning that the
image lines corresponding to all the vertical lines in the hallway will
pass through this point in the image. (X, ¥) is an arbitrary pixel on an
image line that is the perspective projection of a vertical hallway line.

camera image, since the images of all the vertical lines,
regardless of the position of the robot, will pass through
this point in the image plane. Q.E.D.

We will now show how the above lemma may be used
to expedite the recovery of the vertical hallway lines
from an image. Let (X, Y) be an arbitrary pixel in the
image and assume for a moment that the pixel falls on the
image of a vertical hallway line. We note from the lemma
that the image line through (X, Y) must pass also through
(X, Yp). The Hough space characterization of this line is
given by (Fig. 25)

p = XE cos vy + YE sin Y (6.14)
Y~-Yr @
— -1 7
y = tan" g+ 5 (6.15)

As expected, all the points on the image line passing
through (X, Y) and (XF, Yg) will be characterized by the
same values of p and v; therefore, all those pixels will
contribute to the cell located at this (p, y) point in the
Hough space.

Now consider all the vertical hallway lines simulta-
neously. Since the vanishing point is unique, the images
of these lines will all pass through the same point, the
point (X, Yr), as shown in Fig. 26. Although for all these
lines in the image, both p and y will be different and given
by Eqgs. (6.14) and (6.15), the value of y will stay close to
0. Since vy is close to 0, we may use the following approxi-
mations to those two equations:

X - Xp

T (6.16)

y=tany = —
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p=Xpcosy+ Ypsiny=Xg+ Yry. (6.17)
Although these approximations imply that we may locate
all the hallway vertical lines in the Hough space by con-
fining our search to a straight line in the Hough space, we
have chosen to follow a different procedure, which is
based on the precise forms in Egs. (6.14) and (6.15). This
procedure is explained next.

Algorithm for the Extraction of Vertical Hallway Lines

The actual procedure used by us for the extraction of
vertical hallway lines is displayed in Fig. 27. We explain
this procedure under the assumption that we are inter-
ested in extracting all the vertical hallway lines simulta-
neously from the image. The reader must realize that in
actual robot navigation, that would never be done. In
actual robot navigation, for each vertical line in the ex-
pectation map the processing of the image will be con-
fined to the uncertainty regions delineated according to
the arguments advanced in Section 4.

We first define a histogram, p_hist, in just the p space.
Lines I through 3 initialize this histogram. We then apply
an oriented edge detector to the image. This edge detec-
tor, denoted diff_x(X, Y), is simply the x-component of
the Sobel operator. Since the angular sensitivity of both
components of the Sobel operator is not that sharp, the
diff_x operator will respond almost uniformly to the im-
ages of all the hallway vertical lines regardless of their
values of y. As stated by line 7 of the procedure, if at a
given pixel the absolute value of the response to diff_x
exceeds a certain threshold, compute vy and p for that
pixel using Eqgs. (6.14) and (6.15). Subsequently, in line 9,
the appropriate cell of the histogram is incremented.

: ; s
e 4 N4
: ;
[ S )
H : /

FIG. 26. If we consider all the vertical hallway lines simultaneously,
the value of y, defined in Fig. 25, will stay to close to zero. Note that the
images of all the vertical halilway lines will pass through the point (X,
YE) regardless of the location and the orientation of the robot.
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Algorithm for Vertical Line Detection:

1: for i:=-Max to Max do begin
2:  p_hist@d) :=0;
3: end;

4: for Y := Row_min to Row_max do begin
5. for X :=Column_min to Column_max do begin
6: z = diff_x (X,Y);
7: if (|| > threshold) then begin
8: _ -1 Y_YF T
: Y = tan XXp 5
9: p = Xpcosy + Ygsiny,
10: _hist(p) := p_hist(p) + 1;
11: end;
12:  end;
13: end;

14: Extract peaks in p_hist(i);

FIG. 27. The algorithm for the detection of the hallway vertical
lines. A special feature of this algorithm is that it uses only a singly
indexed accumulator even though the perspective projections of verti-
cal lines possess different slopes in the image.

The end result of this procedure is a one-dimensional
histogram in the p space. All the vertical lines may now
be detected by thresholding this histogram. In other
words, we have reduced the complexity of vertical line
detection by eliminating the need to search in two dimen-
sions of the (p, y) space; now we need search in only one
dimension, the p dimension. The method works because
the angle v is confined to a small interval around the point
v = 0. Therefore, it is possible to actually construct a
one-dimensional histogram along the arc traced by the
curve defined by Egs. (6.14) and (6.15) in the two-
dimensional (p, ) space.

Figure 28 shows the values in the different cells of the
p_hist histogram for the image of Fig. 7. The count corre-
sponding to each peak in this histogram is the number of
pixels along a vertical line in the image. Since we are not
interested in vertical lines that are too short—many of
these short vertical lines correspond to glare reflections
of door edges and hallway corners in the linoleum floor—
a low threshold is first applied to the histogram to elimi-
nate the low ripple that is visible in Fig. 28. In much of
our experimentation, a threshold count of 30 has elimi-
nated most small edges. We then count the remaining
number of peaks and apply a new threshold to make sure
that the final number of peaks does not exceed twice the
number of the vertical lines in the expectation map. In
that sense, the threshold selection is dynamic and always
maintains approximately the same ratio between the
same number of candidate image lines and number of
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haliway vertical lines. Note that it is not possible to fine-
tune the threshold selection to the extent that the number
of lines extracted from the image would equal exactly the
number of vertical lines in the expectation map; there are
many instances when the distortions in imaging and in
image processing cause the appearance of more than one
line at the output of the edge detector even when there
should be only one. Another important phenomenon that
can lead to the number of lines in the image being larger
or smaller vis-a-vis the number of lines in the expectation
map is the occlusion created by the misregistration be-
tween the actual location of the robot and the computer’s
estimate of where the robot is. Obstacles can be yet an-
other source of additional lines in an image.

This dynamic thresholding of the p_hist histogram
yields the values of p corresponding to all the visually
significant vertical lines. For each such p, we now calcu-
late the associated y from the following equation derived
from Egs. (6.14) and (6.15):

U
VX:+ vz ©

y = sin™! (6.18)

where the value of « is given by

. XF YF
SN @ = ———=— and cos o = ——m—

VX 1} Vxz+ e &1
Although it would seem that the solutions to these equa-
tions first for o and then for y would be multivalued, in
practice that difficulty does not arise because of the con-

400
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FIG. 28. This figure shows the p histogram for the image shown in

Fig. 7.
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FIG.29. After the parameters p and vy are extracted from the Hough
space, the steps used for the extraction of image pixels corresponding to
the line defined by these parameters are shown here. (a) First in each
row we find the pixel closest to the line defined analytically by the
parameters. Next, we find the max gray value within a small window
around pixels such as B in each row. A plot of these max gray levels as a
function of row index is shown in (b). This function is then smoothed to
yield what is shown in (c). Thresholding of this smoothed function
yields the straight line segments in the image.

straint that the selected value for y must be in the vicinity
of 0.

Each pair of p, v thus extracted defines an analytical
line in the image. To cope with the quantization effects
caused by image sampling, we adopt the following proce-
dure to actually identify the pixels that correspond to this
p, v analytical line. The intersection of this line with each
row is calculated to yield a point such as the point A
shown in Fig. 29a. The image pixel nearest to this point is
then found by a simple calculation which rounds off the
floating point value of the X-coordinate of A to the integer
coordinate of the nearest pixel, this pixel being B for the
example shown in the figure. Subsequently, in the edge
image we look at the values within a 1-neighborhood of
the pixel, such as B, and retain the maximum value to
construct a one-dimensional array, an example of which
is shown in Fig. 29b. This array is then smoothed with a
three-element window to yield the array in Fig. 29c,
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which is then thresholded to identify the white pixels
shown in Fig. 30.

Algorithm for the Extraction of Nonvertical Lines

Lest the reader think that we only extract and match
vertical hallway lines, we will now quickly show the algo-
rithm for the extraction of the nonvertical lines from the
camera image and show results comparable to those just
presented for vertical lines. Of course, since nonvertical
lines do not obey the nice geometrical property presented
earlier—for example, the horizontal hallway lines do not
result in a unique vanishing point in the image plane that
would be independent of the position of the robot—it is
not possible to present a one-dimensional search algo-
rithm for their extraction.

Since the procedure for the extraction of nonvertical
hallway lines shares many of the latter steps of the proce-
dure described above for the hallway vertical lines, we
will only discuss the initial steps here that are different.

Figure 31 shows a procedure that constructs a two-
dimensional histogram in the (o, y) space for the extrac-
tion of the nonvertical hallway lines. As explained in Sec-
tion 4, in line 2 we first compute the means and the
covariances associated with the endpoints of the line in
the expectation map. These means and covariances de-
lineate the uncertainty regions in which the endpoints of
the hallway line would be located with high probability;
how high this probability would be depends on how many
units of the Mahalanobis distance are used in the defini-

FIG. 30. The superimposed white lines show vertical hallway lines
extracted from the image of Fig. 7 by using the algorithm presented in
Fig. 27. Note the straight line segments on the glare reflections in the
floor of some of the vertical lines.
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Algorithm for Non-vertical Line Detection:

1: for each linear landmark L do:

2 compute the uncertainty regions of the two endpoints in the camera frame
induced by the n-unit Mahalanobis distance;

3: approximate the uncertainty region of L in the camera frame by a rectangular
region: [X_min, X_max] in column and [Y_min, Y_max] in row;

4: compute the uncertainty region of L in the Hough space induced by the
n-unit Mahalanobis distance;

5: approximate the uncertainty region of L in the Hough space by a rectangular
region: [p_min, p_max] in p and [y_min, y_max] iny;

6: for Y := Y_min to Y_max do begin

T for X := X_min to X_max do begin

8: apply to the neighborhood of (X, Y) a differential operator diff_y

which is especially sensitive to the edge orientation in the range
[y_min, ¥_max], producing z := diff_y(X, Y);

9: if |z| > threshold then begin

10: for y :=7_min to y_max do begin

11: p:=XcosY+Ysiny;

12: pY_hist(p, ) := py_hist(p, ¥) + 1;

13: end;

14: end;

15: end;

i6: end;

17: extract peaks in py_hist;

18: end;

FIG. 31. A procedure for the extraction of nonvertical hallway
lines. )

tion of the uncertainty regions. In line 3, for computa-
tional ease a rectangular enclosure is calculated for the
convex hull of the two endpoint uncertainty regions.
What lines 2 and 3 do in the image space, lines 4 and 5
accomplish in the Hough space. Finally, lines 6 through
16 apply an oriented edge operator to the region of the
image delineated by the rectangular enclosure produced
by line 3; the output of the oriented edge operator is then
used to fill up the accumulator cells in the fragment of the
Hough space defined by the enclosure generated in line 5.
Figure 32 shows the histogram obtained for one of the

3.00 q

1.00

count (X102)

FIG. 32. A three-dimensional histogram in the (p, ) space for the
extraction of a nonvertical hallway line.
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FIG. 33.
extracted from the image of Fig. 7.

The superimposed white lines shows the nonvertical lines

nonvertical lines in Fig. 7. The peaks in the Hough space,
as extracted in line 17, then define the lines in the image
along which the relevant pixels must lie. After the con-
struction of the py_hist, the thresholding operations are
very nearly the same as for the case of vertical lines,
except that these operations now take place in two di-
mensions as opposed to one. After the extraction of p and
v corresponding to visually significant nonvertical lines,
actual identification of the associated pixels in the image
space takes place in a manner very nearly the same as
before, the only point of departure being in the construc-
tion of 1D neighborhoods shown in Fig. 29 for the case of
vertical hallway lines. When the analytical lines are at
angles that are closer to Y-axis than to X-axis, the 1D
neighborhoods become vertical for obvious reasons.

The superimposed white lines in Fig. 33 show the non-
vertical lines extracted in this manner from the image of
Fig. 7.

7. CORRESPONDENCE FINDING AND
PARAMETER ESTIMATION

After the extraction of image lines from the uncertainty
regions associated with each of the visually significant
hallway lines, our next challenge is to establish a corre-
spondence between the hallway lines and the image lines.
Ideally, we would like a one—one mapping between the
image lines and the lines in the expectation map. Any
attempts at doing so are complicated by the following
factors:

1. there may be more than one line extracted from any
given uncertainty region,



FAST VISION-GUIDED MOBILE ROBOT NAVIGATION 299
model candidates
landmark gl hll hlZ h13 AR hlm‘ nil
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FIG. 34.

Each landmark g is a visually significant feature from the hallway. In our case, g,’s are the hallway lines, both vertical and nonvertical.

For each landmark, there is a pool of candidate features extracted from the image. The problem is to construct a mapping function by pairing up
each landmark with a member from its pool. Added to each pool is a nil to account for occlusions and other effects.

2. the misregistration between the actual position of
the robot and the position as inferred from the wheel-
encoder reports would cause the occlusion effects in the
camera image to be different from those in the expecta-
tion map,

3. some of the hallway lines may become occluded by
the obstacles,

4. the obstacles may give rise to additional lines in the
image.

The problem at hand is, we believe, well illustrated by
Fig. 34, where for each visually significant line from the
hallway in a given expectation map we have shown po-
tential candidates extracted from the corresponding un-
certainty regions. For example, for the landmark feature
&n, its potential image candidates are marked 4, through
Mo, Note that we have also added the nil symbol to the
list of potential candidates for each landmark line. This
addition label helps us assign a nil to a hallway line when
the latter may not be visible due to either the second or
the third of the difficulties listed above. The first and the
fourth difficulties are taken care of automatically by the
maximization of an objective function that we will define
in this section.'8

18 The process of adding nils to the list of potential candidates during
the construction of a mapping function is referred to as nilmapping. For
some earlier cases where nilmapping was found indispensable, the
reader is referred to [BoyKak88, Gri90].

The goal of this section is to show how we might con-
struct a mapping function that would take us from the
expectation map to the linear features extracted from the
image. This mapping function should be one—one and
into and must allow for nilmapping. In other words, the
mapping from the model space to the image space must
be injective while allowing for nil possibilities.

In order to derive such a mapping function, two criteria
must be specified:

1. We need a criterion that tells us how well an image
line “‘matches’” a landmark line. More precisely, we wish
to know how well an image line can be considered to be a
projection of a hallway line, given our knowledge of the
camera calibration matrix. This criterion is evidently
local in nature.

2. Given a knowledge of how well the various lines in
the hallway match, on an individual basis, the various
lines extracted from the image, we need an evaluation
function that would be a measure of the quality of the
mapping function.

In the next subsection, we will present what we believe
is a unique constraint equation whose satisfaction imme-
diately tells us whether or not an image line is a projec-
tion of a hallway line. The extent to which this equation is
satisfied will then serve as a measure of local ‘‘match”’
between a given hallway line and a given image line. In a
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subsequent subsection, we will then present an evalua-
tion function that will give us the probability that a given
mapping function constructed in the search space of Fig.
34 is a valid mapping function. Then, by choosing that
mapping function which maximizes this probability, we
obtain the best possible assignment of image lines to the
hallway lines—best in the sense that what we obtain is a
maximum-likelihood mapping function.

As some readers might recall, structural matching in
computer vision [ShaHar81], for example structural
matching in binocular stereopsis [BoyKak88], also uses
two criteria: a local criterion, usually referred to as local
compatibility, and a relational criterion. While our first
criterion seeks to achieve the same result as the local
compatibility in structural stereopsis, the reader will no-
tice that our second criterion will not bear any resem-
blance to a relational match criterion. In the traditional
approach to enforcing relational constraints, the spatial
relations between the primitives must be made explicit
and must be measured directly in the image. In our for-
mulation, the mechanism of seeking the image correspon-
dent of a hallway feature from only a particular uncer-
tainty region in the image is an indirect, albeit powerful,
enforcement of the relational constraints. So, while our
second criterion will make no explicit comparisons of the
relational type, it nevertheless has the capacity to guar-
antee that the spatial relations between the lines in the
expectation map and the image lines accepted for the
mapping function are the same—not in a deterministic
sense but in a maximum-likelihood sense—as the spatial
relations between the lines in the expectation map.

7.1. A Constraint Equation

Any straight line in the world coordinate frame passing
through a designated point (x;, y;, z;) and of orientation
(a, b, ¢), a, b, and ¢ being the direction cosines associ-
ated with the direction of the hallway line, can be repre-
sented by

X a X1
yi=|blut+]y|, (7.1
Z C 21

where u is a scalar parameter. Similarly, any image line
that is described by the Hough parameters (see Fig. 11) p
and y can be represented by

X —sin y p cOs vy

= s+ L
Y CcOos vy p siny

where, in accordance with our discussion in Section 6, X
and Y are the two coordinate axes in the image frame.

(7.2)
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Now, the image line corresponding to the line of Eq.
(7.1) will be given by Eq. (4.23). If we substitute Eqs.
(7.1) and (7.2) in Eq. (4.23), we get

. a X1
—siny pcosy
) s W b n
cosy psinvy =TH u+TH
w c ¥4
0 1
0 1
(7.3)

Recall that T is the 3 X 4 calibration matrix of the camera
in the robot-centered coordinate frame and H a 4 X 4
transformation matrix that takes a point from the robot-
centered coordinate frame to the world coordinate frame;
H is given by Eq. (4.22). Akin to what is done in Gaussian
elimination for the diagonalization of matrices, in order
to force one of the equations in the above matrix—vector
form to equal zero on the right side, we will now multiply
both sides of Eq. (7.3) by

1 0 —p COS vy
cosy sinvy —p
0 0 1
the result becoming
[ —siny 0
sW
0 0 =
w
L 0 1
— a X1 (75)
1 0 —p COS 7y
. b Y1
Cosvy sinvy —-p TH u +
(o4 Z1
0 0 i
0 1

From the equality of the second row elements from both
sides, we get

a
) b
[cosysiny —p] TH U

c
0

X1

. Y1

+ [cosysiny —p] TH =0. (7.6)
2y
1
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Since different values of the parameter u correspond to
the different points on the hallway line, and since this
equation must hold for an arbitrary u, the two coefficients
above must be zero separately. This fact will be ex-
pressed in the following manner:

fi

2

f(as b? C, X1, Y15 215, P> ')’,px,py, d)) = [ :| :09 (7'7)

where

fi=lcosysiny —p] TH =0 (7.8)

y=[cosysiny —p]TH = 0. (7.9

The dependence of f; and f,, and therefore of f, on the
robot position parameters, p,, py, ¢, is induced by the
transformation matrix H. The constraint equation Eq.
(7.7) will be represented more compactly as

fx,z, p) = 0, (7.10)
where the arguments of f are grouped as
x = [a, b, ¢, x1, yi, al', z=[p, ¥I%,
bon s (7.11)

p = [px; p}” ¢]T

The x parameters are about the hallway line in question,
the z about the camera image of the hallway line, and the
p about the robot position.

7.2. A Maximum Likelihood Estimate of the
Mapping Function

Let p be a random vector which specifies the robot
position in the world coordinate frame. Given a hallway
line g; and an image line #; characterized by the parame-
ter vector z;, we use the following as the probability that
g: corresponds to A;:

problg; — A; | z;, pl, (7.12)
where the symbol g; — A; denotes the mapping of the
model line g; to the image line A;.

Assume for a moment we have only two landmark fea-
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tures in the expectation map, denoted by g; and g,. Let
hi,j=1,2,3,. . .be the lines extracted from the image.
To construct the best possible mapping function in the
maximum-likelihood sense, we must choose the image
lines A; and h; such that the probability

problg; — h; and g, — h; | z;, z;, pl

is maximized. However, this joint probability may be de-
composed in the following manner:

prob[g, — h; and g, — h; | z;, z;, p]
= prob[g,— h;|z;, p] X problg,— h;| g1— hi, 7, 7;, p.
(7.13)

Let us now focus on the conditioning event
g1—> hi, 2, Z;, p

in the second factor on the right in Eq. (7.13). A primary
consequence of any landmark to image feature match,
such as gy — h;, is that the uncertainty in the robot posi-
tion random variable p will be reduced and consequently
the uncertainties in any z; vectors considered subse-
quently will also be reduced. In other words, every
match like g; — h,, transforms the random variable p, of
statistics (p, 2,) into a different random variable p’ of
statistics (pV, 2("), where the superscript (1) signifies the
revised statistics of the robot position random variable.
Therefore, the conditioning event g; — #; in the first fac-
tor on the right side in Eq. (7.13) can be interpreted as
updating of the random variable p. At the risk of sound-
ing too repetitious, what we are trying to say is that if the
position of the robot was p prior to the match g — 4
becoming available, and if the new position of the robot
after the match g; — A; is designated pV, then the decom-
position in Eq. (7.13) may be expressed as

problg, — h; and g, — h; | z;, 7;, p]
= prob[g] — h; I Z;, P] X prOb[gz - hj | zj('])! p(l)]
(7.14)

M

where 2z;” is the random variable z; transformed by the

match g; — h;.1°

19 At this point some readers might ask: Do the conditioning events z
and p really contain any independent information? After all, in Section
4, we said that the uncertainty in z was to be derived from the uncer-
tainty from p. The problem that we will soon be facing in this section is
that in actual practice the Hough space parameter vector z contains
uncertainties above and beyond those derived in Section 4. The addi-
tional uncertainties are due to the sampling and quantization effects and
have a direct bearing on the measurement of z. These additional uncer-
tainties will be important to the Kalman filter based updating scheme to
be derived in this section for the position vector p. Note that it is in the
nature of the perspective geometry of camera imaging that even a small
error in z can cause significant problems with the establishment of cor-
respondences between the image lines and the hallway landmarks.
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Let us now generalize the above development to the
case of arbitrary number of hallway lines given by g1, g2,
g3, . . . ,&nand an arbitrary number of image lines given
by hy, ha, b3, . . . , hy. Generalizing the arguments that
led to Eq. (7.14), we can write for the probability of any
given mapping function

problg, — hjj, 82— hjps . . . ,
o byt z
= problg, — #;; | z, pl

prob[g, — A, | zf('zl)’ p™] (7.15)

problg, — &y, | z;™", p* 1.

For computational reasons, it is preferable to take the
logarithm of both sides of this decomposition, the result
expressed as

Dy = log problg, — hj, | z;;, p]

+ log problg; — hy, | z;,), p*]

(7.16)
+ log problg, — hy, | 2", p 1],

n
where Dy may be thought of as an objective function that
measures the likelihood of a mapping assignment from
the hallway landmarks to the image lines. Our goal evi-
dently is to select that mapping assignment which maxi-
mizes Dj.

The decomposition shown above lends itself naturally
to a sequential calculation. The realization that the com-
putations can be carried out in a sequential framework
requires a fundamental shift in how the assumptions out-
lined at the beginning of this subsection are to be inter-
preted. For example, at the beginning we assumed that
we have available to us model lines g1, g2, . . . , g, and
the image lines A, ho, . . . , hy,. Our statement there
implied a certain simultaneity with regard to the availabil-
ity of the image lines. The sequential model of computa-
tion developed here makes that unnecessary. At the be-
ginning we need to know only one image line, say the line
hj,; its match with the model line g, will generate a re-
vised robot position vector p'" from the originally known
position vector p. This new position vector, with its asso-
ciated mean and covariance, will then lead us, nominally
through the propagation equation in Eqs. (4.37) (4.38),
and (4.52) to a new vector z;,. In other words, the statis-
tics of z;, reflect nominally the projection of the hallway
line g, into the camera frame given the uncertainty of the
revised position vector p™.%

Therefore, in a strictly sequential computational
framework in which each match between a hallway line

20 We have used the word nominally because we have not yet intro-
duced the effects of observation noise in the parameter vectors z.
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and an image line is used to update the statistics for the
next match, we can rewrite Eq. (7.16) as

Dy = log problg| — &, | z;,, p]
+ log problg, — hj, | z;,, p?'] (7.17)

+ log problg, — h;, | z;,, p"~ V1.

The main difference between Egs. (7.16) and {7.17) is that
we have dropped the superscripts on the z variables be-
cause we now recognize that z;, comes into existence
only after the first match, g; — h;, has taken place. The
statistics of z;, derived by projecting the image line g,
into the camera frame through the uncertainty in the posi-
tion of the robot, will then delineate the image and Hough
space regions where we will look for the image line A;,.
This interpretation of the link between the model lines
and the uncertainty regions in which we must look for the
image lines that correspond to the model lines is made
more transparent if we rewrite Eq. (7.17) as

Dy = log problg; — h;, | z1, p]
+ log problg, — hj, | 2, pV] (7.18)

+ log problg, — h;, | z,, p" ]

Examining the first factor on the right hand side, this
equation tells us that the image line A; as a possible
match for the model line g; must be found in the uncer-
tainty region z;, the uncertainty region being obtained by
projecting the model line g, into the camera frame
through the uncertainty associated with the position vec-
tor p. Similarly, for the next factor, the image counter-
part of the model line g; is to found from the uncertainty
region defined by z,, this uncertainty region being ob-
tained by projecting g; into the camera frame though the
uncertainty associated with the vector p‘V, where, as will
be discussed in the next section, p¥ incorporates Kalman
filter revisions in the statistics of p.

The sequential approach still leaves open the question
that if more than one image line is present in the image
region corresponding to the model line g;, which one
should be selected for /;;. This question will be addressed
later when we address the issue of backtracking for the
maximization of the objective function Dy.

7.3. A Kalman Filter-Based Update Scheme for the

Position Vector

Now we must address the question of how the compu-
tation called for by each term on the right in Eq. (7.18)
must be carried out. In other words, we now address how
a match between a given hallway line g; and a given image
line 4;, changes the statistics of the robot position vector
and generates, taking into account the hallway line gi+i,
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the statistics of z;.;, which will then tell us where we
should look for the image line corresponding to g;; . This
we will do with the help of the Kalman filter ideas that
have recently been injected into mobile robotics by
Avyache and Faugeras [AyaFau89]. It is entirely possible
that a given image line—the image line currently being
considered a correspondent of the hallway line g;;;—
may not be the correct line. This will happen particularly
when more than one line is extracted from the uncer-
tainty region in the Hough space corresponding to the
hallway line g;4+;. In order to deal with such mistakes in
the selection of the image lines, and also to bring into
consideration the consequences of image digitization and
other sources of noise, we will assume that if the vector
z} denotes the Hough parameters of the correct corres-
pondent of g;, and Z; the measured parameters of the se-
lected line, then?!

=1z + &, (7.19)

where ¢; includes two types of errors; the selection error,
which is the error caused by having selected the wrong
line from the uncertainty region in the Hough space, and
the errors introduced by phenomena such as sampling
and quantization of the image. As was mentioned in the
footnote in the preceding subsection, the perspective ge-
ometry of camera imaging can cause the latter error to
seriously affect the calculation of the updated position
vector; hence it must be taken into account.

For the random error vector &;, we may assume that its
mean is zero and its covariance matrix is known from
experimentation. [If for some reason the mean value is
not zero, a bias term can be subtracted from the £’s.]

! We have agonized much about subjecting the reader to the confu-
sion that may be caused by our use of z;, %;, and z;", but there does not
seem any easy way to avoid this multiplicity of symbols, all dealing
essentially with the same thing, the parameters of the image lines. All
formalisms that deal with predictions and measurements in a sequential
framework appear to suffer from this sort of difficulty. To help the
reader, we will summarize here the interpretations that these symbols
carry. The symbol z; is the random vector obtained by projecting the
model line g; into the camera frame through the latest uncertainty in the
robot position. The uncertainty region defined by z; tells us where to
look for the image line which would correspond to g;. The symbol Z; is
also a random vector and represents the measured Hough parameters of
a particular line selected from the image. It is most important to note
that the source of randomness in Z; is entirely different from the source
of randomness in z;; whereas the randomness in the former is entirely
due to the measurement phenomena, such as image quantization noise
and selection ambiguity, the randomness in the latter is due to the
uncertainties in prediction caused by the uncertainties in the position of
the robot. For a given model line g;, from the uncertainty region defined
by z; we select for matching a particular image line 4;, the parameters of
the image line being Z;. The symbol z" is not a random vector, but a
deterministic vector that, although not known, designates the Hough
parameters of the true image line corresponding to the model line g;.
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Then
E[El=0 (7.20)
El¢& EN =V, (7.21)
E[& €T =0 fori#j, (7.22)

where we have also assumed that for different ; and j, the
observation noise terms are uncorrelated.

In keeping with our earlier notation, p denotes the ini-
tial position vector for the robot, initial in the sense that it
designates the random variable before any matching via
the Kalman filter. The statistics of p are a function of the
position encoder reports from the robot, as explained in
Section 4. Also, after the completion of the sequential
computation dictated by Eq. (7.18), let p* denote the final
position vector of the robot. The statistics of p* give us
the best localization of the robot after all the matches
between the hallway lines that can be seen in the expecta-
tion map and the lines extracted from the image. Evi-
dently, prior to the completion of the computations, after
each match between a hallway line and an image line, the
estimate of the robot position vector will differ from both
p and p*. In the notation used in Eq. (7.18), p® is the
position vector after the match for the ith hallway line g;.
We will now assume that

p? = p9, 39), (7.23)

where p@ is the mean value of the position random vari-
able p@ and where % represents the revised estimate of
the variance of the position vector after the match for g;.

As eloquently stated by Ayache and Faugeras
[AyaFau89], the derivation of a Kalman filter requires
that any constraints on the parameter to be estimated, if
they are nonlinear, be linearized in the neighborhood of
their operating ranges. The constraint equation applica-
ble in our case, Eq. (7.10), is nonlinear. To discuss the
linearization of this equation, let us assume that we have
already finished the computations implied by the first
(i — 1) terms on the right of Eq. (7.18). This computation
will yield the position vector p¢~V and, taking into ac-
count the hallway line g;, the Hough parameter vector z;.
Now let Z; denote the actual Hough space parameters of
the image line selected from the image and the Hough
space regions as delineated by the statistics of z;. Since
we have no way of telling whether or not the image line
selected is the correct one, all we can do at this time is
examine the constraint equation in the vicinity of the
measured point Z; and, pi~", the position vector already
estimated. Linearizing the constraint equation in the vi-
cinity of these values, we get
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f(x;, z*,p) =0

o of .
~ f(x;, Z;, p@P) + Iz ' — %)
1

of o
il — pi-b
+ P (p — p“ 1), (7.24)

where the partial derivatives are evaluated at the points
(x;, Z;, p“~ V). The partial derivatives used in Eq. (7.24) are
shown in the Appendix. This equation may now be re-
written in the following fashion that is standard to
Kalman filter development:
yi=Mp+uw (7.25)
where y;, as a function of the actual measurement Z; and
the position estimate already known, p“=", will be called
the ith Kalman measurement vector. The matrix M tells
us how this measurement vector is related to p, the sub-
ject of our sequential estimation, and w; gives us a linear-
ized version of the random error associated with the

Kalman measurement vector. These quantities are given
by

v = —f(x;, 2, p) + %ﬁ“‘” (7.26)
M. — % (7.27)
w=TL -5, (7.28)

The statistics of the vector u; are easily obtained from
Egs. (7.19) through (7.22) and are given by
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Eu] =0 (7.29)

fT
oy off

P . T g
U; = Elw; u;] oz oz,

(7.30)

where the partial derivatives are calculated at the points
(x;, Z;, p¢~1). The covariance matrix V; was defined in Eq.
(7.22).

Kalman filter theory tells us that the robot position
vector is updated by the equations

PO = P + Ky — M, pi") (7.31)
K= 300 ME U M MY 0.3)
30 = (I - Ki M) 57V, (7.33)

where K;is called the Kalman gain of the filter. The deri-
vation of the Kalman filter is shown, for example, in
[Jaz70]. The sequential operation of the Kalman filter is
depicted pictorially in Fig. 35.

7.4. Assessing Match Probabilities

As mentioned before, for the implementation of the
Kalman filter we must first project the robot position un-
certainty into the image plane and the Hough space, and,
from the uncertainty regions thus constructed, we must
select one image line for each model line. While the
Kalman filter gives us revisions of the robot position vec-
tor after a match between a model line and a selected
image line, the filter theory itself has nothing to say about
how an image line should be selected from the uncer-
tainty regions. In other words, for each mapping in the
search space displayed in Fig. 34, the Kalman filter gives
us revised estimates of the robot position uncertainty af-
ter every match between a landmark and a candidate

X X, Xn
Landmark - Landmark Landmark .
Prediction " |Detection Prediction [ |Detection Prediction > Detection
Z, Z z,
A and ﬂi and ) and
él —® Selection iz—~> Selection &n Selection
A A A
VA 1 ZZ l z n
Y Y ™
N 2 (n-1) n
p Filter P | Filter p( ) p Filter P
" | Tteration #1 " |[teration #2 " |Iteration #n|

FIG. 35. This figure depicts the sequential operation of the Kalman filter. The goal is to sequentially update the statistics of the robot position
vector p after each match between a landmark and an image feature. After # such matches, the final estimate of the robot position vector is denoted
p“. The image feature corresponding to the landmark x; is predicted to be within the uncertainty region corresponding to the random variable z;
given the robot position vector p¢-V. The random variable £; accounts for the detection and selection errors associated with the image feature

chosen to correspond to the landmark x;.
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image feature, but how to select a candidate in each row
of Fig. 34 is beyond the capabilities of the Kalman filter.
Therefore, as was mentioned before, the Kalman filter
must be combined with backtracking. To bring about this
backtracking, we must evaluate the quality of each over-
all mapping by computing the objective function in Eq.
(7.18), which in turn requires that we be able to estimate
the probability that g; — #; given the current estimate
pi~V. We will now derive a result for the generic form
problg; — h; | z;, p] and then use it with the appropriate
substitution of variables in Eq. (7.18). Recall that ; is the
measured Hough space vector for the image line 4; that is
being considered for a possible match with the model line
8i-

In order to derive a formula for the generic form
problg; — h; | z;, pl, recall that z;, the prediction vector
associated with the model line g;, is obtained by project-
ing g; into the camera frame via the uncertainties in posi-
tion vector p; the statistics associated with z; tell us
where in the image and the Hough space we should look
for a match for g;. We then select a line /; from the region
defined by z;, the Hough parameters of this line desig-
nated by Z;. Now the question to answer is what is the
probability that Z; represents the parameters of the cor-
rect match. We will write

problg; — h; | z;, p] = prob[detectable(g,) | z;, p]
X prOb[zmeasured = ij | z;, P],
(7.34)

where we have made explicit the fact that, due to various
reasons listed below, a given model line g; may or may
not be detectable in the image.

(i) The image correspondent of a model line may fall
outside the uncertainty region. For example, if for the
purpose of feature extraction we define the uncertainty
region on the basis of two units of Mahalanobis distance,
there is roughly a 14% probability that the image line
would fall outside the uncertainty region and would thus
be undetectable by our processing algorithms. Let
Poussige_ur denote the probability that the image projection
of a model line will fall outside the uncertainty region.

(ii) Occlusion resulting from the uncertainties in the
position of the robot. When an expectation map, such as
the one shown in Fig. 24, is made, it is from the vantage
point corresponding to the mean position vector at the
end of the commanded motion. Since the actual position
of the robot will, in general, be different from the mean
position, some of the features visible in the expectation
map will not be visible in the camera image. Let Poccusion
denote the probability that due to the robot not being at
the mean location of its uncertainty region, a model line,
visible in the expectation map, is not visible in the camera
image.
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(iii) Some of the landmarks may become occluded by
the obstacles. Also, due to illumination effects, some of
the landmarks may simply not have sufficient contrast in
order to be detectable. Let P, designate the probability
that a model line will be sufficiently occluded by an obsta-
cle and therefore will not be detectable.

We will now assume that these three phenomena are in-
dependent. We will therefore use the following expres-
sion for prob[detectable(g;) | z;, pl:

probldetectable(g)) | z;, p)

7.35
= (1 - Poutside_ur) (1 - Pocclusion)(1 - Pobs), ( )

where the product rule is dictated by the fact that in order
for a model line to be detectable, it must be detectable in
a conjunctive sense with regard to all three phenomena.
For obvious reasons, the probabilities Poccusion and Pops
would be hard to derive analytically. Fortunately, these
two probabilities do not lend any differential weight to
the overall objective function. What that means is that all
the paths in the search space of Fig. 34 will be equally
affected by a given specification of Pocgusion and Pps. This
is particularly true of P, when all obstacles are execut-
ing truly random motions around the robot. Therefore,
we will simply ignore Pocusion and Py from the rest of the
discussion, which leads to the following expression for
the probability of detection:
prob[detectable(g) | z;, p] = (1 — Poysigeur). (7.36)
Before discussing how the probability Psde_ur 1S SPEC-
ified, we will now address the issue of estimating
Prob[Zmeasured = % | 2, pl, the second factor in Eq. (7.34).
The question here is that given the prediction random
vector z;, what is the probability that the measured
Hough parameters of the selected image line would be %;?
Invoking from Section 4 the assumption that z; is a Gaus-
sian random vector of mean z; and covariance 3,,,;, we
can write

ProblZmeasures = ij ' pl

= Az <57T12ﬂ exp [— % @ —2)" 35 @ — 2,-)]),

(7.37)

where Az = Ap Ay is the cell size in the Hough space. We
will assume the Hough space is sampled uniformly and
that therefore the cell size is constant. It is important to
note that the exponent on the right hand side of Eq. (7.37)
equals the square of the Mahalanobis distance from the
mean prediction vector z; to the measurement vector ;. If
the measurement %; equals the mean prediction vector,
the probability of match becomes maximum. As the Ma-
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halanobis distance between the actual measurement vec-
tor and the mean prediction vector gets larger, the proba-
bility of the image vector being a good match becomes
smaller. For a given measurement vector Z;, the calcula-
tion of the probability in Eq. (7.37) is straightforward
since, as we explained in Section 4, we already know
how to transform the uncertainty in robot position into
the uncertainty in the Hough space. In other words, for a
given model line g; and for a given position random vec-
tor p, we already have the formulas that give us z; and
Ep%i .

The distribution shown in Eq. (7.37) also helps us cal-
culate the probability Pgyee o Since this probability is
given by

1

¢ Hough_uncert_region 29 ‘ 2p‘y,i|

Poutside_ur = J
z

7.38)
exp [— % (z-7)" 3, (@ — ii)} dz, (

where, as indicated, the integral is computed outside the
Mahalanobis distance that defines the uncertainty region
for z; in the Hough space. In other words, the integral is
computed wherever

z-2)"3,),@—1)=d, (7.39)
where the threshold d means that the uncertainty region
is defined by d units of Mahalanobis distance. This then
takes care of specifying Poysige_ur 10 Eq. (7.36).

Since it is quite likely that some of the model lines
would be mapped to nil, we also need to assess the proba-
bility prob[g; — nil | z;, p]. Since the factors that cause a
model line to be nondetectable are exactly the same as
the factors that would cause a model line to be matched
to nil, we could use

prob[g; — nil | z;, p] = 1 — prob[detectable(g)) | z;, pl.
(7.40)

However, in practice, it is not feasible to use this proba-
bility. The reason for why this obvious expression for
nilmapping probability cannot be used can be explained
simply if for a moment we ignore the nondetectability of
lines caused by the second and the third factors men-
tioned at the beginning of the section. In other words, we
will assume, for the sake of explanation here, that the
only reason a model line is nondetectable is because its
image counterpart falls outside the uncertainty region de-
fined by the prescribed Mahalanobis distance. In this
case, prob[g;— nil | z;, p] will equal the integral shown in
Eq. (7.38). If we use, say, two units of Mahalanobis dis-
tance to prescribe the uncertainty region, the integrals
under the tails of the Gaussian distribution will equal
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0.14, meaning that the probability of any model line g;
being matched to nil is 14%. On the other hand, even if
we find the correct match for a model line at the center of
the Gaussian distribution, the probability that the match
is correct would only equal the height of the Gaussian
expression times the size of the Hough cell—this product
will in practically all cases be much smaller than 14%. As
given by Eq. (7.36), the probability associated with any
correct match, assuming it has been detected, is limited
by the size of a Hough cell. On the other hand, the proba-
bility of a nilmap is proportional to the integral of the
Gaussian function over a large chunk of the Hough
space. Consequently, with, say, a 14% probability of a
nilmap, the objective function in Eq. (7.18) would be
maximized by simply mapping every model line to nil,
which would be an absurd thing to do.

To cope with this difficulty, and as was done in
[BoyKak88], we do not include the contributions from
nilmaps in the calculation of the objective function by Eq.
(7.18). The nilmaps are kept track of separately, with the
goal that we must select that mapping which contains a
minimum number of nilmaps. We therefore use the fol-
lowing optimality criteria for the construction of a map-
ping from the model lines to the image lines:

An optimal mapping is that path in the search space
of Fig. 34 which has the minimum number of nilmaps
and a maximum value for the objective function of Eq.
(7.18). The objective function takes into account only
the non-nilmapped factors from the right side of Eq.
(7.18).

To implement this optimality criterion, the growth of any
path in the search space whose nilmap count exceeds the
minimum encountered for any of the previous paths is
stopped and the node used as a backtracking point. And,
of all the paths retained—they would have the same mini-
mum number of nilmaps—the one selected has the high-
est value of the objective function. To expedite computa-
tions, in addition to comparing with the minimum number
of nilmaps encountered before, we use a threshold on the
maximum number of nilmaps along any path. Clearly, a
path whose nilmaps are a significant fraction of the num-
ber of model lines could not possibly be very useful for
self-location.

Our experience gained through actual experimentation
has also shown that it pays to accept a mapping function,
regardless of the value of the objective function, if the
number of non-nilmaps along a path in Fig. 34 exceeds a
threshold.

7.5. Correspondence Finding Procedure

We now summarize, using pseudocode, the complete
procedure for finding the correspondences between the
lines in an expectation map and the lines that can be
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procedure correspondence_finding( )

S« &

. Ug « initial robot position uncertainty;
M « set of model lines;

C & set of candidate pools;

Ds « 0;

. status ¢ not_yet;

G« &

Ug « &

Dg ¢ 0;

10. match(M, C; §, U, Ds; G, Ug, Dg; status);
11. repon(status, G, Ug);

VN AL

12. end.

Variables:
“> 8n }.
R:  aset of model lines which have not been used in the search and R € M.

C: a set of candidate pools such that C = {Cy, Cy, -+, Cy} where
C; = {h; [i=1,2, .., n}and hy, is an image line candidate for the model line g;.

M: asetof model lines such that M = {gy, g, -~

S:  aparial mapsuchthat § = {(g;, hj)]i=1,2, --- } where h; may be nil.

Ug: the robot position uncertainty obtained from a a partial map S. Ug consists of the mean
vector Pg and its covariance matrix Zg.

G:  aset of maches such that G = {(g;, h;) li=1,2, -
hji may be nil. In other words, the set G indicates a full map.

n}and |G| = n where

Ug: the robot position uncertainty obtained from a full map G. Ug consists of the mean vec-
tor P and its covariance matrix Xg.

siamus :
a status indicates the result of the procedure match. The status may be one of the fol-
lowing: not_yet, success, found, fail. Not_yet indicates the status that the algorithm has
not yet found any full map, while found indicates the status that at least one full map is
discovered. Success indicates the status that the algorithm has found an optimal map,
while fail indicates that the current path does not lead to any full map.

FIG. 36. The top level procedure for establishing correspondences
between the hallway landmarks and the features extracted from an
image.

extracted from an image. The main procedure, corre-
spondence_ finding () is shown in Fig. 36, whose bottom
half contains the definitions of the variables used. Lines 1
through 5 of the main program define the global variables
used. The set M contains the model lines; only those lines
whose lengths exceed a threshold, set currently at 50
pixels, are selected for inclusion in M. Based on the esti-
mated uncertainty in the position of the robot, candidate
sets of image lines for each model line are extracted using
the projected uncertainty in the image space and the
Hough space. The candidate pool for model line g; is
denoted by the set C;. As a match is established between
the model line g; and some image line #;,, all the candidate
pool C; are pruned to reflect the reduced uncertainty in
the position of the robot. This pruning is accomplished by
line 23 of the procedure match that is called by corre-
spondence_finding in line 10.

When first called in line 10 of correspondence_ finding,
the procedure match, displayed in Fig. 37, has M, C, S,
Us and Dyg for input variables and G, Ug, Dg, and status
as output variables. Note that S, the set of (g;, &;)
matches established so far, is empty when match is first
called. We will refer to S as a partial map. Also note that
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Us is the robot position uncertainty computed on the
basis of the partial map S. Of course, initially, that means
that Ug is the robot position uncertainty established on
the basis of the commanded motion. The value of the
input variable Ds is the value of the objective function
Dy, defined in Eq. (7.18), calculated on the basis of non-
nilmaps contained in S. Since initially S is empty, Ds is
zero. That takes care of all the input variables when
match is first called.

The procedure match returns instantiations for the out-
put variables G, Ug, Dg, and status. The variable G is
the final set of matches (g;, 4;) that optimize the criterion
mentioned in the previous section. The returned value of
Ug is the final uncertainty in the position of the robot,
established on the basis of the matches contained in G,
and Dy is the final value of the objective function.

To briefly describe the procedure match, in line 1 it
compares the number of nilmaps in the partial map S with
the minimum number of nilmaps in any previously de-

procedure maich(R, C; S, Ug, Dg; G, Ug, Dg; status):
1. if (G#@ and #nils(S) > #nils(G)) then status « fail, return;

2. if #nils(S) > threshold (nil) then status « fail; retum;

3. if #success(S) > threshold(success)

4. then begin G « S; Ug « Us; D « Dg; status « success; return; end;

5. if S| = M|

6. then if G=O

7. then begin G « 8; Ug « Us; Dg ¢« Dg; status « found; return; end;

8. else if ( #nils(8) < #nils(G) ) or ( #nils(S)=#nils(G) and Ds>Dg )

9. then begin G « §; Ug & Ug; Dg < Dg; status « found; return; end;

10. else status « fail;, return;

11. foreachg; € R

12. begin

13. #e;=0;

14. foreach h; € C;

15. begin

16. compute d; ; = mahalanobis_distance((g;, h;), Us);

17. if d;; < threshold(mahalanobis) then #c; < #c; + 1;

18. end;

19. end;

20. find the model line g; € R such that #c; <#c; forallg e R;

21, R« R-—{g}:

22. foreach h;e C,

23. if’ the Mahalanobis distance d ; > threshold (mahalanobis) then C, « Cy —{h;};

24. else p,; =1log problg, — h; | Usk

25.  sort C, in decreasing order with respect to py ;;

26. if Cy=Qthen

27. begin

28. S« Su {(g, nil)};

29 match(R, C; 8, Us, Dg; G, Ug, Dg; status);

30. end;

31 else

32. while C, 2@ do

33. begin;

34. hy, « the first element in Cy;

35. Cp — Cy~ hy,};

36. Spew = S U {(g, M)t

37. Dy D + pery

38. update_uncertainty (Us, Upew, (81, Rig)):

39. match(R, C; S,y Upnwr Drews G, Ug, Dg; status_new),

40. if status_new = success then

41. Status « success; return;

42. else if status_new = found then status « found,

43. end;

44.  return;

FIG. 37. This procedure is the workhorse of the top level shown in

Fig. 36.



308

rived full map G. The node in the search space of Fig. 34
where this condition is violated then serves as a back-
tracking point. Line 2 makes sure that the total number of
nilmaps in the partial map S do not exceed a threshold; if
they do then backtracking would again be initiated by line
2. In line 3, #success(S) returns the number of non-
nilmaps in the partial map S. If the condition in line 3 is
satisfied, then, in accordance with our comments in the
previous subsection, the recursion is terminated in line 4
and the map contained in S accepted as the final map,
hence the assignment of § to G.

Lines 5 through 10 are invoked when a path in the
search space of Fig. 34 reaches the bottom of the space,
in other words when the cardinality of S equals the cardi-
nality of M. In this case, if there is no prior full map G,
the partial map S becomes the first full map (line 7). If a
prior full map was obtained, then in line 8 a comparison is
made of nilmaps contained in § with the nilmaps in the
prior G. If the number of nilmaps in 8 is strictly less than
that in G, in line 9 S becomes the new G. The same
happens if the number of nilmaps in § equals that in G,
provided the value of the objective function for S is larger
the value for G.

In line 11, the variable R, initially the same as M and
subsequently reset in line 21, is the set of model lines not
yet used for mapping. Lines 11 through 21 are invoked
for finding that landmark g, which has the smallest candi-
date pool C,. Note the symbol #c; designates the cardi-
nality of the candidate pool C;; this cardinality is calcu-
lated in lines 12 through 19 by counting only those pool
members that are inside of the user-specified Mahalano-
bis threshold using the latest estimate Ug of the robot
position uncertainty.??

The landmark with the smallest candidate pool is then
considered in lines 22 through 43 for matching. First con-
sidering those landmarks that have the smallest candi-
dates pools leads to more efficient backtracking. Con-
sider the fact that at the very least a landmark will have a
pool of size one containing a nil. Therefore, by consider-
ing landmarks with small sized candidate pools first, we
more quickly assign the nils than would otherwise be the
case. As a result, we derive greater power from the opti-
mal criterion stated in Section 7.4 that says that a map-
ping function should be rejected if the number of nilmaps
used exceeds some threshold.

To find the correspondent for the landmark g, in lines

22 The reader is probably wondering why in line 17 we don’t delete
those pool members that are outside the Mahalanobis threshold, instead
of just counting those that are within the threshold. The reason has to
do with the fact that a deletion of a candidate in line 17 would make it
permanently unavailable for the rest of the search path (without back-
tracking). By deleting candidates in line 23 we allow such candidates to
be considered again later on.
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22 though 25 we first prune C; by deleting those candi-
dates that are outside the Mahalanobis threshold, and
then order the remaining C;, on the basis of the probability
measures computed in line 24. If the resulting candidate
set Cyis null, we add the pair (g, nil) to the partial map §
in line 28 and make a recursive call to match in line 29. If
C, is not empty, we choose the first candidate in C, as a
possible match for the landmark g,. One cycle of the
Kalman filter is now invoked in line 38 to update the
robot position uncertainty Us producing a new estimate
U,ew Of this uncertainty. After that, in line 39, we rein-
voke match recursively. The status statements in lines 40
through 42 should become obvious from the definition of
status in Fig. 36.

In Fig. 38 we have pictorially illustrated the sequential
reduction of the uncertainty in the position of the robot as
landmarks and image features are paired up by the proce-
dures discussed. Each row of this illustration corre-
sponds to one step of the sequential matching process,
or, more precisely, to one call to the procedure match of
Fig. 37. Initially, we seek a match for the vertical line g,
in the expectation map shown on the left in the top row.
Shown in the middle figure of the top row is the image
frame containing the lines corresponding to the detected
Hough space parameters. The lines in the shaded region
of this frame are within the Hough space uncertainty el-
lipse for landmark g,. The size of the Hough space uncer-
tainty ellipse is determined by the uncertainty in the posi-
tion of the robot, this initial uncertainty being shown on
the right in the top row. If we match g with 4;, shown in
the middle of the second row, the robot position uncer-
tainty becomes as shown at right in the second row. Also,
the uncertainties associated with landmarks g, and g3
change; these uncertainties are displayed by the shaded
regions in the middle of the second row. Now suppose
landmark g, is matched with the image feature 4, shown
in the middle of the third row. This causes the robot
position uncertainty to change into the ellipse shown on
the right in the third row. Also, the uncertainties associ-
ated with landmarks g; and g4 become what is depicted
by the two shaded regions in middle frame of the third
row. Matching g3 with /3 reduces the robot position un-
certainty to the small circle shown on the right in the last
row. Of course, this sequence of matches would only be
accepted if the value of the associated objective function
and the number of nilmaps used (we did not use any in
our example) satisfy the optimality criterion.

8. PATH PLANNING, PATH REPLANNING, AND
PERCEPTION PLANNING

It is obvious that the method of self-location discussed
in the preceding section needs to be embedded in a larger
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processing scheme that would be capable of the fol-
lowing:

(1) accepting a destination from the human supervi-
sor (currently the destination in our system is specified
by the goal (x, y) coordinates and the final orientation
desired for the robot);

(2) planning a path from the initial position and orien-
tation to the destination position and orientation;

(3) keeping track of the uncertainties during the vari-
ous translational and rotational motions as the robot
starts its travel toward the destination;

(4) stopping for the self-location exercise when the
accumulated uncertainties hit a maximal human-specified
bound;

(5) if the orientation of the robot for the seif-location
exercise is such that the number of visible landmarks is

The sequential approach to the reduction of uncertainty in the position of the robot, illustrated pictorially.

too low, being able to examine the environment using a
different viewpoint (this is an example of animate vision
[Bal&9]);

(6) replanning the path to the destination from the
point where self-location is carried out;

(7) being able to carry out collision avoidance using
the ultrasonic sensors on the robot during motions from
one self-location point to another;

(8) being able to keep track of the growth of uncer-
tainties during the reactive behavior exhibited during col-
lision avoidance and being able to stop for self-location
when the uncertainties hit a user-specified limit.

All of these capabilities are supported by the computa-
tional framework presented in Fig. 2. In this section, we
will discuss further the precise nature of the data struc-
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ture and the computations that support the path and per-
ception planning components.

8.1. Path Planning

There exists a voluminous amount of literature on the
subject of path planning. Instead of citing all the pertinent
references, we will refer the reader to the book by La-
tombe [Lat91]. Suffice it to say that there now exist two
major approaches to path planning, one based on configu-
ration space ideas first pioneered by Lozano-Perez and
Wesley [LozWes79] and the other using potential func-
tions, their use first proposed by Khatib [Kha86] in the
context of realtime robot control. In the configuration
space approach, the environment is typically modeled by
a set of polygons and a solution path which consists of
linear motions with the shortest distance considered
[LozWes79, Lat91, Ko0i89]. Also, the robot is shrunk to a
point, while the objects in the environment are enlarged
by the size of the robot. The desired trajectory is then
calculated for the point robot so that the enlarged ficti-
tious objects in the environment can be avoided. Several
algorithms have been proposed for the extraction of mini-
mum distance paths using this approach.

In the potential field approach to path planning, a glob-
ally computable scalar function with potential-field-like
properties is associated with each object. To find
collision-free paths, one must search through the valleys
of the composite potential field corresponding to ail the
objects. This search process has two components, one
that deals with keeping track of different branches when
a valley bifurcates and making sure that at each point
along the chosen path there exists some orientation of the
robot that would result in collision-free motion. As dem-
onstrated in [HwaAhu88, Lat91], the determination of
collision-free orientations along the potential-field valleys
requires gradient-descent calculations. While such calcu-
lations are necessary in the context of assembly motion
planning [GotKak91a, GotKak91b], they would be exces-
sively burdensome for our purposes especially because
the clearances involved in our case are not that tight and
because computational time is of the essence.

We will now describe a rather simple approach, partic-
ularly appropriate to a robot traversing a flat plane, to
path planning that suffices for our case. As we will dem-
onstrate, this approach supports all the path planning and
replanning capabilities mentioned at the beginning of this
section.

In order to make a path from the initial position to the
goal position, we first construct a bitmap of the floor of
the hallway from the data structure of Fig. 15; next, we
extract a radial-valued skeleton of this bitmap, the limbs
of this skeleton corresponding roughly to the midpoints
of the hallway; finally, for each pair of start and destina-
tion positions we smooth the relevant sections of the
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skeleton to reduce the number of turns required. The
skeletal segment thus obtained is the desired path from
the start position to the destination position provided the
start point lies on one of the limbs of the skeleton. If the
start point does not lie on the hallway skeleton—a possi-
bility that occurs invariably during path replanning after
collision avoidance—a procedure is used to connect the
start point with the farthest possible point on the skele-
ton. We will now discuss each of these steps in some
detail:

Step 1: Construct a Bitmap Representation of the Floor

As discussed in Section 5.1, a hallway is represented
by a threaded tree, whose face-level nodes contain
pointers that allow a fast traversal of all the basic faces of
the hallway in clockwise scan from any point in the hall-
way. Therefore, it is easy to extract from the hallway
data structure of Fig. 15 an ordered list of vertices that
define the hallway, each vertex being a pair of coordi-
nates in the xy-plane of the world frame. The polygon
corresponding to this ordered list of vertices will be re-
ferred to as the floor polygon.

Next, the floor polygon is triangularized by an algo-
rithm of complexity O(N? log N), where N is the number
of sides of the floor polygon [PreSha85]. Triangulariza-
tion is a necessary precursor to the construction of the
floor bitmap since the triangular facets help us determine
in time O(1) whether or not a point on the floor is inside
or outside the triangle. So, in order to construct a bitmap
for the floor we simply lay out a sampling grid on the xy-
plane of the world coordinate frame. This sampling grid is
then raster scanned and the inside—outside predicate
tested for each point with regard to, in the worst case, all
the triangles. In our current implementation, the com-
plexity of this operation for each point on the sampling
grid is O(M), where M is the number of triangles gener-
ated by the triangularization algorithm.? In our current
implementation, we use a S-cm resolution for the sam-
pling grid. Figure 39 shows the bitmap representation of
the floor polygon for the hallway of Fig. 4. After obtain-
ing the bitmap of the floor polygon, we construct the
configuration space for the robot, taking into account the
radius of the robot, by essentially eroding the boundary
of the floor bitmap by the radius of the robot. The actual
implementation consists of first constructing a binary
mask that has a circular region of ones representing the
robot and zeros elsewhere. By raster scanning the robot
mask over the floor bitmap and taking a logical AND of

2 It would of course be easy to considerably reduce this complexity
by using rectangular enclosures for the triangles and then using some
sort of a hashing scheme (a two-dimensional hash function utilizing the
coordinates of one of the vertices of the enclosure should do) to exam-
ine a minimum number of triangles.



FAST VISION-GUIDED MOBILE ROBOT NAVIGATION

FIG. 39. The bitmap representation of the floor polygon.

the superimposed pixels, we can output a one or a zero
for the configuration space. This configuration space rep-
resents the set of all points that can be occupied by the
center of the robot base without the robot colliding with
the walls of the hallway. Figure 40 illustrates the configu-
ration space for the floor polygon shown in Fig. 39.

Step 2: Extraction of Floor Skeleton from the Bitmap

The bitmap of the configuration space obtained in Step
1 is now processed to yield a radial-valued skeleton of the
floor. A radial-valued skeleton is a regular skeleton aug-
mented by what is referred to as the ‘‘peel-off’’ number,
which is the number of deletions of boundary ‘‘layers’’
that resulted in the creation of the skeletal pixel. This
peel-off number is approximately equal to the minimum
chessboard distance from the skeletal pixel to the bound-
ary of the hallway [RosKak82]. The algorithm for com-
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FIG. 40. The configuration space for the floor polygon shown in Fig.
39 is obtained by eroding the boundary of the floor bitmap by the radius
of the robot.
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FIG. 41. The radial-valued skeleton obtained from the bitmap of the
configuration space of Fig. 40. The limbs of the skeleton are identified
separately. Also shown for each limb is the most frequently occurring
value of the radius in meters.

puting the radial-valued skeleton of a binary pattern,
given in [BoyKak§86], consists of raster scanning the bit-
map with a 3 X 3 binary mask and using a predicate that
simultaneously tests whether or not a pixel is a border
pixel and whether or not the deletion of a pixel would
alter the topological connectivity of the binary pattern.
The scanning with the mask and predicate testing is done
sequentially from each of the four directions (west, east,
south, and north). Figure 41 shows the radial-valued skel-
eton for the bitmap of the configuration space in Fig. 40.
Although we have gray-scale-modulated the skeleton to
display the radial values at each point, the variations in
the gray scale are admittedly hard to discern. So, along
each limb we have also shown, using a parenthesized
number, the most frequently occurring value of the ra-
dius in meters. However, note that in general the value of
the radius will not be constant along a limb.

For the purpose of path planning, we next decompose
the skeleton into its limbs and represent each limb in the
computer memory by the following triple:

(llmb—ID length {(X(], Yo, r0)1 (xl s Y1 rl):'

LR (xm~]’ Ym—1, rm—l)})a (81)

where limb_ID is a symbolic name for the limb, length
the length of the limb in pixels, and for each index i = 0,
1,. .. ,m—1,thetuple (x;, y;, ;) the ith element of the
limb, where r; is the radius at the skeletal pixel (x;, y:).
The skeleton of Fig. 41 will be represented in the com-
puter memory by nine limbs. Simultaneously with the
decomposition of the skeleton into its limbs, we also cre-
ate an adjacency matrix that tells us which limbs are
directly connected by virtue of being adjacent. The adja-
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cency matrix for the skeleton of Fig. 41 is shown below:
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Step 3: Extraction of Skeletons for a Global Path

As we mentioned earlier, the human supervisor pro-
vides a pair of points for the construction of the robot’s
path, namely the initial point P, and the goal point Py
of the path, both points being specified by (x, y) coordi-
nates in the xy-plane of the world coordinate frame. Of all
the limbs generated in the previous step, we now find the
two limbs that are closest to Py and P, . For any point
P in the xy-plane, the closest limb is found by calculating
the Euclidean distance from P to every point on a given
limb and then repeating this calculation for all the limbs in
the hallway skeleton. [It would be possible to make this
computation more efficient by using, say, rectangular en-
closures for the limbs, but we have not done so yet.] Let
the symbolic identifiers of these two limbs be L, and
Lgoal .

Using Dijkstra’s algorithm [AhoHop74], the path plan-
ner now traverses the adjacency matrix, treating the
length of the limbs as a cost function, and finds a se-
quence of limbs

{Lila Liza e or Li,,,}7
where the indices i; and i, are those that correspond
respectively to the limbs L,y and Lgo,. The sequence of
limbs returned by Dijkstra’s algorithm is that for which
the total cost function is minimum and that includes the
lengths associated with the end limbs Ly and Lgoa . (As
we will argue later, such a sequence of limbs does not
necessarily correspond to the shortest path between Py,
and Py, .) For example, with Py and Pgog as shown in
Fig. 42, the sequence of limbs extracted in this manner is

L, Ly, Ly, Ly, Ls.

Before the construction of the actual path, the se-
quence of limbs returned by Dijkstra’s algorithm is now
smoothed to remove unnecessary turns, because, as we
will show in the section on experimental results, a rota-
tional motion is capable of introducing more uncertainty
than a pure translational motion. Smoothing of the limbs
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FIG. 42. For designated start and goal positions, the sequence of
limbs which constitutes the global path.

is accomplished by first treating the limbs returned by
Dijkstra’s algorithm as a continuous space curve and
then applying a five-point window operator to this curve.
The five-point window that runs along the space curve
computes the local direction of the space curve in the xy-
plane by treating the five-element segment as a fragment
of a straight line. Then by imposing tolerance intervals on
these local angles, straight segments of the space curve
can be easily extracted. Figure 43 shows the output of
this smoothing process for the Py and Py, of Fig. 42.

As is clear from Fig. 43, while the window operator
removes some of the finer turns in the skeletal path, it is
incapable of eliminating the larger turns, such as those
introduced at P, @, and R in Fig. 42 by the skeletonizing
program. To get rid of these turns, the path planner first
extracts the longest straight line segments of the space
curve, these segments being stored in a sequence to pre-

FIG. 43. Straight segments extracted from the limbs on the global
path shown in Fig. 42.
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serve their adjacency relations. For the space curve of
Fig. 42, the segments thus obtained are shown in Fig. 43.
The planner now attempts to join these straight segments
by extending each toward the next in the sequence. The
extension is made by testing each pair of straight seg-
ments for collinearity within a user-specified threshold; if
found collinear, the endpoints of the lines are simply
joined, provided such a join does not violate any feasibil-
ity restrictions. To explain what we mean by feasibility of
restriction, assume that the list of straight segments is
{ORs, OIR,, . . . , On_1R,_} and let us focus on the
join between R; and Q;.; assuming that the straight seg-
ments @;,R; and Q;+1R;+; have been found to be collinear.
We temporarily connect R; and Q;,, by a line segment
and check the feasibility of this line segment for robot
travel. In order to perform the test, we discretize the new
line segment R;Q;; with the same resolution as the floor
bitmap. Let (xx, yx) be the kth discretized point on the
analytically defined line segment R;Q;,,. We now go back
to the bitmap of the configuration space to check whether
or not the discretized point (X, y,) is an interior point of
the bitmap of the configuration space. This test can be
done by simply examining the bit of the pixel correspond-
ing to (fk, ik)

When the two consecutive straight segments in the se-
quence {QoRy, O(R;, . . . , On_1R,_1} are not collinear,
the two near endpoints are simply joined by extending
the segments, that the two segments will join is guaran-
teed by the noncollinearity condition.

Figure 44 shows the final result obtained by using this
approach on the output of the smoother shown earlier in
Fig. 43. As the reader can see, all the unnecessary turns
have been eliminated.

When a sharply curving section of a hallway lies be-
tween straight sections, the approach discussed above
will fail to join since a feasible join between two collinear

FIG. 44. Straight segments of Fig. 43 after they are connected to
form a minimum-turn global path between the designated start and goal
positions.
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FIG. 45. For turning hallways, as shown here, connecting the
straight segments extracted from the limbs of the skeleton requires a
recursive invocation of the procedure by identifying the midpoints of
the turns.

segments, such as the segments P and Q shown in Fig.
45, will not be found. So if the feasibility condition is
violated for any pair of consecutive segments in the se-
quence {QoRo, Q1Ry, . . . , On-1R,—1}, the above proce-
dure is implemented recursively by first locating the mid-
point M of the skeleton between the endpoints, such as
the points P and Q in Fig. 45, and then invoking the
procedure on the two segments PM and MQ.

Step 4: Connecting Initial and Goal Points
with Skeletons

The path constructed so far still does not start from
Py, and does not end at Py, , even though these extre-
mal points were used for the determination of L, and
Lgoa. Therefore, the path planner now joins the start
point Py, with the furthest endpoint for any of the
straight segments produced by Step 3. This is done by
testing straight-line connections from P, with all the
endpoints for navigational feasibility, using the same pro-
cedure as described in Step 3 and accepting that endpoint
which is feasible and yet furthest from Pgu. If such an
endpoint does not exist, then we simply draw a perpen-
dicular from Py to Lga. Exactly the same is done for
the goal point Pgq. The final path thus constructed for
the Par and Py of Fig. 42 is shown in Fig. 46.

FATH  from @ .oy to

G060, 1700

FIG. 46. A minimum-turn global path from the initial point to the
goal point.
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8.2. Path Replanning

After the robot has gone through a self-location exer-
cise by using the procedure described in Section 7, its
actual location will, in general, be found to deviate from
the originally planned global path. What that implies is
that after every self-location exercise, the robot must re-
plan its path to the goal. As we mentioned in Section 8.1,
the original global path consists of a sequence of limbs of
the hallway skeleton, as produced by Step 3 of the pre-
ceding subsection. Path replanning is accomplished by
repeating Step 4 with Py, replaced by the robot position
found by the self-location procedure.

8.3. Perception Planning

The Perception Planner, which sits in module 3 of the
overall architecture of Fig. 2, has a critical role to play in
regulating the deliberative behavior of the robot, espe-
cially so under the dynamic conditions that might be cre-
ated by obstacles in motion and the accumulated uncer-
tainty in the position of the robot since its last exercise at
self-location. It does so by monitoring the mean p and the
covariance matrix %, of the robot position. In our current
implementation, these two parameters are queried by
Perception Planner every 0.5 s.

The conditions that the Perception Planner responds to
and the actions taken by it are as follows:

(1) When the monitored uncertainty in robot position
exceeds a threshold, the perception planner stops the
robot and invokes the self-location procedure of Section
7. As the reader will recall, 3, measures the variance in
Dx» Dy, and ¢. Clearly, at any position of the robot, the
variance is not a single number but defines an ellipse in
the three dimensions spanned by p., p,, and ¢. Theoreti-
cally, we would like the Perception Planner to stop the
robot as soon as the maximum of the values on the vari-
ance ellipse exceeds a threshold, but since it is rather
impossible to make a direct comparison between transla-
tional and rotational variances, we have adopted a two-
pronged approach. The Perception Planner separately
keeps track of the variances in the xy-plane and for the ¢
variable. For example, shown in the upper part of the
Fig. 47 are the variance ellipses corresponding to the
position variables p, and p, of the robot? while the robot
is engaged in collision avoidance behavior. At point A of
this plot, the robot has zeroed out its uncertainty by using
the self-location procedure of Section 7. Subsequently,
during the motions dictated by the collision-avoidance
behavior, the uncertainty ellipses grow larger, until at

2 In terms of the 2, matrix, the ellipses shown in the upper part of
Fig. 47 are formed by the upper left 2 X 2 submatrix of the X, matrix at
each position of the robot.

point B the Perception Planner decides to bring the robot
to a halt due to the maximal variance associated with the
ellipse at that point. Given a particular variance ellipse,
its maximal variance is measured by finding the larger
eigenvalue associated with the upper left 2 X 2 submatrix
of the %, matrix.

The rotational variance is kept track of separately and
compared to its own user-specified threshold. Shown in
the lower part of Fig. 47 is the growth in rotational vari-
ance as the robot is engaged in the collision avoidance
behavior. The Perception Planner stops the robot for self-
location whenever either the rotational variance exceeds
its threshold or the principal eigenvalue of the xy-
variances exceeds its threshold.

(2) If the procedure of Section 7 fails at self-location,
the failure being recognized by the number of nilmaps in
the mapping function exceeding a user-specified thresh-
old, the Perception Planner will cause the robot to exe-
cute a rotation so that a different and visually richer
viewpoint can be used. The visual richness of a viewpoint
is measured by simply counting the number of landmarks
in the expectation map. So, when the originally used
viewpoint fails, the robot examines a sequence of view-
points at 20° intervals, measures the richness of each, and
accepts the first that meets the visual richness criterion.

Although we will not dwell on the matter here, it is
possible to operate the robot in a mode where the Percep-
tion Planner interacts with the Path Planner in such a
manner that the next expected stop for self-location will
be rich in visual cues in terms of the number of landmarks
that would be visible from the orientation of the robot at
the end of the travel. Such interaction between the two
planners makes sense only when it is known a priori that
the collision avoidance behavior will cause only minor
deviations from the planned paths.

8.4. Collision Avoidance

Since the focus of this paper is on the deliberative be-
havior of the robot as influenced by visual inputs, we
shall not say much about the specifics of the reactive
behavior for collision-avoidance. Suffice it to say that the
robot is equipped with a semiring of ultrasonic transduc-
ers. Ultrasonic echoes are analyzed for the time of return
and thus the locations of the obstacles deduced. A local
process on the computer on board the robot constantly
monitors these echo returns and commands the robot
away from the directions in which the closer obstacles
are perceived.

9. EXPERIMENTAL RESULTS

The aim of this section is to discuss the experimental
aspects of our work.
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FIG. 47. The Perception Planner keeps track of the growth of the uncertainty in the position parameters of the robot. Shown here is data when
the robot is engaged in collision-avoidance behavior. Starting at position A in the hallway, the robot turns left to avoid a moving obstacle and then
tries to return to its originally planned path by turning right. During this process, the uncertainty in the translational parameters p, and p, grows as
shown by the ellipses in the upper part of the figure. Shown separately in the lower part of the figure are bars whose lengths are proportional to the

standard deviation in the rotational angle ¢.

9.1. The Mobile Robot Used in This Research

We start with a brief presentation of the various fea-
tures of the mobile robot, deferring the details to a longer
description in [LopKak89]. The mobile robot, PETER,
consists of a Cybermation K2A platform, on top of which
we have built our own ‘‘electronic torso’’ (Fig. 48). This
torso contains a VME-bus based computing hardware
which acts both as a supervisor for the factory-supplied
motion controller in the platform and as a processor for
autonomous reactive behavior for collision avoidance us-
ing a semiring of ultrasonic sensors. Since vision process-
ing is done off-board, the VME-bus based computing
hardware also maintains a communication link with a
SUN4 processor.?> A video transmitter continually

broadcasts the camera image to an off-board frame grab-
ber, which in turn sends the digitized image to the SUN4
processor. Although the robot is equipped with two cam-
eras for research in navigation using binocular stereo,
only monocular vision was used for the research reported
here.

From the standpoint of what follows in the rest of this
section, the important thing to note is that the robot exe-

2 1t is important to note that all the vision computations currently
being executed off-board on a SUN4 processor could easily be imple-
mented on an on-board single-board computer that would plug into the
VME chassis. Actually, we are in the process of making this change at
this time. These additional on-board computations will of course in-
crease the drain on the power supply which will be beefed up with the
installation of additional batteries on the robot.
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FIG. 48. The mobile robot PETER. (a) The picture of the mobile

robot. (b) The hardware components.

cutes two distinct motions: a translational motion and a
rotational motion. While the former is nominally free of
rotations, the latter is nominally free of translations; in
other words, given no differential slippage between the
wheels, the robot is capable of rotating about a point
without undergoing any translations. Therefore, our ro-
bot is a holonomic device.

9.2. Motion Uncertainty Experiments

In Section 4.2 we discussed the characterization of the
two basic motions of the robot from the standpoint of
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uncertainty. We said that for the case of purely transla-
tional motions, when the robot is commanded to go
straight through a distance dj, its resulting motion can be
represented by the parameters d, «, and 8, where d is the
straight line distance between the start point and the
point where the robot stops, « the angle which shows the
direction of travel of the robot in terms of where the robot
stops, and G the angle between the old y, axis and the new
v, axis (Figs. 5). As stated earlier, for a given commanded
dy, the entities d, «, and B8 are random variables, charac-
terized by their mean values, their standard deviations,
and correlation coefficients with one-another; all of these
characterizations were captured in the covariance matrix
of Eq. (4.8). Note that all of these characterizations are
functions of the command variable dy. For seven differ-
ent values of the command parameter d; (0.5, 1.0, 2.0,
3.0,4.0, 5.0, and 6.0 m), the robot was ordered to execute
the translational motion 84 times. For each value of d
and for each set of repeated experiments, the response of
the robot was measured and statistically analyzed for the
determination of the mean values d, &, E, the standard
deviations o4, 0., 03, and, the correlation coefficients
Pda> Pdss Pag- In Figs. 49a—49%¢ we have shown these
statistical parameters of the translational motion of the
robot. Although difficult to discern from the figure, in (a)
the value of the mean d is always less than the value of
dy, which we believe is a consequence of the slippage of
the wheels. The mean values & and 8 of the angles « and
B are, as shown in (b), quite close to zero; however, the
standard deviations of the same two parameters shown in
(d) are significant. To appreciate the significance of these
standard deviations, Fig. 49d tells us that, if we assume
d, a, B to be Gaussian, with more than 60% probability
the orientation of the robot will be off by close to 2°if the
robot is commanded to execute a translational motion of
6 m. Extrapolating the o curve in Fig. 49d, this means
that if the robot were commanded to move straight by
48 m, the orientation of the robot would be off by 16° with
a high probability. With such a large error in orientation,
not to mention the errors in the angle « (note that, as
shown in Fig. 49, « and 8 become highly correlated the
fonger the commanded distance) and the actual distance
traveled d (o, shown in Fig. 49¢, being a measure of this
error), the robot would certainly not be capable of navi-
gating by just dead reckoning if any appreciable distances
are involved. What is particularly noteworthy about the
plots in Fig. 49 is the smoothness of the dependencies of
the experimentally measured statistical parameters on
commanded motion parameter dy. That implies that when
the robot is commanded to translate by dy whose value is
other than those used in the statistical studies, we can
either interpolate or extrapolate, as required.

An identical statistical study was made of rotational
motions. As described in Section 4.2, a commanded rota-
tion is designated by 6, and resulting position of the robot
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FIG. 49. When the robot is commanded to translate through a distance d, the resulting motion is characterized by the parameters d, «, and 3.
Shown here are (a) the mean value d, (b) the mean values @ and 8, (c) the standard deviation o4, (d) the standard deviations o, and o, and (e) the

correlation coefficients py,, pgs, and p,s.

by u, v, and 6; u and v are differential-slippage-caused
translational components of the resulting motion and 6
the rotation executed by the robot. For each commanded
6y, the statistical characterizations of «, v, and 6 are cap-

tured by the covariance matrix of Eq. (4.14). For each
value of 6, equal to —90.0, —60.0, —45.0, —30.0, —20.0,
-15.0, —10.0, -7.0, -5.0, 5.0, 7.0, 10.0, 15.0, 20.0, 30.0,
45.0, 60.0, 90.0°, the commanded-rotations were repeated
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FIG. 50. When the robot is commanded to execute a purely rotational motion through an angle 6;, the resulting motion is characterized by the
parameters 6, u, and v. Shown here are: (a) the mean value 8, (b) the mean values zand v, (c) the standard deviation o, (d) the standard deviations

o, and a,, and (e) the correlation coefficients p,,, pue, and py.

20 times and the means &, U, 6, the standard deviations
o, 0y, 0y, and the correlation coefficients puy, pug, and
pve computed; these results are plotted in Figs. 50a—50¢.26
The reader will notice in Fig. 50a a small horizontal jog in

% Compared to the set of commanded translations for the study in
Fig. 49, the set of commanded rotations for the study in Fig. 50 is larger.
The larger set was made necessary by the nonsmoothness of the dis-
played curves in the vicinity of 6, = 0.

the middle of the plot for the mean value 8. What that jog
shows is that the robot is incapable of rotations when the
commanded rotation 8y is of value 5° or less on the lino-
leum floor of our hallways.?’

27 Therefore, when very small rotations are called for during actual
navigation, it becomes necessary to execute two opposite rotations
through sufficiently large angles such that the difference of the two
rotations is the desired small-angle rotation.
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As expected, the mean translations, # and v, for any
commanded rotation are approximately zero (Fig. 50b).
However, as shown in Fig. 50d, the standard deviations
o, and o, can be significant, especially for larger values
of commanded rotations. To impress on the reader the
largeness of this standard deviation, with a high probabil-
ity the robot center will get displaced by as much as 7 cm
when the commanded rotation is close to 90°. Therefore,
large rotations are capable of introducing significant un-
certainties in the position of the robot.

9.3. A Study of the Accuracy of Self-Location

We now report the results of a study we undertook to
determine the accuracy of the Kalman filter-based self-
location procedure of Section 7. We placed the robot at a
number of different but known positions. The robot was
also provided with a covariance matrix for the position
uncertainty that was typical of what it would encounter
during navigation. The robot was then asked to self-
locate by taking a camera image and comparing the image
with the expectation map that was rendered by assuming
the robot was located at its mean position. More specifi-
cally, the robot was told that its mean position was

p=[0m, Om, 0" 9.1

7.00,

0.00,

R_MAP c:{ 83.-21) pi{ 0.0

FIG. 51. An expectation map from the mean position within the
uncertainty circle shown in the lower figure. Also shown in the lower
figure is the visible_space as defined in Section 5.
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POINT UNCERTAINTY ¢

190,

FIG. 52. The uncertainty ellipses for the vertices of the edges in the
expectation map of Fig. 51. These ellipses correspond to one unit Maha-
lanobis distance.

and that the covariance matrix associated with the posi-
tion vector was

(0.25 m)? 0 0
3= 0 (0.25m)> 0 9.2)
0 0 (5°)?

The robot was now moved to the positions created by
sampling p, and p, from the sets {—0.25 m, 0, +0.25 m}
and ¢ from the set {—5°; 0, +5°}, which gave us a total of
27 positions. It follows from the covariance matrix of Eq.
(9.2) that in this study the maximum displacements in the
robot location and orientation are right at one unit of
Mahanalobis distance. The rendered expectation map
from the mean position, given by Eq. (9.1), is shown in
Fig. 51. The uncertainty regions for the various land-
marks in the expectation map are shown in Fig. 52 for the
case of image space and in Fig. 53 for the case of Hough
space. These uncertainty regions correspond to a unit
Mahanalobis distance. (Note however that, as explained
in Section 6, two units of Mahanalobis distance are used
for the detection of image lines corresponding to any par-
ticular model line.) Shown in Fig. 54 is the image taken
from one of the 27 positions. To see the difference be-
tween the expectation map, rendered by assuming that
the robot is at the mean position within its Gncertainty
ellipse, and the camera image taken from where the robot
actually happens to be, in Fig. 55 we have superimposed
the two. When the uncertainty regions are used to guide
the edge detector, the output of the edge detector and
also the camera image itself from one of the 27 positions
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( 6.500, 586.667)

HOUGH SPACE

FIG. 53. The Hough space uncertainty for the lines in the expecta-
tion map of Fig. 51. These ellipses correspond to one unit of Mahalano-
bis distance.

of the robot are shown in Fig. 56. The actual position
vector for the position of the robot from where the cam-
era image of Fig. 56 was taken was

p = [0.245 m, —0.276 m, —6.0°]T. 9.3)
Figure 57 shows the projection of the landmarks from the
expectation map into the camera image assuming the ro-

bot is located at the vector p estimated by the Kalman
filter-based formalism of Section 7. So, any misregistra-
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FIG. 55. The expectation map of Fig. 51 is superimposed here on
the camera image of Fig. 54 to highlight the misregistration between the
two.

tion errors in Fig. 57 are an immediate reflection of the
errors in the estimation of the robot position vector p. As
the reader will notice there are some discrepancies be-
tween the edges of the image and the overlaid edges from
the rendering process. For the specific case correspond-
ing to the position where the underlying image of Fig. 54
was taken, the estimated value of position vector p was

p* = [0.237 m, —0.292 m, —6.11°]". 9.4)
The convergence to this value of p is graphically illus-
trated by the xy-uncertainty ellipses of Fig. 58. Initially,
the uncertainty in the xy-plane is given by the upper-left
2 x 2 submatrix of the covariance matrix of Eq. (9.2) and
corresponds to the large circle in the figure. Subse-
quently, each match between a model line and an image

FIG. 54. Camera image taken by the robot from one of the 27 posi-
tions around the mean position.

FIG. 56. Detected image lines are superimposed in the original
image.
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FIG. 57. Matched model lines are projected back into the camera
image. For this projection process we use the estimated mean position
of the robot. How accurately the projected lines coincide with the cor-
responding edges in the image is one measure of the accuracy of the
method for calculating robot position.

line reduced the robot position uncertainty. Fig. 58
shows this reduction sequentially along the path finally
selected in the search space of Fig. 34. The final uncer-
tainty in the robot position in this case given by

0.000783 —0.000369  0.004560
2, =1 -0.000369  0.002567 —0.001665 9.5)
0.004560 —0.001665  0.029997

We summarize the results of the 27 experiments. The
following statistics show the performance of the self-
location procedure executed for this set of experiments.

Average number of landmarks: 29.7
Average error in position: 2.0 cm
Average error in orientation: 0.16°
Maximum error in position: 7.8 cm
Maximum error in orientation: 1.50°
Minimum execution time: 244 s
Average execution time: 33.2s
Maximum execution time: 48.5 s

The time spans are measured for the whole processing
including image acquisition, expectation map making,
landmark detection in the image, and optimal correspon-
dence-finding. The error associated with the position esti-
mation is sufficiently small for navigation. The time re-
quired for the self-location procedure is approximately
30 s. This performance provides the speed of 8 m per
minute for the indoor navigation.

REDUCE (-0.50.-0.50¢ 0.24.-0

FIG. 58. The uncertainty reduction process by the Kalman filter.
The initial uncertainty in the position of the robot is represented by the
large circle. Each smaller ellipse represents the updated robot position
uncertainty after each match between a model line and an image line.

9.4. Navigation in a Complex Environment

One night when our janitor was cleaning one of the
classrooms and had stacked up the chairs in the hallway,
we decided to test the navigation system to get some idea
of its robustness {or fragility). The robot was asked to
navigate from start position Py, to the goal position Py,
shown in Fig. 42. The robot was initially taken with joy-
stick control to Py,,; and was also provided with a mean
vector and a covariance matrix to characterize the posi-
tional uncertainty at Pg.,. The global path planned by the
robot is the same as before and is shown in Fig. 46.

To get a fix on its precise location at Pg,., the robot
first rendered an image that is shown in Fig. 59a; this
rendering was made assuming that the robot was at the
initially supplied mean position. The camera image from
what is nominally Py, is shown in Fig. 59b. The robot
calculated the uncertainties associated with each of the
expectation map landmarks and used them to guide the
landmark detector, whose output is shown in Fig. 59c.
The process of matching the landmarks in the expecta-
tion map with the extracted landmarks in Fig. 59¢c re-
sulted in an improved estimate for the position of the
robot. The projection of the landmarks into the camera
plane using the new estimated position of the robot re-
sulted in the overlay shown in Fig. 59d. The robot then
replanned its path to the goal position and started to exe-
cute translational and rotational motions along this path



C¢PATH 111.54,28.21) { 0.05. .15, 0.0)

e

FIG. 59.. This sequence of pictures, (a) through (¢), demonstrates the result of the self-location experiment at the initial position for the
navigation experiment under discussion. (a) An expectation map rendered by assuming that the robot is located at the mean of its uncertainty
ellipse. The thick lines in the lower part of (a) indicate the visible space. (b) Camera image taken by the robot. (¢) Lines extracted from the camera
image are shown superimposed on the image. Note that the lines are only extracted within appropriate uncertainty regions of the image. (d) Using
the newly estimated position of the robot, the hallway lines are projected back into the camera image to demonstrate the accuracy of position
estimation. The robot then executes the motions shown in (¢). At the terminus of this motion, Perception Planner determines that the accumulated
uncertainty in the position of the robot, as depicted by the ellipse shown at the terminal point, exceeds the acceptable threshold. The robot is
therefore brought to a stop for the next exercise in self-location.
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R_MAP c:( B53,-13) p:( 8.05. 5.15, -0.0)

SHOWPATH (-8.97, 8.35) ( 0.01,12,85, -0.5)

e

FIG. 60. The sequence of figures, (a) through (e), demonstrates the self-location experiment that is carried out at point 2 shown in Fig. 59e.
Plates (a) through (d) correspond to similarly labeled plates in Fig. 59. Subsequently, the robot executes the motions shown in (e). Perception
Planner keeps track of the growth in position uncertainty during these motions.and brings the robot to a halt at point Q shown in (¢).
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R.MAP c:(-235,138) p:( ©.8l. 12,85, -8.6)

SHOWPATH (-9.13,206.938) ( 2.45,17.05, -91.3)

FIG. 61. The sequence of figures, (a) through (e), demonstrates the self-location experiment that is carried out at point Q shown in Fig. 60e.
Plates (a) through (d) correspond to similarly labeled plates in Fig. 59. Subsequently, the robot executes the motions shown in (e) here. Perception
Planner keeps track of the growth in position uncertainty during these motions and brings the robot to a halt at point R shown in (e).
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SHOWPATH (-5.54.12.82) { 4.53.17.08,-185.0)

GOAL

FIG. 62. The sequence of figures, (a) through (e), demonstrates the self-location experiment that is carried out at point R shown in Fig. 6le.
Plates (a) through (d) correspond to similarly labeled plates in Fig. 59. Subsequently, the robot executes the motions shown in (e) here. Perception
Planner keeps track of the growth in position uncertainty during these motions and brings the robot to a halt at point GOAL shown in (e).
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while keeping track of the growing uncertainties in its
position, as discussed in Section 8. Before arriving at the
goal position, the robot stopped at the locations marked
P, 0, and, R shown in Figs. 59, 60¢, and 6le, respec-
tively. The expectation map, the camera image together
with the extracted features, and the overlay of the land-
marks projected onto the camera image using Kalman
filter-supplied estimates of robot position are shown in
Figs. 60, 61, and 62, respectively, for the self-location
done at positions P, Q, and R.

The upshot is that the robot had no difficulty whatso-
ever with the clutter and occlusion generated by the
stacked up chairs in the hallway. We believe that this
demonstration makes our formalism the strongest formal-
ism presented so far for indoor mobile-robot navigation
using model-based vision.

Because it is difficult to do so, we have not shown any
experimental results in navigation that take collision-
avoidance into account. Suffice it to say that unless the
obstacles create large occlusions in the camera images,
the performance is not seriously degraded.

10. CONCLUSIONS

In this paper, we presented a new method for fast
vision-guided mobile robot navigation using model-based
reasoning and prediction of uncertainties. We first dis-
cussed a framework for the representation and transfor-
mation of uncertainties. We modeled the position uncer-
tainty of the robot and then derived the landmark
projection uncertainty and the Hough space uncertainty
which was then used for the efficient detection of the
landmarks in the image. We then developed a simplified
model representation for the hallways that lends itself to
fast extraction of the expectation maps as the robot navi-
gates down the hallways. Despite its simplicity, espe-
cially so in relation to commercial CAD systems, the data
structures used by us for the hallway models retained all
the geometric information that was needed for vision pro-
cessing. We next discussed the subject of landmark de-
tection and presented a new technique for a quick extrac-
tion of vertical lines in an image. This technique was
based on our derivation that in a perspective image all the
vertical world lines would have the same vanishing point
regardless of the position of the robot, assuming that the
robot was navigating on a flat floor. Subsequently, we
presented a formalism that allows landmarks to be
matched to image features in a Kalman filter-based se-
quential scheme in which each match between a land-
mark and an image feature is used both to update the
position of the robot and to estimate the new bounds on
the various uncertainties. The paper then went into
global path planning and perception planning, both being
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necessary prerequisites to navigation in the presence of
stationary and moving obstacles. Finally, we presented
experimental results which demonstrated the power of
our fast navigation techniques. ‘

APPENDIX

Formulas for the Derivatives Used in Kalman Filtering

In this appendix, we show the derivatives used for the
Kalman filtering formulas of Section 7. Equations (7.26)
through (7.33) use two types of derivatives: df/9z and
of/op. The former consists of a 2 X 2 matrix, and the
latter of a 2 X 3 matrix.

The derivative 9f/9z involves a partial differentiation
with respect to the observation vector z. As the reader
will recall, the observation vector consists of two random
variables, p and y. The derivative is given by

h
dp dvy
ax , (A1)
0z ofy afy
ap dvy
where
[ a
b
f _ . .
By [-siny cosy OJTH c (A.2)
| 0
-
of> e M1
By [-siny cosy OlTH Z (A.3)
| 1
[ a
b
a—f1=[0 0 —-11TH (A.4)
ap c
| 0
-
Y1
a—fz=[0 0 -11TH (A.5)
ap 21
| 1

The derivative of/ap involves partial differentiation
with respect to position vector p, which consists of three
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random variables p,, p,, and ¢. The matrix expansion of the derivative is

o 9h h
of | 9px Opy 3¢
= = ’ : (A.6)
° | o
apx op, 9P
where
[0 0 0 —cos ¢>_ [a
o, ‘ 0 0 0 sing b
i [cosysiny =pI T |, o | 0 c1=0 (A7)
[0 0 O 0 L0
[0 0 0 —cos ¢>- _x,
of _ 0 0 0 sing Vi
3, =[cosysiny —p] T 00 0 0 - (A.8)
|0 0 O 0 111
[0 0 0 —sing|[a
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5b—y =[cosysiny —p] T 00 0 0 ol = 0 (A.9)
[0 0 0 0 |LO
[0 0 0 —sing ] [x
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