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1 Overview

This work introduces a new incremental construction
procedure for the generalized Voronoi diagram (GVD),
the locus of points equidistant to two obstacles. This
procedure is incremental in that it requires line of sight
information (see Figure 4) to construct the GVD. Note
that this notion of incremental is di�erent from previous
de�nition of incremental where the GVD is constructed
by inserting one obstacle at a time into the environment.
Finally, unlike other GVD construction techniques, this
procedure does not place any special restrictions on the
types of obstacles; that is, obstacles need not be poly-
gons nor convex sets.

The incremental construction procedure was origi-
nally developed for sensor based planning of highly ar-
ticulated robots. Sensor based planning incorporates
sensor information into a robot's planning procedure, in
contrast to classical planning which assumes full knowl-
edge of the environment prior to planning. When a
robot has no a priori information about the environ-
ment, the robot must employ an incremental motion
planner because most environments do not contain one
vantage point from which a robot can \see" the entire
world, and thereby construct a plan or representation
from such a single vantage point. Although the incre-
mental construction procedure was designed for when
the robot has no a priori knowledge of the environment,
it is also useful when full or partial knowledge of the
environment is available to the robot.

The GVD serves as a roadmap structure for a mobile
robot operating in the plane. Roadmaps are geomet-
ric structures that capture the full topology of a robot's
environment and have three key properties: accessibil-
ity, connectivity, and departability. Motion planning is
achieved by planning a path onto the GVD (accessibil-
ity), planning a path in the GVD to the vicinity of the
goal (connectivity) and then planning a path to the goal
(departability). The GVD is useful in motion planning
because the bulk of the motion planning occurs in a
one-dimensional subset of the robot's two-dimensional
environment. When a robot incrementally constructs
the entire GVD for an environment, it has essentially
explored that environment.

The incremental construction procedure is not lim-
ited to mobile robot applications, but rather it applies
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to a general class of highly articulated robots. Highly ar-
ticulated robots are ones with many degrees of freedom;
such robots include hyper-redundant manipulators (i.e.,
robot snakes) and cooperating robots. These robots
tend to be modeled as a points in an m-dimensional
con�guration space and thus the GVD is not useful for
these robots because the GVD is (m� 1)-dimensional.
Therefore, the generalized Voronoi graph (GVG) was
introduced. The GVG is the one-dimensional set of
points in m dimensions that are equidistant to m ob-
stacles. The incremental construction procedure, re-
viewed below, generates the GVG (which is the GVD
when m = 2).

Unfortunately, the GVG is not guaranteed to be con-
nected, so additional structures, termed higher order
generalized Voronoi graphs, are de�ned. The GVG, with
these additional one-dimensional structures, is termed
the hierarchical generalized Voronoi graph (HGVG).
Again, when m = 2, the GVG = HGVG = GVD.

2 Voronoi Diagrams

The Voronoi diagram is a geometric structure that
has received much attention in recent years in many
�elds, including biology, computer science, city plan-
ning, crystallography, and robotic motion planning,
which was the motivation of this work. The Voronoi
diagram sections o� a space into regions closest to a
particular point, called a site. Therefore, the Voronoi
diagram is the collection of hyper-planar patches that
are equidistant to two sites such that the two sites are
than any other site to the hyper-planar patch. See [2]
for an extensive survey of Voronoi diagrams.

An important generalization of the Voronoi diagram
considers non-point sites; such a structure is termed
a generalized Voronoi diagram (GVD), which was �rst
used by [18] in a digital environment. Active research
in applying the GVD to motion planning began with
�O'D�unlaing and Yap's work in [16], which considered
motion planning for a disk in the plane.

The GVD is sometimes called a retract. Let the
freespace, FS, be the set of points not occupied by ob-
stacles, and Im : FS ! GVD be a continuous func-
tion termed a retraction which maps every point in
the freespace onto the GVD. The GVD is a retract
when Im can be continuously deformed to the iden-
tity mapping, that is, there exists a homotopy func-
tion f : FS � [0; 1] ! GVD such that f(x; 0) = x,
f(x; 1) = Im(x), and f(a; t) = a for all a 2 FS and



for all t 2 [0; 1]. The GVD, which is a retract, captures
all of the geometries of the free space.

One-dimensional retracts are members of a general
class of structures, termed roadmaps (Canny, [3]), which
are a collection of one-dimensional curves that capture
the important topological and geometric properties of a
robot's environment. Roadmaps are analogous to high-
way systems and have the following properties: accessi-
bility, connectivity, and departability. Using a roadmap,
the planner can construct a path between any two points
in a connected component of the robot's free space by
�rst �nding a collision free path onto the roadmap (ac-
cessibility), traversing the roadmap to the vicinity of
the goal (connectivity), and then constructing a collision
free path from a point on the roadmap to the goal (de-
partability). An example of a complete roadmap scheme
is Canny and Lin's Opportunistic Path Planner (OPP)
[4].

Previous work (Choset and Burdick, [10]) introduces
a roadmap termed, the hierarchical generalized Voronoi
graph (HGVG), an extension of the GVD into higher di-
mensions. The backbone of the HGVG is the generalized
Voronoi graph which is the locus of points equidistant
to m obstacles in an m dimensional space. The GVG
is one dimensional, whereas the GVD is co-dimension
one. However, unlike the GVD, the GVG is not nec-
essarily connected in dimensions greater than two, and
thus, in general, is not a roadmap. Additional struc-
tures, termed higher order generalized Voronoi graphs,
which when used in conjunction with the GVG, form a
connected network. The resulting connected structure
is the HGVG.

A key feature of the HGVG is that it is de�ned in
terms of line of sight distance measurements. These
de�nitions apply to the GVG and GVD and appear to
be a new way of de�ning these structures.

An advantage that the HGVG has over other
roadmaps is that it possesses an incremental construc-
tion procedure. In this work, \incremental" takes on a
di�erent meaning from previous Voronoi diagram work.
For example, Fortune [13] developed a \sweepline" ap-
proach where a deformation of the Voronoi diagram is
computed. The deformed Voronoi digram is computed
in an incremental manner in that a sweepline passes
through a deformed space to construct the deformed di-
agram. Once the deformed diagram is computed, the
Voronoi diagram is determined. Another type of in-
cremental approach computes the Voronoi diagram by
adding one site at a time.

In this work, \incremental" means constructing a
portion of the Voronoi diagram (or its generalizations
into higher dimensions) using only line of sight infor-
mation. One such incremental approach which creates

Voronoi Diagram-like structures can be found in [17],
but it is restricted case of polygonal obstacles deployed
in planar environments.

Recently, Choset and Burdick [9] introduced a new
method for incrementally constructing the GVD, GVG,
and HGVG. This procedure relies solely on line of sight
information to generate the appropriate graph edges.
An advantage of this approach is that it only requires
distance information to the obstacles that are within line
of sight of the robot. This procedure does not place any
special restrictions on the types of obstacles (polyhedral,
convex, etc.) { in fact, the obstacles can be speci�ed as
fuzzy sets. (It should be noted that Yap [20] prescribed
a Voronoi diagram construction algorithm for a planar
world with curved surfaces.)

3 Distance Functions

Since the original motivation of this work is complete
sensor based planning for robots, we consider the dis-
tance function because it encodes the distance between
a robot and a nearby obstacle. This function is key to
our subsequent de�nitions and results and allows us to
generate Voronoi diagrams of any type of obstacle: point
obstacle, polygonal obstacles, convex obstacles, concave
obstacles, fuzzy obstacles, etc.

3.1 X-Distance Function

Definition 3.1 (Single Object Distance Function)
The distance between a point, x and a convex set Ci is
distance between the point x and closest point on the
obstacle Ci, i.e.,

di(x) = min
c02Ci

kx� c0k; (1)

where k � k is the two-norm in Rm.

In Clarke [12] it is shown that the gradient of di(x) is

rdi(x) =
x� c0

kx� c0k
; (2)

where c0 is the point closest to x in Ci. That is, c0 is the
point where kx�c0k = minc2Ci kx�ck. In later sections,
we write c0 = argmin di(x). The gradient, rdi(x), is a
unit vector, based at x, pointing away from c0 along a
line de�ned by c0 and x. For convex sets, the closest
point is always unique. See Figure 1.

An important characteristic of di(x) and rdi(x) is
that they can be computed from sensor data. For exam-
ple, consider a mobile robot with a ring of sonar sensors
(Figure 2). The sonar sensor measurement provides an
approximate value of the distance function, and the di-
rection opposite to which the sensor is facing approxi-
mates the distance gradient. That is, a sensor on the
robot in Figure 2 points in the direction of the negated
distance gradient.
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Fig. 1. Distance between x and Ci is the distance to the closest

point on Ci. The gradient is a unit vector pointing away from

the nearest point.

Fig. 2. Mobile robot with sonar ring.

Typically, the environment is populated with multi-
ple obstacles, and thus we de�ne

Definition 3.2 (Multi-Object Distance Function)
The distance between a point x and the set of all ob-
stacles, C1; : : : ; Cn, in the environment is de�ned
as

D(x) = min
i

di(x): (3)

It is shown in [7] that the multi-object distance func-
tion is nonsmooth, and hence its gradient cannot be
trivially de�ned. However, using nonsmooth analysis
(which is reviewed in [7]), it can be shown that the gen-
eralized gradient of D(x) is

@D(x) = Cofrdi(x) : i 2 I(x)g; (4)

where: (1) Co is the convex hull operation, (2) @ is the
generalized gradient operator, and (3) I(x) is de�ned
as the set of indices such that 8i 2 I(x), each Ci is the
closest object to x (x may be equidistant to two or more
obstacles). See Figure 3. Notationally, if @ appears in
front of a set, as opposed to a function, then it means
the boundary of the set.

In later sections, we will need distance measurements
to the second closest obstacle, as well as the closest ob-
stacle. Unfortunately, in some instances, the second
closest obstacle may not be \within line of sight" at
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Fig. 3. The generalized gradient of the multi-object distance func-

tion at a point is the convex hull of the gradients of the sin-

gle object distance functions which correspond to the closest

equidistant obstacles at that point. The solid arrows are single

object distance gradients and the shaded region corresponds

to the heads of all of the vectors which are in the convex hull

of the two single object gradients.

a given vantage point. Therefore, we must de�ne an-
other distance function which deals with occluded ob-
stacles. For the sake of terminology, we will term the
distance function de�ned in this section to be the X-
distance function because its implementation assumes
a robot can see through obstacles, as if the robot has
X-ray vision.

3.2 Visible Distance Function

The approach summarized in this work only relies on
line of sight information and thus the X-ray distance
function must be adapted for realistic sensor based im-
plementation. A point c is within line of sight of x if
there exists a straight line segment which connects x
and c without penetrating any obstacle. That is, c is
within line of sight of x if for all t 2 [0; 1], (x(1� t)+ ct)
lies in FS.

Let ~Ci(x) be the set of points on an object Ci that
are within line of sight of x, i.e.,

~Ci(x) = fc 2 Ci : x(1� t) + ct 2 FS; 8t 2 [0; 1]g:

Let c be the nearest point in Ci to x, as de�ned by
the X-distance function (i.e., c = argmin dXi (x)). The
obstacle Ci is within visible-line of sight of a point x,
if the line segment which connects c and x does not
penetrate any other obstacle.

Definition 3.3 (Single Object V-Distance Function)
The V-distance function measures the distance between
a point x, and the nearest point that is within visible-
line of sight of an obstacle. If the nearest point is not
within visible-line of sight of x, then the distance is
in�nity, i.e.,

di(x) =

�
minc2Ci kx� ck; if c 2 int( ~Ci(x));
1; if c 62 int( ~Ci(x)). (5)

See Figure 4 for an example of the visible distance func-
tion.
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Fig. 4. Obstacle Ci is occluded from x because the shortest

straight line segment between x and Ci penetrates obstacle

Cj .

We de�ne all structures in this work in terms of the
visible distance function, which relies solely on line of
sight information.

4 Generalized Voronoi Graph

Using the above described distance functions, the
HGVG can be de�ned. First, the GVD and GVG are
de�ned in terms of the distance function. The basic
building block of the GVD and GVG is locus of points
equidistant to two obstacles, Ci and Cj (i.e., di(x) =
dj(x)), such that the distance is closer to these two ob-
stacles than to all other obstacles (8h dh(x) � di(x)).
This structure is termed the two-equidistant face,

Fij = clfx 2 Wn(Ci

[
Cj) :

8h dh(x) � di(x) = dj(x) � 0 and rdi(x) 6= rdj(x)g:
(6)

See Figure 5. Note that the distance gradients to the
two closest obstacles are distinct (rdi(x) 6= rdj(x))
which allows non-convex sets to be de�ned as the �nite
union of convex sets.

The two-Voronoi set, F2, is the union of all two-

equidistant faces, i.e. F
2 =

n�1[
i=1

n[
j=i+1

Fij. Since F2

is the set of points equidistant to the two or more clos-
est points on the boundary of W , it is the generalized
Voronoi diagram (GVD) of W . See Figure 5. This de�-
nition of the GVD appears to be new and does not place
any restriction on the type of obstacles which populate
the environment.

The pre-image theorem asserts that F2 (i.e., the
GVD) is (m�1)-dimensional [8]. The GVD does reduce
the motion planning problem by a dimension, but a one-
dimensional roadmap is required. Observe that the two-
equidistant faces, Fij, Fik, and Fjk intersect to form an
(m�2)-dimensional manifold that is equidistant to three
obstacles. Such a structure is termed a three-equidistant
face and is denoted Fijk. This intersection procedure
is repeated until a one-dimensional structure is formed;
such a structure is an m-equidistant face, Fi1:::im and is

Fig. 5. The ticked solid lines is the set of points equidistant to

two obstacles, such that each edge fragment is closest to the

equidistant obstacles.
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Fig. 6. The generalized Voronoi graph in a rectangular enclosure.

The solid lines represent the GVG edges.

a one-dimensional set of points equidistant tom objects
in m dimensions. (Also note, an m+ 1-equidistant face
is formed in a similar way and is always a point.)

The generalized Voronoi graph (GVG) is the collec-
tion of m-equidistant faces and m+1-equidistant faces,
i.e., GVG = (Fm;Fm+1). The m-equidistant faces are
termed GVG edges and m + 1-equidistant faces are
termed meet points. Note that the GVD is m � 1-
dimensional whereas the GVG one-dimensional. Also,
the GVD is the locus of points equidistant to two obsta-
cles whereas the GVG is the locus of points equidistant
to m obstacles. (See Figure 6 for an example of a gen-
eralized Voronoi graph for a rectangular enclosure in R3

where the GVG edges, delineated by solid lines, consti-
tute the locus points equidistant to three obstacles, and
the meet points are where the GVG edges intersect.)

5 Transversality: No four points are co-

circular

In order to use the pre-image theorem to determine
the generic dimension of the GVG edges (and higher di-
mensional equidistant faces), we �rst introduce an im-
portant transversality assumption and discuss its impli-
cations.
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Assumption 5.1 (The Equidistant Surface Transver-
sality Assumption) If equidistant surjective surfaces
are manifolds, then they intersect transversally. That is,
SSi1:::ikj1 t

{
SSi1:::ikj2 with respect to SSi1:::ik if j1 6= j2.

In the case that m = 2 and the obstacles are points,
this assumption is equivalent to the \no four points
are co-circular" assumption which is often made in the
Voronoi diagram literature. Assumption 5.1 is the gen-
eralization of this statement. This transversality as-
sumption can also be interpreted as an assumption on
the stability of the equidistant surface intersection ge-
ometry. In Figure 7, SSijk = SSjkl = SSikl = SSijl

because there exists a circle which intersects the four
obstacles (a non-generic case). After a slight perturba-
tion of the obstacles, the equidistant surfaces no longer
coincide (Figure 8). Since SSijk and SSijl are points in
this example, they intersect transversally only if they
do not intersect at all. As a result of Assumption 5.1,
SSi1:::ikj1 6= SSi1:::ikj2 if and if only j1 6= j2. The condi-
tion where two equidistant surjective surfaces are equal
is an unstable non-generic one, and thus we do not con-
sider it because any slight perturbation of the obstacle
locations drastically a�ects equidistance relationships.
In Figure 7, SSijk = SSjkl = SSikl = SSijl, but after a
slight perturbation of Ci, all the equidistant faces are
no longer coincidental and SSijkl = ;.
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Fig. 9. Disconnected GVG.

6 Hierarchical Generalized Voronoi

Graph

In the planar case, the GVG and GVD are the same,
so the GVG is connected [16]. However, in higher di-
mensions, the GVG is not necessarily connected, as can
be seen in Figure 9 which contains an example of a dis-
connected GVG with two connected components: (1) an
outer GVG network similar to the one in Figure 6 and
(2) an inner GVG network that forms a halo-like struc-
ture around the inner box. Note that in R3, GVG edges
are in the boundary of two-equidistant faces. The GVG
in Figure 9 is disconnected because the boundary of the
two equidistant face, de�ned by the oor and ceiling in
Figure 9, has a disconnected boundary.

The generalizedVoronoi regions and equidistant faces
may be viewed as a cellular decomposition of W into
k-dimensional sets, where k = 0; : : : ;m. If each k-
dimensional cell is homeomorphic to a k-dimensional
disk, then the one-dimensional cells of such a decompo-
sition form a deformation retract or retract-like struc-
ture which is connected [19]. The two-equidistant face,
de�ned by the oor and ceiling in Figure 9, is not home-
omorphic to a two-dimensional disk because it has a hole
in the middle of it, and thus the one-dimensional cells
(i.e., the GVG) are not connected.

In higher dimensions, additional structures, termed
higher order generalized Voronoi graphs, must be con-
structed to connect GVG components. Essentially,
higher order generalized Voronoi graphs are like GVG's
that are recursively de�ned on lower dimensional
equidistant faces. For example, a second order gener-
alized Voronoi graph, denoted GVG2, is analogous to a
GVG that is restricted to a two-equidistant face. An
ith order generalized Voronoi graph, denoted GVGi,
is analogous to a GVG on an (i � 1)st order two-
equidistant face. The hierarchical generalized Voronoi
graph (HGVG) is the GVG and all higher order gener-
alized Voronoi graphs; each of these graphs are de�ned
in terms of the distance function.

For the moment, consider only the three-dimensional
case in which the only higher order generalized Voronoi
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graph is the GVG2 which is de�ned on a two-equidistant
face. One of the structures in the GVG2 is termed a
GVG2 equidistant edge, and is denoted Fkl

��
Fij

. It is the

set of points whose closest pair of equidistant obstacles
are Ci and Cj and whose second pair of equidistant ob-
stacles are Ck and Cl, i.e.,

Fkl

��
Fij

= fx 2 Fij such that

8h; dh(x) � dk(x) = dl(x) � di(x) = dj(x) > 0g: (7)

See Figure 10 for examples of GVG2 equidistant edges.
Note that in Figure 10 there is a duality between the
GVG cycle (the halo-like structure surrounding the box)
and the GVG2 cycle. In most situations, this relation-
ship allows the robot to make well de�ned links that
connect the GVG and GVG2 fragments. The result is a
connected roadmap [8], [10], which is the HGVG.

7 Connectivity: The Generalized

Voronoi Complex

The proof of connectivity of the GVD relies on con-
tinuity of the retraction function, Im. Continuity is
important because the image of a connected set under
a continuous function is a connected set [1]. The image
of a connected component of free space under the con-
tinuous function Im is the GVD, and thus the GVD is
connected.

Unfortunately, there is no continuous function whose
image is the HGVG, and thus the proof of connectivity
of the HGVG cannot use the same continuity argument.
Instead, a new structure, termed the generalized Voronoi
complex, is introduced and proven to be a connected
structure. Proof of connectivity of the HGVG is reduced
to showing that the HGVG is a generalizedVoronoi com-
plex, which is done in [11]. This proof methodology does
not require as much structure as previous approaches.

7.1 Notation

The following notation is used in de�ning the gener-
alized Voronoi complex.

Definition 7.1 (Sub-boundary) _@A is the subset of
the boundary of a set A, such that _@A is fully contained
in A (i.e., _@A = A

T
@A).

Definition 7.2 (Adjacency) Two sets Ai and Aj

are adjacent if

cl(Ai)
\

cl(Aj) 6= ;:

Definition 7.3 (Sub-adjacency) Two sets, Ai and
Aj , are sub-adjacent if

_@Ai

\
_@Aj 6= ;:

7.2 De�nitions

The generalized Voronoi complex is an exact cellular
decomposition of generalized Voronoi cells.

Definition 7.4 (Generalized Voronoi Cell) A
generalized Voronoi cell V is a subset of a space X such
that:

1. V is a connected set,
2. The sub-boundary of V is not empty ( _@V 6= ;),
3. _@V is a path connected set.

An example of a cell which satis�es the above criteria
is a closed simply connected set. Generalized Voronoi
regions, the set of points closest to one obstacle, are also
examples of generalized Voronoi cells.

The generalized Voronoi cells comprise the general-
ized Voronoi complex.

Definition 7.5 (Generalized Voronoi Complex in X)
The generalized Voronoi complex, V2, of a connected
set X is the union of the boundaries generalized Voronoi
cells,

S
i
_@Vi, such that the generalized Voronoi cells

form an exact cellular decomposition of X and adjacent
generalized Voronoi cells are sub-adjacent:

1.
S
iVi = X,

2. int(Vi)
T
int(Vj) = ; 8i; j,

3. cl(Vi)
T
cl(Vj) 6= ; () _@Vi

T _@Vj 6= ;:

7.3 Examples

It is shown below that the generalized Voronoi com-
plex is a connected structure. For example, the GVD
is a generalized Voronoi complex because generalized
Voronoi regions are generalizedVoronoi cells, and the set
of generalized Voronoi regions in a connected component
of free space satisfy the above listed criteria. Therefore,
the union of the boundaries of the generalized Voronoi
regions forms a generalized Voronoi complex. Hence,
the GVD (the union of the boundaries of the general-
ized Voronoi regions) is a generalized Voronoi complex.

The trapezoidal decomposition [15] forms another ex-
ample of a generalized Voronoi complex. By construc-
tion, each of the trapezoids in the trapezoidal decompo-
sition has a connected sub-boundary and adjacent cells



share a common sub-boundary component. Finally, by
construction, the union of the cells is the space, itself.
Therefore, the union of the boundaries of the trapezoids
forms a connected structure.

Note that the above two examples hint at the
relationship between the cellular decomposition and
roadmap approaches in robot motion planning. A spe-
cial case of this relationship is discussed in [19] where
the cells are all homeomorphic to k-dimensional disks.

7.4 Proof of Connectivity

Proposition 7.6 The generalized Voronoi complex is
connected.

Proof: Let s and g be the end points (start and goal)
of a path fully contained in a generalized Voronoi cell,
Vi. Since there are no obstacles in the interior of Vi,
there exists a path, c1, from s to a point, s�, in _@Vi and
there exits a path from g to a point, g�, in _@Vi. By
de�nition of a generalized Voronoi cell, there is a path
between s� and g� in _@Vi. Therefore, for the case where
there is one cell in a generalized Voronoi complex, the
generalized Voronoi complex is connected because s and
g are arbitrarily chosen.

Assume that a path, cn, passes through Vi1 ; : : : ;Vin ,
which are n generalized Voronoi cells whose sub-
boundaries form a connected set. Let s and g be the end
points of a new path, cn+1, where s 2 Vi1 and g 2 Vin+1 .
The path cn+1 prescribes a sequence of adjacent gen-
eralized Voronoi cells through which the cn+1 passes.
Therefore, Vin and Vin+1 are adjacent and by de�nition

of a generalized Voronoi complex, the _@Vin
S _@Vin+1 is

a connected set. Therefore, union of the sub-boundaries
of Vi1 ; : : : ;Vin ;Vin+1 forms a connected set.

Since s and g are arbitrary, by induction the gener-
alized Voronoi complex is connected.

�

It can be shown the HGVG is a generalized Voronoi
complex [11], and thus is a connected structure.

8 Incremental Construction of the

HGVG

Unlike other motion planners, line of sight informa-
tion su�ces to provide the incremental construction pro-
cedure that directs the robot to access the HGVG, to
trace the HGVG edges, and then to depart from the
HGVG. After the robot incrementally constructs the
HGVG, it has in essence explored an environment. For
the purposes of explanation, we describe �rst the trace-
ability procedure, followed by accessibility and departa-
bility.

8.1 Traceability

In an incremental context, the property of connec-
tivity is interpreted as traceability, which implies that,
using only local data, the robot can: (1) \trace" the
HGVG edges; (2) determine when to terminate the edge
tracing process, and (3) determine when to start new
edge tracing procedures. For the sake of discussion, this
section is limited to tracing GVG edges, but the results
of this section are easily generalized to all HGVG com-
ponents.

The GVG incremental approach to edge construc-
tion borrows ideas from numerical continuationmethods
[14], which trace the roots of the expression G(y; �) = 0
as the parameter � is varied. For the case of the GVG,
the tracing function G : Rm�1 �R! R

m�1 is

G(y; �) =

2
6664
(d1 � d2)(y; �)
(d1 � d3)(y; �)

...
(d1 � dm)(y; �)

3
7775 (8)

The function G(y; �) assumes a zero value only on a
GVG edge. Hence, if the Jacobian of G is invertible,
then the implicit function theorem implies that the roots
of G(y; �) locally de�ne a GVG edge as � is varied.
A GVG edge is constructed by numerically tracing the
roots of G.

The explicit edge construction procedure has two
steps: a predictor step and a corrector step. The predic-
tor step moves the robot for a small distance along the
tangent of the GVG. This tangent is the vector orthogo-
nal to them closest points in them closest obstacles [9];
note that the m closest points in the m closest obsta-
cles are within line of sight of the robot. Typically, the
prediction step takes the robot o� of a GVG edge, so a
correction procedure is required to bring the robot back
to the GVG. If step size along the tangent is \small,"
then the graph will intersect a \correcting plane" (Fig-
ure 11), which is a plane orthogonal to the tangent. The
correction step �nds the location where the GVG inter-
sects the correcting plane (Figure 11) and is achieved
via an iterative Newton's Method. If yk and �k are the
kth estimates of y and �, the k+1st iteration is de�ned
as

yk+1 = yk �
�
ryG

��1
G(yk; �k) (9)

whereryG is the Jacobian of G evaluated at (yk; �k). It
is shown in [9] that ryG is invertible and thus Equation
(9) is well posed. Practically speaking, this result states
that the numerical procedure de�ned by Equation (9)
will be robust for reasonable errors in robot position,
sensor errors, and numerical roundo�.

The explicit terminating conditions for edge trac-
ing include meet points and boundary points, locations
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Fig. 11. Sketch of Continuation Method


