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1.1

Introduction

In controls we make use of the abstract concept of a system: we identify a phenomenon
or a process, the system, and two classes of signals, which we label as inputs and outputs.
A signal is something that can be measured or quantified. In this book we use real
numbers to quantify signals. The classification of a particular signal as an input means
that it can be identified as the cause of a particular system behavior, whereas an output
signal is seen as the product or consequence of the behavior. Of course the classification
of a phenomenon as a system and the labeling of input and output signals is an abstract
construction. A mathematical description of a system and its signals is what constitutes
a model. The entire abstract construction, and not only the equations that we will later
associate with particular signals and systems, is the model. /

We often represent the relationship between a system and its input and output signals
in the form of a block-diagram, such as the ones in Fig. 1.1 through Fig. 1.3. The dia-
gram in Fig. 1.1 indicates that a system, G, produces an output signal, y, in the presence
of the input signal, u. Block-diagrams will be used to represent the interconnection of
systems and even algorithms. For example, Fig. 1.2 depicts the components and signals
in a familiar controlled system, a water heater; the block-diagram in Fig. 1.3 depicts an
algorithm for converting temperature in degrees Fahrenheit to degrees Celsius, in which
the output of the circle in Fig. 1.3 is the algebraic sum of the incoming signals with
signs as indicated near the incoming arrows.

Models and Experiments

Systems, signals, and models are often associated with concrete or abstract experiments.
A model reflects a particular setup in which the outputs appear correlated with a pre-
scribed set of inputs. For example, we might attempt to model a car by performing the
following experiment: on an unobstructed and level road, we depress the accelerator
pedal and let the car travel in a straight line.! We keep the pedal excursion constant and
let the car reach constant velocity. We record the amount the pedal has been depressed
and the car’s terminal velocity. The results of this experiment, repeated multiple times
with different amounts of pedal excursion, might look like the data shown in Fig. 1.4.
In this experiment the signals are

1 This may bring to memory a bad joke about physicists and spherical cows. ..
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Figure 1.1 System represented as a block-diagram;  is the input signal; y is the output signal;
y and u are related through y = G(u) or simply y = Gu.
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Figure 1.2 Block-diagram of a controlled system: a gas water heater; the blocks thermostat,
burner, and tank, represent components or sub-systems; the arrows represent the flow of input
and output signals.
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Figure 1.3 Block-diagram of an algorithm to convert temperatures in Fahrenheit to Celsius:
Celsius = 5/9(Fahrenheit — 32); the output of the circle block is the algebraic sum of the
incoming signals with the indicated sign, i.c. z = Fahrenheit — 32.
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Figure 1.4 Experimental determination of the effect of pressing the gas pedal on the car’s terminal
velocity; the pedal excursion is the input signal, u, and the car’s terminal velocity is the output

signal, y.
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Figure 1.5 Fitting the curve y = o tan™'(Bu) to the data from Fig. 1.4.

input: pedal excursion, in cm, inches, etc.;
output: terminal velocity of the car, in m/s, mph, etc.

The system is the car and the particular conditions of the experiment. The data captures
the fact that the car does not move at all for small pedal excursions and that the terminal
velocity saturates as the pedal reaches the end of its excursion range.

From Fig. 1.4, one might try to fif a particular mathematical function to the exper-
imental data® in hope of obtaining a mathematical model. In doing so, one invariably
loses something in the name of a simpler description. Such trade-offs are commonplace
in science, and it should be no different in the analysis and design of control systems.
Figure 1.5 shows the result of fitting a curve of the form

y = atan”! (Bu),

where u is the input, pedal excursion in inches, and y is the output, terminal velocity
in mph. The parameters o = 82.8 and g = 1.2 shown in Fig. 1.5 were obtained from a
standard least-squares fit. See also P1.11.

The choice of the above particular function involving the arc-tangent might seem
somewhat arbitrary. When possible, one should select candidate functions from first
principles derived from physics or other scientific reasoning, but this does not seem to
be easy to do in the case of the experiment we described. Detailed physical modeling
of the vehicle would involve knowledge and further modeling of the components of the
vehicle, not to mention the many uncertainties brought in by the environment, such as
wind, road conditions, temperature, etc. Instead, we make an “educated choice” based on
certain physical aspects of the experiment that we believe the model should capture. In
this case, from our daily experience with vehicles, we expect that the terminal velocity

2 All data used to produce the figures in this book is available for download from the website
http://www.cambridge.org/deOliveira.
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Figure 1.6 Linear mathematical models of the form y = yu for the data in Fig. 1.4 (dashed); the
model with y = 47.8 was obtained by a least-squares fit; the model with y = 99.4 was obtained
after linearization of the nonlinear model (solid) obtained in Fig. 1.5; see P1.12 and P1.11.

will eventually saturate, either as one reaches full throttle or as a result of limitations on
the maximum power that can be delivered by the vehicle’s powertrain. We also expect
that the function be monotone, that is, the more you press the pedal, the larger the termi-
nal velocity will be. Our previous exposure to the properties of the arc-tangent function
and engineering intuition about the expected outcome of the experiment allowed us to
successfully select this function as a suitable candidate for a model.

Other families of functions might suit the data in Fig. 1.5. For example, we could have
used polynomials, perhaps constrained to pass through the origin and ensure monotonic-
ity. One of the most useful classes of mathematical models one can consider is that of
linear models, which are, of course, first-order polynomials. One might be tempted to
equate linear with simple. Whether or not this might be true in some cases, simplicity
is far from a sin. More often than not, the loss of some feature neglected by a linear
model is offset by the availability of a much broader set of analytic tools. It is better to
know when you are wrong than to believe you are right. As the title suggests, this book
is mostly concerned with linear models. Speaking of linear models, one might propose
describing the data in Fig. 1.4 by a linear mathematical model of the form

y=vyu (1.1)

Figure 1.6 shows two such models (dashed lines). The curve with slope coefficient
y = 47.8 was obtained by performing a least-squares fit to all data points (see P1.11).
The curve with coefficient y = 99.4 is a first-order approximation of the nonlinear
model calculated in Fig. 1.5 (see P1.12). Clearly, each model has its limitations in
describing the experiment. Moreover, one model might be better suited to describe cer-
tain aspects of the experiment than the other. Responsibility rests with the engineer or
the scientist to select the model, or perhaps set of models, that better fits the problem in
hand, a task that at times may resemble an art more than a science.
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Cautionary Note

It goes without saying that the mathematical models described in Section 1.1 do not pur-
port to capture every detail of the experiment, not to mention reality. Good models are
the ones that capture essential aspects that we perceive or can experimentally validate as
real, for example how the terminal velocity of a car responds to the acceleration pedal
in the given experimental conditions. A model does not even need to be correct to be
useful: for centuries humans used® a model in which the sun revolves around the earth to
predict and control their days! What is important is that models provide a way to express
relevant aspects of reality using mathematics. When mathematical models are used in
control design, it is therefore with the understanding that the model is bound to capture
only a subset of features of the actual phenomenon they represent. At no time should
one be fooled into believing in a model. The curious reader will appreciate [Fey86] and
the amusingly provocative [Tal07].

With this caveat in mind, it is useful to think of an idealized true or nominal model,
just as is done in physics, against which a particular setup can be mathematically eval-
uated. This nominal model might even be different than the model used by a particular
control algorithm, for instance, having more details or being more complex or more
accurate. Of course physical evaluation of a control system with respect to the under-
lying natural phenomenon is possible only by means of experimentation which should
also include the physical realization of the controller in the form of computer hardware
and software, electric circuits, and other necessary mechanical devices. We will dis-
cuss in Chapter 5 how certain physical devices can be used to implement the dynamic
controllers you will learn to design in this book.

The models discussed so far have been static, meaning that the relationship between
inputs and outputs is instantaneous and is independent of the past history of the system
or their signals. Yet the main objective of this book is to work with dynamic models, in
which the relationship between present inputs and outputs may depend on the present
and past history* of the signals.

With the goal of introducing the main ideas behind feedback control in a simpler
setup, we will continue to work with static models for the remainder of this chapter. In
the case of static models, a mathematical function or a set of algebraic equations will
be used to represent such relationships, as done in the models discussed just above in
Section 1.1.

Dynamic models will be considered starting in Chapter 2. In this book, signals will be
continuous functions of time, and dynamic models will be formulated with the help of
ordinary differential equations. As one might expect, experimental procedures that can
estimate the parameters of dynamic systems need to be much more sophisticated than
the ones discussed so far. A simple experimental procedure will be briefly discussed in
Section 2.4, but the interested reader is encouraged to consult one of the many excellent
works on this subject, e.g. [Lju99].

3 Apparently 1 in 4 Americans and 1 in 3 Europeans still go by that model [Gro14].
4 What about the future?




1.3

1.4

Introduction

A Gontrol Problem

Consider the following problem:

Under the experimental conditions described in Section 1.1 and given a larget terminal
velocity, y, is it possible to design a system, the controller, that is able to command the
accelerator pedal of a cay, the input, u, to produce a terminal velocity, the output, y,
equal to the target velocity?

An qutomatic system that can solve this problem is found in many modern cars, with
the name cruise controller. Of course, another system that is capable of solving the
same problem is a human driver.’ In this book we are mostly interested in solutions that
can be implemented as an automatic control, that is, which can be performed by some
combination of mechanical, electric, hydraulic, or pneumatic systems running without
human intervention, often being programmed in a digital computer or some other logical
circuit or calculator.

Problems such as this are referred to in the control literature as tracking problems:
the controller should make the system, a car, follow or track a given target output, the
desired terminal velocity. In the next sections we will discuss two possible approaches
to the cruise control problem.

Solution without Feedback

The role of the controller in tracking is to compute the input signal # which produces the
desired output signal y. One might therefore attempt to solve a tracking problem using
a system (controller) of the form

u=K(@).

This controller can use only the reference signal, the target output y, and is said to be
in open-loop,’ as the controller output signal, u, is not a function of the system output
signal, y.

With the intent of analyzing the proposed solution using mathematical models,
assume that the car can be representéd by a nominal model, say G, that relates the
input u (pedal excursion) to the output y (terminal velocity) through the mathematical
function

y = G(u).

The connection of the controller with this idealized model is depicted in the block-
diagram in Fig. 1.7. Here the function G can be obtained after fitting experimental data
as done in Figs. 1.5 and 1.6, or borrowed from physics or engineering science principles.

3 After some 16 years of learning.
6 As opposed to closed-loop, which will be discussed in Section 1.5.
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Figure 1.7 Open-loop control: the controller, K, is a function of the reference input, y, but not a
function of the system output, y.

The block-diagram in Fig. 1.7 represents the following relationships:

y=Gw), u=K@),

that can be combined to obtain

y=G(K©).
If G is invertible and K is chosen to be the inverse of G, that is K = G, then
y=G(G'®) =7.
Matching the controller, K, with the nominal model, G, is paramount: if K # G~! then
y#J.
When both the nominal model G and the controller K are linear,
y = Gu, u=Ky, y=GKj,
from which y = y only if the product of the constants K and G is equal to E)ne:
KG=1 = K=G", u=G'5p.

Because the control law relies on knowledge of the nominal model G to achieve its goal,
any imperfection in the model or in the implementation of the controller will lead to less
than perfect tracking.

Solution with Feedback

The controller in the open-loop solution considered in Section 1.4 is allowed to make
use only of the target output, y. When a measurement, even if imprecise, of the system
output is available, one may benefit from allowing the controller to make use of the
measurement signal, y. In the case of the car cruise control, the terminal velocity, y, can
be measured by an on-board speedometer. Of course the target velocity, y, is set by the
driver.

Controllers that make use of output signals to compute the control inputs are called
Jeedback controllers. In its most general form, a feedback controller has the functional
form

u=K(@,y).

In practice, most feedback controllers work by first creating an error signal, j — y,
which is then used by the controller:

u=K(e), e=y—y. (1.2)
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Figure 1.8 Closed-loop feedback control: the controller, K, is a function of the reference input, 7,
and the system output, y, by way of the error signal, e = j — y.

This scheme is depicted in the block-diagram in Fig. 1.8. One should question whether it
is possible to implement a physical system that replicates the block-diagram in Fig. 1.8.
In this diagram, the measurement, y, that takes part in the computation of the control,
u, in the controller block, K, is the same as that which comes out of the system, G. In
other words, the signals flow in this diagram is instantaneous. Even though we are not
yet properly equipped to address this question, we anticipate that it will be possible to
construct and analyze implementable or realizable versions of the feedback diagram in
Fig. 1.8 by taking into account dynamic phenomena, which we will start discussing in
the next chapter.

At this point, we are content to say that if the computation implied by feedback is per-
formed fast enough, then the scheme should work. We analyze the proposed feedback
solution only in the case of static linear models, that is, when both the controller, K, and
the system to be controlled, G, are linear, Feedback controllers of the form (1.2), which
are linear and static, are known by the name proportional controllers, or P controllers
for short. In the closed-loop diagram of Fig. 1.8, we can think of the signal y, the target
velocity, as an input, and of the signal y, the terminal velocity, as an output. A mathe-
matical description of the relationship between the input signal, y, and output signal, y,
assuming linear models, can be computed from the diagram:

y = Gu, u = Ke, e=jp—y.
After eliminating the signals e and u we obtain
y=GKe=GK@y —y) == (14 GK)y = GKy.

When GK # —1,

- GK
T 14+ GK’

A mathematical relationship governing a particular pair of inputs and outputs is called a
transfer-function. The function H calculated above is known as a closed-loop transfer-
Junction.

Ironically, a first conclusion from the closed-loop analysis is that it is not possible
to achieve exact tracking of the target velocity since A cannot be equal to one for any
finite value of the constants G and K, not even when K = G~!, which was the open-
loop solution. However, it is not so hard to make H get close to one: just make K large!
More precisely, make the product GK large. How large it needs to be depends on the
particular system G. However, a welcome side-effect of the closed-loop solution is that
the controller gain, K, does not depend directly on the value of the system model, G.

y=Hy,

1.5 Solution with Feedback 9

Table 1.1 Closed-loop transfer-function, /7, for various values of K and G

K
G 0.02 0.05 0.5 | 3
47.8 0.4888 0.7050 0.9598 0.9795 0.9931
73.3 0.5945 0.7856 0.9734 0.9865 0.9955
99.4 0.6653 0.8325 0.9803 0.9900 0.9967

As the calculations in Table 1.1 reveal, the closed-loop transfer-function, 7/, remains
within 1% of 1 for values K greater than or equal to 3 for any value of G lying between
the two crude linear models estimated earlier in Fig. 1.6.

In other words, feedback control does not seem to rely on exact knowledge of the
system model in order to achieve good tracking performance. This is a major feature
of feedback control, and one of the reasons why we may get away with using incom-
plete and not extremely accurate mathematical models for feedback design. One might
find this strange, especially to scientists and engineers trained to look for accuracy and
fidelity in their models of the world, a line of thought that might lead one to believe
that better accuracy requires the use of complex models. For example, the complexity
required for accurately modeling the interaction of an aircraft with its surrounding air
may be phenomenal. Yet, as the Wright brothers and other flight pioneers demonstrated,
it is possible to design and implement effective feedback control of aircraft without
relying explicitly on such complex models.

This remarkable feature remains for the most part true even if nonlinear’ models
are considered, although the computation of the transfer-function, H, becomes more
complicated.® Figure 1.9 shows a plot of the ratio y/j for various choices of gain, K,
when a linear controller is in feedback with the static nonlinear model, G, fitted in
Fig. 1.5. The trends are virtually the same as those obtained using linear models. Note
also that the values of the ratio of the terminal velocity by the target velocity are close to
the values of H calculated for the linear model with gain G = 99.4 which was obtained
through “linearization” of the nonlinear model, especially at low velocities.

Insight on the reasons why feedback control can achieve tracking without relying
on precise models is obtained if we look at the control, the signal u, that is effectively
computed by the closed-loop solution. Following steps similar to the ones used in the
derivation of the closed-loop transfer-function, we calculate

_ 1 _
1+6k’ "k '+6”
Note that limg o u = G™! 3, which is exactly the same control as that computed in

open-loop (see Section 1.4). This time, however, it is the feedback loop that computes
the function G~! based on the error signal, e = 7 — y. Indeed, u is simply equal to

u=Ke=KG—y)=K(1 -H)y=

7 Many but not all nonlinear models.
8 1t requires solving the nonlinear algebraic equation y = G(K(# —y)) for y. The dynamic version of this
problem is significantly more complex.
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Figure 1.9 Effect of the gain K on the ability of the terminal velocity, y, to track a given target
velocity, 7, when the linear feedback control, u = K(y — y), is in closed-loop (Fig. 1.8) with the
nonlinear model, y = G(u) = 82.8tan"'(1.24) from Fig. 1.5.

K (7 — y), which, when K is made large, converges to G~'j by virtue of feedback, no
matter what the value of G is. A natural question is what are the side-effects of raising
the control gain in order to improve the tracking performance? We will come back to
this question at many points in this book as we learn more about dynamic systems and
feedback.

Sensitivity

In previous sections, we made statements regarding how insensitive the closed-loop
feedback solution was with respect to changes in the system model when compared
with the open-loop solution. We can quantify this statement in the case of static linear
models. ‘

As seen before, in both open- and closed-loop solutions to the tracking control prob-
lem, the output y is related to the target output  through

y=H(G)y.

The notation H(G) indicates that the transfer-function, H, depends on the system
model, G. In the open-loop solution H(G) = GK and in the closed-loop solution
H(G)= GK(1+ GK)™ .

Now consider that G assumes values in the neighborhood of a certain nominal model
G and that H(G) # 0. Assume that those changes in G affect H in a continuous and
differentiable way so that’

H(G)=H(G)+ H(G)(AG)+0(AGY), AG=G-G,

9 The notation O(x") indicates a polynomial in x that has only terms with degree greater than or equal to .
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which is the Taylor series expansion of H as a function of G about G. Discarding terms
of order greater than or equal to two, we can write

H(G) — H(G) ~ H'(G)(G — G).
After dividing by H(G) we obtain an expression for how changes in G affect the
transfer-function H (G):
H(G) - H(G)
H(G)
The function § is called the sensitivity function.

Using this formula we compute the sensitivity of the open-loop solution. In the case
of linear models,

- G-G G
~ 8(G) = S(G) = %H'(G).

G
S(G)=——K=1.
@ =zx

This can be interpreted as follows: in open-loop, a relative change in the system model,
G, produces a relative change in the output, y, of the same order.
In closed-loop, after some calculations (see P1.13),

GK
—_—, ] (1.3)
1+GK 1+ GK ‘
By making X large we not only improve the tracking performance but also reduce the
sensitivity S. Note that S+ H = 1, hence S = 1 — H, so that the values of S can be
easily calculated from Table 1.1 in the case of the car cruise control. For this reason, H
is known as the complementary sensitivity function.

In the closed-loop diagram of Fig. 1.8, the transfer-function from the reference input,
¥, to the tracking error, e, is

H(G) = GK, =

H(G) = — S(G) =

e=y-—y=10-H)y=S55,
which is precisely the sensitivity transfer-function that we have calculated based on
model variations. The smaller the sensitivity, S, the better the controller tracks the ref-
erence input, . Perfect tracking would be achieved if we could make S = 0. This is a
win-win coincidence: the closer controllers can track references, the less sensitive the
closed-loop will be to variations in the model.

Disturbances

Another way of accounting for variability in models is to introduce additional distur-
bance signals. Consider, for example, the block-diagram in Fig. 1.10, in which the dis-
turbance signal, w, adds to the input signal, u, that is,

y = G(u+ w).

It is the scientist or engineer who must distinguish disturbance signals from regular input
signals. Disturbances are usually nuisances that might be present during the operation
of the system but are hard to model at the design phase, as well as other phenomena
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Figure 1.10 System with input disturbance w.

affecting the system that are not completely understood. For example, in Section 2.7,
we will use a disturbance signal entering the block-diagram in Fig. 1.10 as w to model
a road slope in the car cruise control problem. Because feedback control can be very
effective in handling disturbances, delegating difficult aspects of a problem to distur-
bances is key to simplifying the control design process. Indeed, excerpts from the 1903
Wright brothers’ patent for a flying machine, shown in Fig. 1.11, hint that this way of
thinking might have played a central role in the conquest of flight.

It is easy to incorporate disturbances into the basic open- and closed-loop schemes of
Figs. 1.7 and 1.8, which we do in Figs. 1.12 and 1.13. In both cases, one can write the
output, y, in terms of the reference input, y, and the disturbance, w. Better yet, we can
write the transfer-function from the inputs, ¥ and w, to the tracking error, e =y — y. In
open-loop we calculate with Fig. 1.12 that

e=y—y=y—GKy+w)=(1-GK)y - Guw.
Substituting the proposed open-loop solution, K = G~!, we obtain
e=—Gw,

which means that open-loop control is very effective at tracking but has no capability
to reject the disturbance w, as one could have anticipated from the block-diagram in
Fig. 1.12. Open-loop controllers will perform poorly in the presence of disturbances.
This is similar to the conclusion obtained in Section 1.6 that showed open-loop con-
trollers to be sensitive to changes in the system model.

UNITED STATES PATENT OTFFICE.

ORVILLE WEIGHT AND WILBUR WRIGIHT. OF DAY'TON, OULO.
FLYING-MAGCHINE.

Mo 821.393. Bpecification of Letters Patent. Patented May 22, 1990.
Application Eid Merch 53,1963 Barial Ne. 149,270,
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Figure 1.11 The Wright brothers’ 1903 patent [WW06].
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Figure 1.12 Open-loop configuration with input disturbance w.

In closed-loop, Fig. 1.13, we calculate that
e=y—y=3—G(Ke+ w) - 1+ GKy=y—-Guw
and the tracking error is

1 G

‘“TTvek’ Trok ™ (14

The control gain, K, shows up in both transfer-functions from the inputs, w and 7, to
the tracking error, e. High control gains reduce both terms at the same time. That is, the
closed-loop solution achieves good tracking and rejects the disturbance. This is a most
welcome feature and often the main reason for using feedback in control systems. By
another coincidence, the coefficient of the first term in (1.4) is the same as the sensitivity
function, S(G), calculated in Section 1.6.

1.1 For each block-diagram in Fig. 1.14 identify inputs, outputs, and other rele-
vant signals, and also describe what physical quantities the signals could represent.
Determine whether the system is in closed-loop or open-loop based on the presence
or absence of feedback. Is the relationship between the inputs and outputs dynamic or
static? Write a simple equation for each block if possible. Which signals are distur-
bances?

1.2 Sketch block-diagrams that can represent the following phenomena as systems:

(a) skin protection from sunscreen;
(b) money in a savings account;
(c) achemical reaction.

Identify potential input and output signals that could be used to identify cause—effect
relationships. Discuss the assumptions and limitations of your model. Is the relationship

) ”
-

Figure 1.13 Closed-loop feedback configuration with input disturbance w.
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Figure 1.14 Block diagrams for P1.1.

between the inputs and outputs dynamic or static? Write simple equations for each block
if possible.

1.3 Mammals are able to regulate their body temperature near 36.5°C (~98 °F)
despite fluctuations in the ambient temperature. Sketch a block-diagram that could rep-
resent a possible temperature control system in mammals. Identify disturbances, sig-
nals, and possible principles of sensing and actuation that could be used by mammals to
lower or increase the body temperature. Compare possible open-loop and closed-loop
solutions. Discuss the difficulties that need to be overcome in each case.

1.4 Most cars are equipped with an anti-lock braking system (ABS), which is designed
to prevent the wheels from locking up when the driver actuates the brake pedal. It helps
with emergencies and adverse road conditions by ensuring that traction is maintained
on all wheels throughout breaking. An ABS system detects locking of a wheel by com-
paring the rotational speeds among wheels and modifies the pressure on the hydraulic
brake actuator as needed. Sketch a block-diagram that could represent the signals and
systems involved in ABS.
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1.5 Humans learn to balance standing up early in life. Sketch a block-diagram that
represents signals and systems required for standing up. Is there a sensor involved?
Actuator? Feedback?

1.6 Sketch a block-diagram that represents the signals and systems required for a
human to navigate across an unknown environment. Is there a sensor involved? Actua-
tor? Feedback?

1.7 Repeat P1.5 and P1.6 from the perspective of a blind person.
1.8 Repeat P1.5 and P1.6 from the perspective of a robot or an autonomous vehicle.

1.9 For each block-diagram in Fig. 1.15 compute the transfer-function from the input
u to the output y assuming that all blocks are linear.

@@ D g LD
@ O

@ ©

(d
Figure 1.15 Block diagrams for P1.9.

110 Students participating in Rice University’s Galileo Project [Jen14] set out to
carefully reproduce some of Galileo’s classic experiments. One was the study of projec-
tile motion using an inclined plane, in which a ball accelerates down a plane inclined
at a certain angle then rolls in the horizontal direction with uniform motion for a short
while until falling off the edge of a table, as shown in Fig. 1.16. The distance the ball
rolled along the inclined plane, £ in feet, and the distance from the end of the table to
the landing site of the ball, d in inches, were recorded. Some of their data, five trials
at two different angles, is reproduced in Table 1.2. Use MATLAB to plot and visualize
the data. Fit simple equations, e.g. linear, quadratic, etc., to the data to relate the fall

;;;;;;;;;;;;;;;;;;;;;;;

Figure 1.16 Galileo’s inclined plane.
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height, 4, to the horizontal travel distance, d, given in Table 1.2. Justify your choice of
equations and comment on the quality of the fit obtained in each case. Estimate using
the given data the vertical distance y. Can you also estimate gravity?

Table 1.2 Data for P1.10

Ramp distance at 13.4°

Try 11t 2 ft 4 ft 6 ft
1 1342 192 274 333
2 132 192 273 332
3 14+ 192 273 332
4 14 192 272 33%
5 138 193 272 332

Ramp distance at 6.7°

Try 1ft 2 ft 4 ft 6ft  8ft
1 104 145 202 25k 293
2 0L 145 202 251 294
3 104 141 202 252 293
4 104 141 202 254 292
5 10l 14% 20% 253 294

1.11  Use MATLAB to determine the parameters «, 8, and y that produce the least-
squares fit of the data in Fig. 1.4 to the curves y(u) = a tan™'(Bu) and y(u) = y u.
Compare your answers with Figs. 1.5 and 1.6.

112  Compute the first-order Taylor series expansion of the function y(u)=
o tan~!(Bu) about u = 0 and use the solution to P1.11 to verify the value of the slope
shown in Fig. 1.6.

1.13  Show that the sensitivity function in (1.3) is the one associated with the closed-
loop transfer-function H(G) = GK(1 + GK)™'.

Dynamic Systems

In Chapter 1 we contemplated solutions to our first control problem, a much simpli-
fied cruise controller for a car, without taking into account possible effects of time.
System and controller models were static relations between the signals: the output sig-
nal, y, the input signal, u, the reference input, 7, and then the disturbance, w. Signals
in block-diagrams flow instantaneously, and closed-loop solutions derived from such
block-diagrams were deemed reasonable if they could be implemented fast enough.
We drew encouraging conclusions from simple analysis but no rationale was given to
support the conclusions if time were to be taken into consideration.

Of course, it is perfectly fine to construct a static mathematical model relating a
car’s pedal excursion with its terminal velocity, as long as we understand the model
setup. Clearly a car does not reach its terminal velocity instantaneously! If we expect
to implement the feedback cruise controller in a real car, we have to be prepared to say
what happens between the time at which a terminal target velocity is set and the time at
which the car reaches its terminal velocity. Controllers have to understand that it takes
time for the car to reach its terminal velocity. That is, we will have to incorporate time
not only into models and tools but also into controllers. For this reason we need to learn
how to work with dynamic systems.

In the present book, mathematical models for dynamic systems take the form of
ordinary! differential equations where signals evolve continuously in time. Bear in
mind that this is not a course on differential equations, and previous exposure to the
mathematical theory of differential equations helps. Familiarity with material covered
in standard text books, e.g. [BD12], is enough. We make extensive use of the Laplace
transform and provide a somewhat self-contained review of relevant facts in Chapter 3.

These days, when virtually all control systems are implemented in some form of
digital computer, one is compelled to justify why not to discuss control systems
directly from the point of view of discrete-time signals and systems. One reason is that
continuous-time signals and systems have a long tradition in mathematics and physics
that has established a Janguage that most scientists and engineers are accustomed to.
The converse is unfortunately not true, and it takes time to get comfortable with inter-
preting discrete-time models and making sense of some of the implied assumptions that
come with them, mainly the effects of sampling and related practical issues, such as

! Ordinary, as opposed to partial, means that derivatives appear only with respect to one variable; in our case,
time.
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mx bx
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Figure 2.1 Free-body diagram showing forces acting in a car.

quantization and aliasing. In fact, for physical systems, it is impossible to appropri-
ately choose an adequate sampling rate without having a good idea of the continuous-
time model of the system being controlled. Finally, if a system is well modeled and
a controller is propetly designed in continuous-time, implementation in the form of a
discrete-time controller is most of the time routine, especially when the available hard-
ware sampling rates are fast enough.

Dynamic Models

Let us start with some notation: we denote time by the real variable ¢ in the interval
[0, 00), where 0 can be thought of as an arbitrary origin of time before which we are
not interested in the behavior of the system or its signals. We employ functions of real
variables to describe signals and use standard functional notation to indicate the depen-
dence of signals on time. For example, the dynamic signals y and u are denoted as y(z)
and u(z). At times, when no confusion is possible, we omit the dependence of signals
ont.

We claimed in Chapter 1 that models should be rooted in well-defined experiments.
Planning and performing experiments for dynamic systems is a much more complex
task, which we do not have room to address in detail here. Instead, we will reach out to
physics to help us introduce an abstract dynamic model, the parameters of which will
later be determined through experiments.

In the tradition of simplified physical modeling, we use Newton’s law to write equa-
tions for a car based on the free-body diagram shown in Fig. 2.1. The car is modeled as
a particle with mass m > 0 and, after balancing all forces in the x-direction, we obtain
the differential equation

mx(t) + bx(t) = f(2),
where x is the lincar coordinate representing the position of the car, b > 0 is the coef-
ficient of friction, and f is a force, which we will use to put the car into motion. Much
can be argued about the exact form of the friction force, which we have assumed to be
viscous, that is of the form —bv(z), linear, and opposed to the velocity v(z) = %(z). As
we are interested in modeling the velocity of the car and not its position, it is convenient
to rewrite the differential equation in terms of the velocity v, obtaining

mo(t) + bo(t) = f(1). @.1)

2.2
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Figure 2.2 Block-diagram with integrator.

In order to complete our model we need to relate the car driving force, f, to the pedal
excursion, u. Here we could resort to experimentation or appeal to basic principles. With
simplicity in mind we choose a linear static model:

S = pu, 22)

where p represents a pedal gain, which can be determined experimentally by methods
similar to the ones used in Chapter 1.

Of course, no one should believe that the simple force model (2.2) can accurately rep-
resent the response of the entire powertrain of the car in a variety of conditions. Among
other things, the powertrain will have its own complex dynamic behaviors, which (2.2)
gracefully ignores. Luckily, the validity? of such simplification depends not only on the
behavior of the actual powertrain but also on the purpose of the model. In many cases,
the time-constants® of the powertrain are much faster than the time-constant due to the
inertial effects of the entire car. In this context, a simplified model can lead to satisfac-
tory or at least insightful results when the purpose of the model is, say, predicting the
velocity of the car. A human driver certainly does not need to have a deep knowledge of
the mechanical behavior of an automobile for driving one!

Combining Equations (2.1) and (2.2), and labeling the velocity as the output of the
system, i.e. y(t) = v(¢), we obtain the differential equation

b
)+ 2y = Lu), (2.3)
m m

which is the mathematical dynamic model we will use to represent the car in the
dynamic analysis of the cruise control problem.

Block-Diagrams for Differential Equations

In Chapter 1 we used block-diagrams to represent the interaction of signals, systems,
and controllers. If we interpret differential equations as a relationship between signals
and the signals’ derivatives, it should be no surprise that ordinary differential equa-
tions can be represented in block-diagrams. The key is to use an integrator to relate the
derivative to its primitive. An integrator block should be able to produce at its output the
integral of its input. Alternatively, we can see the integrator input as the derivative of its
output signal, as depicted in Fig. 2.2. We will study in Chapter 5 a number of physical
devices that can be used to physically implement integrators.

Assuming that integrator blocks are available, all that is left to do is to rewrite
the ordinary differential equation, isolating its highest derivative. For example, we

2 A better word here may be usefulness. 3 More about that soon!
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Figure 2.3 Dynamic model of the car: m is the mass, b is the viscous friction coefficient, p is the
pedal gain, u is the pedal excursion, and y is the car’s velocity.

rewrite (2.3) as

b
30 = Tu(t) = = (o),

which can be represented by the block-diagram in Fig. 2.3.

Note the presence of a feedback loop in the diagram of Fig. 2.3! For this reason, tools
for analyzing feedback loops often draw on the theory of differential equations and vice
versa. We will explore the realization of differential equations using block-diagrams
with integrators in detail in Chapter 5.

Dynamic Response

The differential equation (2.3) looks very different from the static linear models con-
sidered earlier in Chapter 1. In order to understand their differences and similarities
we need to understand how the model (2.3) responds to inputs. Our experiment in
Section 1.1 consisted of having a constant pedal excursion and letting the car reach
a terminal velocity. We shall first attempt to emulate this setup using the differential
equation (2.3) as a model.

A constant pedal excursion corresponds to the input function

u(ty=1d, t=0,

where ii is constant. In response to this input we expect that the solution of the dif-
ferential equation (2.3) approaches a constant terminal velocity, 7, after some time has
passed. The value of this terminal velocity can be calculated after noticing that

)=y, t>T — yt)=0, t>T,
in which case (2.3) reduces to

s

It is this relation that should be compared with the static model developed earlier. Exper-
iments similar to the ones in Section 1.1 can be used to determine the value of the ratio
p/b. In the language of differential equations the function

Pa

b

is a particular solution to the differential equation (2.3). See [BD12] for details.

w(t)=y=
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The particular solution cannot, however, be a complete solution: if the initial veloc-
ity of the car at time ¢+ = 0 is not equal to 7 then y(0) = y¢ # 7 = yp(0). The remain-
ing component of the solution is found by solving the homogeneous version of
Equation (2.3):

) b
v+ —y(t)=0.
m
All solutions to this equation can be shown to be of the form
yu(t) =€, 2.4)

where the constant A is determined upon substitution of yi(¢) into (2.3):

() + EJ’H(f) = <)» + 2) et =0.
m m

This is an algebraic equation that needs to hold for all ¢ > 0, in particular ¢ = 0, which
will happen only if A is a zero of the characteristic equation:

b
A+ —=0 — A=——. 2.5)
m m

The complete solution to Equation (2.3) is a combination of the particular solution,
yp(t), with all possible solutions to the homogeneous equation:*

y(t)=yp(t) + Byn(t) =5+ B,

in which the constant 8 is calculated so that y(¢) matches the initial condition, yy, at
t = 0. That is,

yO)y=7y+8=n = P =yo—J.
Putting it all together, the complete response is
y) =51 —€e")+ye, >0, (2.6)

where

o~
SN

A=——, j=tq Q.7

m

Plots of y(¢) for various values of A and yy are shown in Fig. 2.4 for j = 1. Note how
the responses converge to j for all negative values of L. The more negative the value of
A, the faster the convergence. When X is positive the response does not converge to 7,
even when y is very close to 7.

It is customary to evaluate how fast the solution of the differential equation (2.3)
converges to y by analyzing its response to a zero initial condition yy = 0 and a nonzero
7 # 0. This is known as a step response. When A < 0, the constant

4 In this simple example there is only one such solution, yi(f) given in (2.4).




22

24

Dynamic Systems

2 T T T
—— ] =3
= A=-05
a5 A=-1.0
.S ey A=-3.0
o e A=42.0
. —
Somay - —
_ e o —
4 | oo o, e e e e e e e e e e e e
B e
OSF_ 2
0 I L ‘I"- i
0 1 2 3 4

t
Figure 2.4 Plots of y() = 7 (1 — ™) + ype™, ¢ > 0, with = 1; A and y, are as shown.

is the time-constant. In P2.1 you will show that t has units of time. At select times? = 1
and ¢t = 31,

y(r)=7(1—e") =~ 0.637,

As T depends only on A and not on J, it is possible to compare the rate of convergence of
different systems modeled by linear ordinary differential equations by comparing their
time-constants. For differential equations more complex than (2.3), the time-constant is
defined as the time it takes the step response to reach 63% of its terminal value. The
smaller the time-constant, the faster the convergence.

Another measure of the rate of change of the response is the rise-time, t., which is the
time it takes the step response to go from 10% to 90% of its final value.® Calculating

W) =3 (1 - &) = 0.15, W) =5(1 = &) = 0.5,

we obtain

y31)=7(1 —e7?) = 0.955.

=t —t; =In(1/9' =In(9)r ~2.21. (2.9)

Again, the smaller the rise-time, the faster the convergence.

Experimental Dynamic Response

As shown in Section 2.3, the terminal velocity attained by the dynamic linear model,
the differential equation (2.3), is related to the static linear model, the algebraic equa-
tion (1.1), through y = j/it = p/b. This means that the ratio p/b can be determined
in the same way as was done in Section 1.1. A new experiment is needed to determine
the parameter A = — b/m, which does not influence the terminal velocity but affects the
rate at which the car approaches the terminal velocity.

> For systems in which the output develops only after a delay it is easier to measure the rise-time than the
time-constant.
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Figure 25 Experimental velocity response of a car to a constant pedal excursion, u(t) = = lin,
t > 0; samples are marked as circles, crosses, and squares.

First let us select a velocity around which we would like to build our model, preferably
a velocity close to the expected operation of the cruise controller. Looking at Figs. 1.4
through 1.6, we observe that a pedal excursion of around 1 in will lead to a terminal
velocity around 70 mph, which is close to highway speeds at which a cruise controller
may be expected to operate. We perform the following dynamic experiment: starting
at rest, apply constant pedal excursion, u(¢) = # = 1lin, t > 0, and collect samples of
the instantaneous velocity until the velocity becomes approximately constant. In other
words, perform an experimental step response. The result of one such experiment may
look like the plot in Fig. 2.5, in which samples (marked as circles, crosses, and squares)
have been collected approximately every 2 s for 90 s.

We proceed by fitting the data in Fig. 2.5 to a function like (2.6) where the initial
condition, yg, is set to zero before estimating the parameters ¥ and A. This fit can be
performed in many ways. We do it as follows: we first average the samples over the last
30s in Fig. 2.5 (squares) to compute an estimate of the terminal velocity. From the data
shown in Fig. 2.5 we obtain the estimate j &~ 73.3 mph. If y(¢) is of the form (2.6) then

r)=1-y@)/5 = — Inr(t) = At

©
nH=1-%7%

In r(?)

In #(f)= —0.05¢

- A A i  TR—

0 2 4 6 8 10 12 14 16 18 20
t(s)

Figure 2.6 Plot of In#(¢) and fitted linear model.
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That is, In#(#) is a line with slope A. With this in mind we plot In () in Fig. 2.6 using
samples taken from the first 20 s from Fig. 2.5 (circles) and estimate the slope of the
line In»(2), that is A = —0.05. The parameters b/m and p/m are then estimated based
on the relationships

b
— =-A~0.05s",
m
P — Y ~ 733 mph/in, (2.10)
b i
b .
P_2 P yx )—: = 3.7 mph/(in s).
m m b i

Note that this model has a static gain of about 73.3 mph/in which lies somewhere
between the two static linear models estimated earlier in Fig. 1.6. Indeed, this is the inter-
mediate gain value that was used in Section 1.5 to calculate one of the static closed-loop
transfer-functions in Table [.1.

The estimation of the structure and the parameters of a dynamic system from experi-
ments is known as system identification. The interested reader is referred to [Lju99] for
an excellent introduction to a variety of useful methods.

Dynamic Feedback Control

We are now ready to revisit the feedback solution proposed in Section 1.3 for solving
the cruise control problem. Let us keep the structure of the feedback loop the same, that
is let the proportional controller

u(t) = Ke(t), e(ty =3 —y@) (2.11)

be connected as in Fig. 1.8. Note a fundamental difference between this controller and
the one analyzed before: in Section 1.5 the signals e and y were the terminal error and
terminal velocity; controller (2.11) uses the dynamic error signal e(t) and velocity y(1).
This dynamic feedback loop can be practically implemented if a sensor for the instan-
taneous velocity, y(¢), is used. Every vehicle comes equipped with one such sensor, the
speedometer.”

In order to analyze the resulting dynamic feedback control loop we replace the sys-
tem model, G, with the dynamic model, the differential equation (2.3), to account for the
car’s dynamic response to changes in the pedal excursion. In terms of block-diagrams,
we replace G in Fig. 1.8 by the block-diagram representation of the differential equa-
tion (2.3) from Fig. 2.3. The result is the block-diagram shown in Fig. 2.7. Using
Equations (2.3) and (2.11) we eliminate the input signal, u(¢), to obtain

o <2 + 31() ) = Lk, 2.12)
m m m

6 The speedometer measures the speed but it is easy to infer the direction, hence the velocity, in this simple
one-dimensional setup.
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Figure 2.7 Dynamic closed-loop connection of the car model with proportional controller.

This linear ordinary differential equation governs the behavior of the closed-loop sys-
tem. In the next chapters, you will learn to interpret this equation in terms of a
closed-loop transfer-function using the Laplace transform. For now we proceed in the
time domain and continue to work with differential equations.

Since Equation (2.12) has the same structure as Equation (2.3), its solution is also
given by (2.6). That is

y@) =7 (1 =€) +yo0e¥, 120,
with the constants
b p . (p/m)K _ (p/b)K
A=———=K y= = el
m m (b/m) + (p/m)K 1+ (p/b)K

When K is positive, the decay-rate X is negative and hence y(¢) converges to J. In terms
of the target velocity y we can write

(p/DK
1+ (p/b)K’
We refer to components of the response of a dynamic system that persist as the time

grows large as steady-state solutions. In this case, the closed-loop has a constant steady-
state solution

lim (1) =§=HO),  H(©)= 2.13)

Ves(t) =7 = H(0)y.

Note that the value of H(0) is equal to the static closed-loop transfer-function computed
in Section 1.5 if G is replaced with p/b. As we will see in Chapter 4, this is not a mere
coincidence. In terms of tracking error,

Jime) = fim =y =SOF SO = @19
The function S(0) = 1 — H(0) is the static closed-loop sensitivity function computed
before in Section 1.6. The reason for using the notation /(0) and S(0) will become
clear in the next chapters.

For various values of G = p/b, including p/b ~ 73.3 which we estimated in Sec-
tion 2.4, the steady-state closed-loop solution will track the reference y with accuracy
S(0) =1 — H(0), which can be computed from the values listed in Table 1.1. In steady-
state, the closed-loop behaves as predicted by the static analysis in Section 1.3. The

dynamic analysis goes a step further: it predicts the rate at which convergence occurs,




26

Dynamic Systems

Table 2.1 Open- and closed-loop steady-state transfer-function, //(0), steady-state sensitivity, S(0),
steady-state limit, y, time-constant, t, and rise-time, 1., calculated for »/m = 0.05and p/b = 73.3
and a constant target output of 5 = 60 mph. The open-loop solution is from Section 1.4.

K H(0) 5(0) 7 (mph) T (s) £ (8)
Open-loop 1.00 0.00 60 20.0 439
0.02 0.60 0.40 36 8.1 17.8
0.05 0.79 0.21 47 4.3 9.4
0.50 0.97 0.03 58 0.5 1.2

which is related to the parameters A and t:

b p 4 m
r=———-LfK =o'z :
m m b+ pK

Notice that the time-constant, t, becomes smaller as K grows. A numerical comparison
for various values of gain, K, including the open-loop solution’ (from Section 1.4), is
given in Table 2.1. The corresponding dynamic responses calculated from zero initial
conditions, y(0) = 0, are plotted in Fig. 2.8.

Some numbers in Table 2.1 and Fig. 2.8 look suspicious. Is it really possible to lower
time-constants so much? Take, for example, the case of the largest gain K = 0.5: here
we have almost perfect tracking (3% error) with a closed-loop rise-time that is more than
40 times faster than in open-loop. This kind of performance improvement is unlikely to
be achieved by any controller that simply steps into the accelerator pedal. Surely there
must be a catch! Indeed, so far we have been looking at the system output, the car’s
velocity, y(¢), and have paid little attention to the control input, the pedal excursion,
u(t). We shall now look at the control input in search of clues that could explain the
impressive performance of the closed-loop controller.

The control inputs, u(¢), associated with the dynamic responses in Fig. 2.8 are plotted
in Fig. 2.9. In Fig. 2.9 we see that the feedback controller is injecting into the system,
the car, large inputs, pedal excursions, in order to achieve better tracking and faster
response. The larger the control gain, K, the larger the required pedal excursion. Note
that in this case the maximum required control signal happens at t = 0, when the track-
ing error is at a maximum, and

u(0) = Ke(0) = K¢ — y(0)) = K.

Clearly, the larger the gain, K, the larger the control input, «. For instance, with K = 0.5
the controller produces an input that exceeds the maximum possible pedal excursion of
3in, which corresponds to full throttle. In other words, the control input is saturated.
With K = 0.05 we have u(0) = 3, which is full throttle. Of course, any conclusions
drawn for K > 0.05 will no longer be valid or, at least, not very accurate. It is not

7 What we mean by open-loop solution is the simulation of the diagram in Fig. 1.7 where G is replaced by
the differential equation model (2.3) but K = (p/b)~! is still the constant open-loop gain as calculated in
Section 1.4, We are not yet equipped to speak of G~ as the inverse of a dynamic model, which we will do
in Sections 4.7, 5.1, and 8.6.
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Figure 2.8 Open- and closed-loop dynamic response, y(f), for the linear car velocity model (2.12)
calculated for b/m = 0.05 and p/b = 73.3 and a constant target output of j = 60 mph with
proportional control (2.11) for various values of gain, K; the open-loop solution is from

Section 1.4.

possible to achieve some of the predicted ultra-fast response times due to limitations
in the system, in this case pedal and engine saturation, that were not represented in the
linear models used to design and analyze the closed-loop. Ironically, the gain K = 0.02
is one for which the pedal excursion remains well below saturation, and is perhaps the
one case in which the (poor) performance predicted by the linear model is likely to be
accurate.

Nonlinear Models

In Section 2.5 we saw controllers that produced inputs that led to saturation of the system
input, the car’s pedal excursion. In some cases the required control input exceeded full

5 T T T T — 1
| open-loop
4+ | m— K =002 |-
\ == K=0.05
=) K e b B K=050 |{u
w2 ™
\ ~
1 T — e~ . . i
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Figure 2.9 Open- and closed-loop control inputs (pedal excursion) corresponding to the dynamic
responses in Fig. 2.8; the largest possible pedal excursion is 3 in.
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throttle. In this section we digress a little to introduce a simple nonlinear model that
can better predict the behavior of the system in closed-loop when saturation is present.
This is not a course in nonlinear control, and the discussion will be kept at a very basic
level. The goal is to be able to tell what happens in our simple example when the system
reaches saturation.

In order to model the effect of saturation we will work with a nonlinear differential
equation of the form

5O+ Stan@ o) = Lu@),  we) e [0.3]. (2.15)
m m

When u(¢) = & is constant, one particular solution to (2.15) is y(¢) = 7, where

d d
Sne P =0 = j=atn (D), ="
m m C

This means that the steady-state response of the nonlinear differential equation (2.15)
matches the empirical nonlinear fit performed earlier in Fig. 1.5. Moreover, at least for
small values of y(t), we should expect® that (see P2.2)

ctan(a ' y(t)) & by(t), b=a"lc
Intuitively, as long as y(t) remains small and u(¢) € [0, 3], the dynamic response of the
nonlinear differential equation (2.15) should stay close to the dynamic response of the
linear differential equation (2.3).

In order to estimate suitable parameters ¢/m, d/m, and o, we proceed as follows: first
we borrow « and B from our previously computed nonlinear static fit (¢« = 82.8 mph/in,
B = 1.2in7!, see Fig. 1.5), then we estimate b/m = —A from the linear dynamic exper-
iment described in Section 2.4, and calculate

b
£ —ax 2 =828 x0.05=4.1mph/in,

m m

d c .

— =f8x—=12x4.1=50mph/ins. (2.16)
m n

The resulting nonlinear model has a steady-state solution that matches the static fit from
Fig. 1.5 and a time-constant close to that of the linear model from Section 2.1.

It is in closed-loop, however, that the nonlinear model will likely expose serious lim-
itations of the controller based on the linear model (2.3). In order to capture the limits
on pedal excursion we introduce the saturation nonlinearity:

u, u(t) > u,
satym(u()) = Ju(t), u<u(®) <1z,

u, u(t)y < u.

8 This notion will be formalized in Section 5.4.
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Figure 2.10 Open- and closed-loop dynamic response, y(¢), produced by the nonlinear car
velocity model (2.17) calculated witho = 1.2, § = 82.8, ¢/m =4.1,and d/m =5.0and a
constant target output of y = 60 mph under proportional control (2.11) and various values of
gain, K. Compare this with Fig. 2.8.

In the car model,” u = 0 and % = 3 in. The complete nonlinear model is

d
JO+ @ y0) = ©saton@®),  ul) = KG-y0).

Eliminating u(t) we obtain

d
$O) + - tan(a™y(0) = = sato ) (KG = (1)) @17

The above nonlinear ordinary differential equations cannot be solved analytically but
can be simulated using standard numerical integration methods, e.g. one of the Runge—
Kutta methods [BD12].

In order to see the effect of the nonlinearities on the closed-loop performance we
repeat the simulations performed in Figs. 2.8 and 2.9, this time using the nonlinear
feedback model (2.17). We show in Figs. 2.10 and 2.11 the nonlinear system closed-
loop response, y(t), and the control input, u(¢), for various values of the gain, K. These
should be compared with Figs. 2.8 and 2.9. For values of K = 0.05 and K = 0.02,
when the control input predicted using the linear model is within the linear region, i.e.
u(t) € [0, 3], and the speeds are small, the nonlinearity has a minor impact. However,
in the case of the larger gain K = 0.5, where the control input is heavily saturated (see
Fig. 2.11), the response is significantly different. In particular, the extraordinarily fast
response predicted by the linear model is not realized in the nonlinear model. In this
simple example, the slower response seems to be the only apparent consequence. This
will not always be the case, and severe nonlinearities will often negatively affect the
performance of closed-loop systems. See Section 5.8.

9 Note that by setting u = 0 we prevent the model from applying any braking force.
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Figure 2.11 Open- and closed-loop control input, pedal excursion, u(¢), produced by the car
velocity nonlinear model equation (2.17) under proportional control (2.11); the largest possible
pedal excursion is 3 in; note the marked effect of pedal saturation in the case of the highest gain
K = 0.5 and its impact in Fig. 2.10.

Disturbance Rejection

We now return to linear models to talk about a much desired feature of feedback control:
disturbance rejection. Consider a modified version of the cruise control problem where
the car is on a slope, as illustrated in Fig. 2.12. Newton’s law applied to the car produces
the differential equation'?

my(t) + by(t) = f(t) — mgsin(6(¢)),

where y = % is the velocity of the car, 6 is the angle the slope makes with the horizontal,
and g is the gravitational acceleration.!! When 6 = 0 the car is on the flat, and the model
reduces to (2.1). As before, adoption of a linear model for the relationship between the
force, f, and the pedal excursion, u, i.e. /' = pu from (2.2), produces the differential
equation

b
IO + = 9ty = Zu(t) - gsin(@()).
m m

This is a linear differential equation except for the way in which 6(¢) enters the equation.
In most cases, the signal 6(t) is not known ahead of time, and can be seen as a nuisance
or disturbance. Instead of working directly with 0, it is convenient to introduce the
disturbance signal

w(t) = —mf sin(6(t)) (2.18)

10" Strictly speaking, this differential equation is true only if 6(¢) is constant. When 6(¢) is not constant,
the car is subject to a (non-working) force that originates from changes in its frame of reference. This
additional force can itself be treated as an additional disturbance if the changes in slope are moderate. No
rollercoasters please!

11" As we insist on using a non-standard unit for measuring velocity (mph), g will have to be expressed in
mph/s, or g = 9.8 m/s?> & 9.8 x 3600/1609 ~ 21.9 mph/s. Ugh! That is ugly!
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Figure 2.12 Free-body diagram showing forces acting on a car on a road slope.

as affecting the linear model

b
30 + — () = Zu) + Zwe). (2.19)
m m m

This differential equation is linear and can be analyzed with simpler tools.
The car model with the input disturbance is represented in closed-loop by the block-
diagram in Fig. 2.13, which corresponds to the equations

b
3O + —y() = Zu) + Lw(), w(t) = KG = (1),
m m m

or, after eliminating u,
b
() + (— + 31() )= 2k5+ Lo (2.20)
m m m m

In order to understand how disturbances affect the closed-loop behavior we shall
analyze the following scenario: suppose that the car is traveling on the flat, w =6 =0,
with the cruise control in closed-loop at the steady-state velocity ys(t) = H(0)p. At
time ¢ = 0 s, the car hits a 10% grade slope, § ~ 5.7°. We use (2.18) to calculate the
disturbance w(t) = © =~ —0.26,¢ > 0.

The dynamic response of the car to the change in slope can be computed by for-
mula (2.6) after setting

yo = H(0)y, wt)y=w, =0

and calculating

b p (p/mK3 + (p/m)iv
m

L & =
m ’ d b/m+ (p/m)K

L

% e u y y
oo~
Figure 2.13 Closed-loop connection of the car showing the slope disturbance
w = —(mg/p)sin(8).
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Figure 2.14 Closed-loop response of the velocity of the car with proportional cruise control
(linear model (2.12), b/m = 0.05 and p/b = 73.3) to a change in road slope at ¢t = 0, from flat
to 10% grade for various values of the control gain.

It is useful to split ¥ into two components:

-t 1
b 1+ (p/b)K’

where H(0) is the same as in (2.13), and with which (2.6) becomes

y=HOy+ D)o, D) (2.21)

y(t) =7 (1 — )+ yoe = HO0) + (1 — ") D(0)i.

The closed-loop response and the open-loop response are plotted in Fig. 2.14 for various
values of the gain, K. The predicted change in velocity is equal to

Ay(t) = y(t) — yo = y(t) — H(0)7 = (1 — ") D(0).

From (2.21), the larger K, the smaller D(0), hence the smaller the change in velocity
induced by the disturbance.

Compare the above analysis with the change in velocity produced by the open-loop
solution (see P2.3):

M) = (1 — e O™ GOYD,  G(0) = %. 2.22)
Because for any K > 0 we have
p_p
coy=2-2 "~ _ po,
= > % T pmr =P

we conclude that the feedback solution always provides better regulation of the velocity
in the presence of a road slope disturbance. Finally, large gains will bring down not only
the tracking error but also the regulation ervor in response to a disturbance. Indeed,
bigger K's make both S(0) and D(0) small.

2.8
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(a) Toilet with a water tank behind  (b) Simplified toilet water tank with ballcock valve

Figure 2.15 A toilet with a water tank and a simplified schematic diagram showing the ballcock
valve. The tank is in the shape of a rectangular prism with cross-sectional area 4. The water level
is y and the fill line is j.

Integral Action

We close this chapter with an analysis of a simple and familiar controlled system: a
toilet water tank, Fig. 2.15. This system has a property of much interest in control,
the so-called infegral action. As seen in previous sections, large gains will generally
lead to small tracking errors but with potentially damaging consequences, such as large
control inputs that can lead to saturation and other nonlinear effects. In the examples
presented so far, only an infinitely large gain could provide zero steady-state tracking
error in closed-loop. As we will see in this section, integral action will allow closed-
loop systems to track constant references with zero steady-state tracking error without
resorting to infinite gains.

A schematic diagram of a toilet water tank is shown in Fig. 2.15(b). Assuming that
the tank has a constant cross-sectional area, 4, the amount of water in the tank, i.c. the
volume, v, is related to the water level, y, by

v = Ay.

When the tank is closed, for instance, right after a complete flush, water flows in at a
rate u(t), which is controlled by the ballcock valve. Without leaks, the water volume in
the tank is preserved, hence

o(t) = u(t).

On combining these two equations in terms of the water level, y, we obtain the differen-
tial equation

1
) = Z”(t)v (2.23)

which reveals that the toilet water tank is essentially a flow integrator, as shown in the
block-diagram representation in Fig. 2.16.




34

Dynamic Systems

Figure 2,16 Block-diagram for water tank.

A ballcock valve, shown in Fig. 2.15(b), controls the inflow of water by using a float
to measure the water level. When the water level reaches the fill line, y, a lever connected
to the float shuts down the valve. When the water level is below the fill line, such as right
after a flush, the float descends and actuates the fill valve. This is a feedback mechanism.
Indeed, we can express the flow valve as a function of the error between the fill line, p,
and the current water level, y, through

u(t) =K@ —y),

where the profile of the function K is similar to the saturation curves encountered before
in Figs. 1.4-1.6. The complete system is represented in the block-diagram Fig. 2.17,
which shows that the valve is indeed a feedback element: the water level, y, tracks the
reference level, fill line, .

With simplicity in mind, assume that the valve is linear. In this case, the behavior of
the tank with the ballcock valve is given by the differential equation

K K
p(t —y(t) = —y(t).
¥+ — ¥ty = —30)
This equation is of the form (2.3) and has once again as solution (2.6), that is,

K
y(t) =7 (L — &)+ yoe™, h=-— £z0

Note, however, the remarkable fact that
lim y(t) = j.
{—00

In other words, the steady-state solution is always equal to the target fill line, , if K/4 >
0, no matter what the actual values of K and 4 are! The toilet water tank level, y, tracks
the fill line level, y, exactly without a high-gain feedback controller. As will become
clear in Chapter 4, the reason for this remarkable property is the presence of a pure
integrator in the feedback loop. Of course, the values of K and 4 do not affect the
steady-state solution but do influence the rate at which the system converges to it.
Integral action can be understood with the help of the closed-loop diagram in
Fig. 2.17. First note that for the output of an integrator to converge to a constant

y

e

u Y

) i A R
LK 11—/ ]

il
1

Figure 2.17 Block-diagram for water tank with ballcock valve.
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value it is necessary that its input converge to zero. In Fig. 2.17, it is necessary'
that lim, , . p(¢) = 0. With that in mind, if y(¢) converges to anything other than j,
that is, lim;, o y(¢) = J # y, then lim,, « e(t) = — y # 0. But, if this is the case,
limy 500 (A/K) p(t) = lim,_, o, e(t) = J — y # 0. Consequently y(¢) cannot converge to
a constant other than y. This is true even in the presence of some common nonlinearities
in the loop. The ability to track constant references without high gains is the main rea-
son behind the widespread use of integral control. We will analyze integral controllers
in more detail in many parts of this book.

We conclude this section by revisiting the car example with linear model (2.3), by
noting that when there is no damping, i.e. b = 0, then the car becomes a pure integrator.
Indeed, in this case

lim #(0) = lim (p/D)K

—_— =, lim S(0) = li
—0 1+ (p/b)K b—0

) )
b0 T+ (p/DK

which implies
lim y(t) =7 = im H(0)y = y,
=00 b—0

independently of the value of K. We saw in Section 2.7 that large controller gains lead
not only to small tracking errors but also to effective disturbance rejection. The same is
true for an integrator in the controller, which leads to asymptotic tracking and asymp-
totic disturbance rejection. However, the position of the integrator in the loop matters:
an integrator in the system but not in the controller will lead to zero tracking error but
nonzero disturbance rejection error. For instance, in the example of the car we have seen
that » — 0 implies S(0) — 0 but

1 1
lim D(0) = lim £
b—0

P____ -, lim Ay(r) = D(0),
b0 01+ (p/D)K K A, A1) = D)@

which is in general not zero. Nevertheless, it does gets smaller as the gain, K, gets
large. By contrast, an integrator on the controller will generally lead to S(0) = D(0) =0
independently of the loop gain, K. We will study this issue in more detail in Section 4.5.

2.1  Consider the solution (2.6) to the first-order ordinary differential equation (2.3)
where the constant parameters m, b, and p are from the car velocity dynamic model
developed in Section 2.1. Assign compatible units to the signals and constants in (2.3)
and calculate the corresponding units of the parameter A, from (2.7), and the time-
constant t, from (2.8).

12 This is a necessary only condition, since y(f) = (14)~' is such that lim, () =0 but
lim; s o0 fy Y(7)dT = In(1 + 1) = 0.
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2.2 Use the Taylor series expansion of the function f(x) = tan~!(x) to justify the
approximation

ctan(a'y) & by

when b =a'c.

2.3 Calculate the dynamic response, y(¢), of the open-loop car velocity model (2.19)
when

yo =7, u(t) = G(0)™'7, w(t) = o, t>0,

and G(0) = p/b. Calculate the change in speed Ay(t) = y(¢t) — yp and compare your
answer with (2.22).

The next problems involve the motion of particle systems using Newton's law.
2.4 Show that the first-order ordinary differential equation
mo + bo = mg

is a simplified description of the motion of an object of mass m dropping vertically
under constant gravitational acceleration, g, and linear air resistance, —bo.

2.5 The first-order ordinary differential equation obtained in P2.4 can be seen as a
dynamic system where the output is the vertical velocity, v, and the input is the gravita-
tional force, mg. Calculate the solution to this equation. Consider m = 1 kg, b = 10kg/s,
g = 10m/s?, Sketch or use MATLAB to plot the response, v(t), when 0(0) = 0, n(0) =
1 m/s, or v(0) = —1 m/s.

2,6  Calculate the vertical position, x(¢), corresponding to the velocity, v(t), computed
in P2.5. How does the vertical position, x(¢), relate to the height measured from the
ground, /(t), of a free-falling object? Use the same data as in P2.5 and sketch or use
MATLAB to plot the position x(¢) and the height A(¢), when x(0) = 0, 2(0) = 1, and
0(0) =0,2(0) = 1m/s, or v(0) = —1 nV/s for 1s.

2.7  The first-order nonlinear ordinary differential equation
mb + bv? = mg, v > 0,

is a simplified description of the motion of an object of mass m dropping vertically under
constant gravitational acceleration, g, and quadratic air resistance, bv?. Verify that
1 +aeM _ mg _0(0) - 2bd

1) = s = . et s —
o) 1—aed’ v b . v(0)+ D m

3

is a solution to this differential equation.

2.8 A sky diver weighing 70 kg reaches a constant vertical speed of 200 km/h dur-
ing the firee-fall phase of the dive and a vertical speed of 20 km/h after the parachute
is opened. Approximate each phase of the fall by the ordinary differential equation
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obtained in P2.4 and estimate the resistance coefficients using the given information.
Use g = 10 m/s?. What are the time-constants in each phase? At what time and distance
from the ground should the parachute be opened if the landing speed is to be less than
or equal to 29 km/h? If a dive starts at a height of 4 km with zero vertical velocity at
the moment of the jump and the parachute is opened 60 s into the dive, how long is the
diver airborne?

2.9 Redo P2.8 using the nonlinear model from P2.7.

The next problems involve the planar rotation of a rigid body. Such systems can be
approximately modeled by the first-order ordinary differential equation:

Jo=r,

where  is the body s angular speed, J is the body s moment of inertia about its center of
mass, and T is the sum of all torques about the center of mass of the body. In constrained
rotational systems, e.g. lever, gears, etc., the center of mass can be replaced by the center
of rotation.

210 An (inextensible and massless) belt is used to drive a rotating machine without
slip as shown in Fig. 2.18(a). The simplified motion of the inertia J; is described by

Jroy=1t+ firy = far,

where 7 is the torque applied by the driving motor and f) and f; are tensions on the belt.
The machine is connected to the inertia ./, which represents the sum of the inertias of
all machine parts. The motion of the inertia .J; is described by

Jran = frra— fira.

(a) Rotating machine (b) Elevator

Figure 2.18 Diagrams for P2.10 and P2.18.
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Show that the motion of the entire system can be described by the differential equation
(Jlrg +J2rf) w; = r% T, wy = (r/n)ow.
211  Whyis fj # f; in P2.10? Under what conditions are f; and f; equal?

212 Redo P2.10 in the presence of viscous friction torques, —b,w; and —b,w;, on
each inertia to obtain the differential equation

172 + JrDay + (073 + by oy = 1 t.

2.13 Determine a first-order ordinary differential equation based on P2.10 and P2.12
to describe the rotating machine as a dynamic system where the output is the angular
velocity of the inertia J;, w,, and the input is the motor torque, 7. Calculate the solution
to this equation. Consider r = I N m, r; = 25mm, #, = 500 mm, b; = 0.01 kg m?/s,
by = 0.1kg m?/s, J; = 0.0031 kg m?, J, = 25 kg m?. Sketch or use MATLAB to plot
the response, w,(t), when w,(0) = Orad/s, @,(0) = 3 rad/s, or w,(0) = 6rad/s.

214  Calculate the (open-loop) motor torque, 7, for the rotating machine model in
P2.10 and P2.12 so that the rotational speed of the mass J,, w,, converges to @, =
4rad/s as ¢ gets large. Use the same data as in P2.13 and sketch or use MATLAB to plot
the response, w;(t), when w,(0) = Orad/s, w;(0) = 3 rad/s, or w,(0) = 6rad/s.

215 What happens with the response in P2.14 if the actual damping coefficients b,
and b, are 20% larger than the ones you used to calculate the open-loop torque?

2.16  The feedback controller
(1) = K(@2 — wa(t))

can be used to control the speed of the inertia J, in the rotating machine discussed in
P2.10 and P2.12. Calculate and solve a differential equation that describes the closed-
loop response of the rotating machine. Using data from P2.13, select a controller gain,
K, with which the time-constant of the rotating machine is 3 s. Compare your answer
with the open-loop time-constant. Calculate the closed-loop steady-state error between
the desired rotational speed, &; = 4rad/s, and w, (). Sketch or use MATLAB to plot
the response, ws (1), when w,(0) = Orad/s, w,(0) = 3 rad/s, or w,(0) = 6 rad/s.

2.17  What happens with the response in P2.16 if the actual damping coefficients b,
and b, are 20% larger than the ones you used to calculate the closed-loop gain?

218 A schematic diagram of an elevator is shown in Fig. 2.18(b). Proceed as in P2.10
to show that

(i + L+ 7 (m +m)) @+ (b + by)w = T + gr(m — my),

v] = rw, and vy = —rw, is a simplified description of the motion of the entire elevator
system, where t is the torque applied by the driving motor on the inertia .Ji, and b,
and b, are viscous friction torque coefficients at the inertias J; and J,. If m, is the
load to be lifted and m, is a counterweight, explain why is it advantageous to have the
counterweight match the elevator load as closely as possible.
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219 Determine a first-order ordinary differential equation based on P2.18 to describe
the elevator as a dynamic system where the output is the vertical velocity of the mass
my, v1, and the inputs are the motor torque, 7, and the gravitational torque, gr(m; — my).
Calculate the solution to this equation. Consider g = 10m/s?, T = 0N m, » = 1 m,
my = my = 1000kg, by = by = 120kg m?/s, J, = J, = 20kg m?. Sketch or use MAT-
LAB to plot the response, v, (¢), when v;(0) = 0, v,(0) = 1 m/s, or v;(0) = —1 m/s.

2.20 Repeat P2.19 with m; = 800kg.

2.21  Calculate the (open-loop) motor torque, t, for the elevator model in P2.19 so
that the vertical velocity of the mass my, v1, converges to ©; = 2m/s as ¢ gets large. Use
the same data as in P2.19 and sketch or use MATLAB to plot the response, v (), when
01(0) = 0,v1(0) = 1 m/s, or v,{0) = —1 m/s.

2.22  Let my; = 800kg and use the same motor torque, T, you calculated in P2.21 and
the rest of the data from P2.19 to sketch or use MATLAB to plot the response of the
elevator mass m velocity, ((t), when v1(0) = 0, v,(0) = 1l m/s, or v1(0) = —1m/s.
Did the velocity converge to o; = 2m/s? If not, recalculate a suitable torque. Plot the
response with the modified torque, compare your answer with P2.21, and comment on
the value of torque you obtained.

2.23  The feedback controller:
t(t) = KBy — v1(2))

can be used to control the ascent and descent speed of the mass m; in the elevator
discussed in P2.18 and P2.19. Calculate and solve a differential equation that describes
the closed-loop response of the elevator. Using data from P2.19, select a controller gain,
K, with which the time-constant of the elevator is approximately 5 s. Compare this value
with the open-loop time-constant. Calculate the closed-loop steady-state error between
the desired vertical velocity, oy = 2m/s, and v;(¢). Sketch or use MATLAB to plot
the response of the elevator mass m; velocity, v1(¢), when v,(0) = 0, ,(0) = 1m/s,
or v1(0) = —1 m/s. Compare the response with the open-loop control response from
P2.22.

224 Repeat P2.23, this time setting the closed-loop time-constant to be about 0.5s.
What is the effect on the response? Do you see any problems with this solution?

2.25 Repeat P2.23 with my = 800 kg. Treat the gravitational torque, gr(m — mz), as
a disturbance.

2.26  Repeat P2.25 this time setting the closed-loop time-constant to be about 0.5s.
What is the effect on the response? Do you see any problems with this solution?

Figures 2.19 through 2.21 show diagrams of mass—spring—damper systems. Assume that
there is no friction between the wheels and the floor, and that all springs and dampers
are linear: elongating a linear spring with rest length £y by AL produces an opposing
force kAL (Hooke’s Law), where k > 0 is the spring stiffness, changing the length of
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a linear damper at a rate { produces an opposing force be, where b is the damper’s
damping coefficient.

2.27 Choose xy wisely to show that the ordinary differential equation
mi+bx+kx=f

is a simplified description of the motion of the mass—spring—damper system in
Fig. 2.19(a), where f is a force applied on mass m. Why does the equation not depend
on the spring rest length £4?

2.28 Show that the ordinary differential equation
mx + bx + kx = mgsinf

is a simplified description of the motion of the mass—spring—damper system in
Fig. 2.19(b), where g is the gravitational acceleration and xy is equal to the spring rest
length £.

X0 X
s ) f
p-—
. ]]h
: r,‘:l S O N O .
/////////////’/"//’////’/’/’//'
(2) (b)

Figure 2.19 Diagrams for P2.27 and P2.28.

2.29 Rewrite the ordinary differential equation obtained in P2.28 as
my + by + ky =0, y=1x— k 'mgsiné.
Relate this result to a different choice of xy and comment on your findings.
2.30  Show that the ordinary differential equation
mi+ b+ (ki +k)x=0

is a simplified description of the motion of the mass—spring—damper system in
Fig. 2.20(a). What does x represent? Why do the equations not depend either on the
rest lengths £, |, €9, or on the dimensions ¢ and w? What is the difference between the
casesd > w+ £y +Lorandd < w + Lo + £o2?

2.31  Can you replace the two springs in P2.30 by a single spring and still obtain the
same ordinary differential equation?

Problems 4

2.32  Show that the ordinary differential equations
miX) + (by + ba)xr 4 (ki + ko)xy — bydy — kpxo = 0,
Xy + by(y — X1) + k(2 —x1) = /2

constitute a simplified description of the motion of the mass—spring—damper system in
Fig. 2.20(b), where x; = x, = 0 when the length of both springs is equal to their rest
lengths and f; is a force applied on mass m;.

d
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r rd 1‘/. Filr /f///l/ s f_ i e x’ l'(' .-’///
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Figure 2.20 Diagrams for P2.30 and P2.32.

2.33  Show that the ordinary differential equations
mx) + b, —x) + k(x; —x2) =0,
myXy + by — X))+ k(e —x1) =0,
constitute a simplified description of the motion of the mass—spring—damper system in

Fig. 2.21 where x; = x, = 0 when the length of the spring is its rest length. Show that
it is possible to decouple the equations if you write them in the coordinates

myx1 -+ myx;
Vw=—"—T"""", V2 =X —X2.
my + my

Use what you know from physics to explain why.
X1 X2
'—n- I ]—-F
i _|:|L ny

(@I ¢ J__Q)
F777777 7777777777727 777

Figure 2.21 Diagram for P2.33.

The next problems have simple electric circuits. Electric circuits can be accurately mod-
eled using ordinary differential equations.

2.34  An electric circuit in which a capacitor is in series with a resistor is shown in
Fig. 2.22(a). In an electric circuit, the sum of the voltages around a loop must equal




42

Dynamic Systems

R . R L
0—‘—/\/\/\/— .-i-/\/\/\,—mHI\—
* Y S i o S
v Cc ve v C =—=Wc
(@ (b)

Figure 2.22 Diagrams for P2.34 and P2.36.

ZET0:
—v4+og+vc=0

This is Kirchhoff’s voltage law. The voltage and the current on the capacitor and resistor
satisfy

ic = Cuog, or = Rig,
where C is the capacitor’s capacitance and R is the resistor’s resistance. In this circuit
ip=ic =1,
because all elements are in series. This is Kirchhoft’s current law. Show that
RCoc+vc=0
is the equation governing this RC-circuit.

2.35 Consider the RC-circuit from P2.34 where R = 1 MQ and C = 10 uF. Assuming
zero initial conditions, sketch the capacitor’s voltage, vc(¢), when a constant voltage
o(t) = 10V, ¢t > 0, is applied to the circuit. Sketch also the circuit current i(z).

2.36  An electric circuit in which an inductor, a capacitor, and a resistor are in series
is shown in Fig. 2.22(b). As in P2.34, the sum of the voltages around a loop must equal
Zero:

—v+ovg+0or +oc=0.

This is Kirchhoff’s voltage law. The voltages and the currents on the capacitor and
resistor are as in P2.34 and the voltage on the inductor is

vp = Li,
where L is the inductor’s inductance. Because the elements are in series
ip=lic =i =1.
This is Kirchhoff’s current law. Show that
LCi.+RCoc+ovc=0

is the equation governing the RLC-circuit.
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2.37  Consider the differential equation for the RLC-circuit from P2.36. Compare this
equation with the equations of the mass—spring—damper system from P2.27 and explain
how one could select values of the resistance, R, capacitance, C, inductance, L, and input
voltage, v, to simulate the movement of the mass—spring—damper system in P2.27. The
resulting device is an analog computer.

2.38 An approximate model for the electric circuit in Fig. 2.23, where the triangu-
lar element is an amplifier with a very large gain (operational amplifier, OpAmp), is
obtained from

Ryigy =0 —v_, ic, =C(® —0-), ic, = Ga(b- — b)),
and
v_~py =0, ic, =ic, +ig,.
Show that
R Cado+RiCi19+0=0.

Solve the auxiliary differential equation:

1
R G

z 4+ v=0

and show that
vo(t) = Ry C1 2(¢) + z(t)

solves the original differential equation.

G

—|

R’y

v(t) C vo(®)

e — — ° -

Figure 2.23 Diagram for P2.38.

2.39 Consider the OpAmp-circuit from P2.38 where R; = 1MQ and C; =C, =
10 uF. Assuming zero initial conditions, sketch the output voltage, v,(¢), when a con-
stant voltage v(t) = 10V, ¢ > 0, is applied to the circuit.

240 1InP2.38, set C; = 0 and solve for v,(¢) in terms of v(¢). Name one application
for this circuit.
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241  The mechanical motion of the rotor of a DC motor shown schematically in
Fig. 2.24(a) can be described by the differential equation

Jo+bw=r,

where w is the rotor angular speed, J is the rotor moment of inertia, b is the coefficient
of viscous friction. The rotor torque, 7, is given by

T =K1,

where 7, is the armature current and K; is the motor torque constant. Neglecting the
effects of the armature inductance (L, =~ 0), the current is determined by the circuit in
Fig. 2.24(b):

vy = Ryl + Ke o,

where v, is the armature voltage, R, is the armature resistance, and K is the back-EMF
constant. Combine these equations to show that

K K, K
Jd)—i—(b—i—;—t)a):—tua.

a

(a) Mechanical (b) Electric

Figure 2.24 Diagrams for P2.41.

242 Show that K, = K..  Hint: Equate the mechanical power with the electric
power.

243  The first-order ordinary differential equation obtained in P2.41 can be seen as a
dynamic system where the output is the angular velocity, w, and the input is the armature
voltage, v,. Calculate the solution to this equation when v, is constant. Estimate the
parameters of the first-order differential equation describing a DC motor that achieves
a steady-state angular velocity of 5000 RPM when v, = 12V and has a time-constant
of 0.1 s. Can you also estimate the “physical” parameters J, b, K, K, and R, with this
information?

2.44  Can you estimate the parameters J, K;, K., and b of the DC motor in P2.43 if
you know R, = 0.2 €2 and the stall torque Tt = 1.2Nm atv, = 12V?  Hint: The stall
torque is attained when the motor is held in place.
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2.45 DC motors with high-ratio gear boxes can be damaged if held in place. Can you
estimate the parameters J, K;, K., and b of the DC motor in P2.43 if you know that
R, = 0.2 and that after you attach an additional inertia J' = 0.001 kg m? the motor
time-constant becomes 0.54 s?

246 Redo P2.41 using the equations in P2.36 to show that
JLyo+ (JRy + bLy)w + (KK + bRy 0 = K v,

when L, > 0 is not negligible. Show that this equation reduces to the one in P2.41 if
L, =0.

2.47 The feedback controller
0,(1) = K(® — w(1))

can be used to regulate the angular speed of the DC motor, w(¢), for which a model
was developed in P2.41. Calculate and solve a differential equation that describes the
closed-loop response of the DC motor. Using data from P2.43, select a controller gain,
K, with which the closed-loop steady-state error between the desired angular speed, @,
and the actual angular speed, w(?), is less than 10%. Calculate the resulting closed-loop
time-constant and sketch or use MATLARB to plot the output w(¢) and the voltage v,(¢)
generated in response to a reference @ = 4000 RPM assuming zero initial conditions.
What is the maximum value of v,(r)?

2.48 Redo P2.47 but this time design K such that v,(0) is always smaller than 12V
when @ = 4000 RPM.

The next problems have simple examples of heat and fluid flow using ordinary differen-
tial equations. Detailed modeling of such phenomena often requires partial differential
equations.

249 The temperature, T (in K or in °C), of a substance flowing in and out of a
container kept at the ambient temperature, 7, with an inflow temperature, 7;, and a heat
source, ¢ (in W), can be approximated by the differential equation

) 1
ch:q—i—wc(Tj—T)—i—E(To—T),

ambient at T, wat T}
—

watT at T
P —
| [

Figure 2.25 Diagram for P2.49.
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where m and ¢ are the substance’s mass and specific heat, and R is the overall system’s
thermal resistance. The input and output flow mass rates are assumed to be equal to w.
This differential equation model can be seen as a dynamic system where the output is
the substance’s temperature, 7, and the inputs are the heat source, g, the flow rate, w,
and the temperatures 7, and 7;. Calculate the solution to this equation when g, w, T,
and 7; are constants.

250 Assume that water’s density and specific heat are 997.1kg/m® and ¢ =
4186 J/kg K. A 50 gal (= 0.19 m?) water heater is turned off full with water at 140 °F
(~ 60 °C). Use the differential equation in P2.49 to estimate the heater’s thermal resis-
tance, R, knowing that after 7 days left at a constant ambient temperature, 77 °F
(~ 25 °C), without turning it on, ¢ = 0, or cycling any water, w = 0, the temperature of
the water was about 80 °F (= 27°C).

2.51 For the same conditions as in P2.50, calculate how much time it takes
for the water temperature to reach 80°F (= 27°C) with a constant in/out flow of
20 gal/h (= 21 x 10~%m>/s) at ambient temperature. Compare your answer with the
case when no water flows through the water heater.

2.52 Consider a water heater as in P2.50 rated at 40,000 BTU/h (= 12 kW). Calculate
the time it takes to heat up a heater initially full with water at ambient temperature to
140 °F (= 60 °C) without any in/out flow of water, w = 0.

2.53 Repeat P2.52 for a constant in/out flow of 20 gal/h at ambient temperature. Com-
pare the solutions.

2.54 Most residential water heaters have a simple on/off -type controller: the water
heater is turned on at full power when the water temperature, 7', falls below a set value,
T, and is turned off when it reaches a second set point, T. For a 50 gal (= 0.19 m?)
heater as in P2.50 rated at 40,000 BTU/h (= 12kW) and with thermal resistance
R =0.27K/W, sketch or use MATLAB to plot the temperature of the water during
24 hours for a heater with an on/off controller set with T = 122°F (=~ 50°C) and
T = 140°F (= 60 °C), without any in/out flow of water, w = 0. Assume that the heater
is initially full with water a tad below 7. Compute the average water temperature and
power consumption for a complete on/off cycle.

2.55 Repeat P2.54 for a constant in/out flow of 20 gal/h at ambient temperature. Com-
pare the solutions.

256 Repeat P2.54 with T = 129.2°F (~ 54°C) and T = 132.8°F (~ 56 °C). What
is the impact of the choice of T and T on the performance of the controller?

3.1

Transfer-Function Models

The dynamic models developed in Chapter 2 relate input and output signals evolving
in the time domain through differential equations. In this chapter we will introduce
transform methods that can relate input and output signals in the frequency domain,
establishing a correspondence between a time-invariant linear system model and its
frequency-domain transfer-function. A linear system model may not be time-invariant
but, for linear time-invariant systems, the frequency domain provides an alternative van-
tage point from which to perform calculations and interpret the behavior of the system
and the associated signals. This perspective will be essential to many of the control
design methods to be introduced later in this book, especially those of Chapter 7.

Frequency-domain models can be obtained experimentally or derived formally from
differential equations using the Laplace or Fourier transforms. In controls we work
mostly with the Laplace transform. This chapter starts with a brief but not completely
elementary review of the Laplace transform before returning to signals, systems, and
controls. From this chapter on, transfer-functions become functions of complex vari-
ables and we use the symbol j to represents the imaginary unit, that is j = /—1. We
use f(z) and f7(s) to distinguish between differentiation with respect to the real variable
t € R or differentiation with respect to the complex variable s € C.

The Laplace Transform

The Laplace transform is essentially a sophisticated change-of-variables that associates
a function! f(¢) of the real-valued time variable ¢ € R, ¢ > 0, with a function F(s)
of a complex-valued frequency variable s € C. Formally, the Laplace transform of the
function f(¢) is the result of the integral:?

F(s) = LU0} = fo " fwer. 3.1

This integral may not converge for every function f(¢) or every s, and when it con-
verges it may not have a closed-form solution. However, for a large number of common

1 A formal setup that is comfortable is that of piecewise continuous or piecewise smooth (continuous and
infinitely differentiable) functions with only a discrete set of discontinuities, such as the one adopted
in [LeP10].

2 The notation 0~ means the one-side limit lime4g €, which is used to accommodate possible discontinuities
of f(¢) at the origin.




