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Image analysis is the collection of processes in which a captured image that is
8 prepared by image processing is analyzed in order to ex tract information about the
image and to identify objects or facts about the object or its environment.

8.3 TWO- AND THREE-DIMENSIONAL IMAGES

Although all real scenes are three dimensional, images can either be two or three

-
Image Processing
’ = _t h dimensional. Two-dimensional images are used when the depth of the scene or its
W' features need not be determined. As an example, consider defining the surrounding
and Analysis

contour or the silhouette of an object. In that case, it will not be necessary to deter-
mine the depth of any point on the object. Another example is the use of a vision
- t m s system for inspection of an integrated circuit board. Here, too, there is no need to
V’ s ' o n sys e know the depth relationship between different parts, and since all parts are fixed to
a flat plane, no information about the surface is necessary. Thus, a two-dimensional
image analysis and inspection will suffice.

Three-dimensional image processing deals with operations that require motion
detection, depth measurement, remote sensing, relative positioning, and navigation.
CAD/CAM-related operations also require three-dimensional image processing, as
do many inspection and object recognition tasks. Other techniques, such as com-

puted tomography (CT) scan, are also three dimensional. In computed tomography,
8.1 INTRODUCTION - N e el either X-rays or ultrasonics pulses are used to get images of one slice of the object at
i large body of work associated with vision systems, 1ma%l gftware a time, and later, all of the images are put together to create a three-dimensional

There is a very and s -

tion that addresses many diﬁerqnt hard“;a;;je{;s il
related topics. This information has been accumulated since the ,

: itis g . . .
. o ect from different sectors of the industry and Beonomy;: to-one mappings of scenes to images. To extract information from these scenes,
added interest in the subjec blished every year indicates . X 2 2 . ificial intell hni
i idly. The enormous number of papers pu b o [ilapa e A image-processing techniques are combined with artificial inte ligenca? techniques.
o rap:lsty Be many useful techniques constantly appearing 1“; el Ui table. for When the system is working in environments with known characteristics (e.g., con-
E(ltlat l:r?:trﬂne it also'means that a lot of these techrgqc']-l_es mayorfaeu?zn damental trolled lighting), it functions with high accuracy and speed. On the contrary, when
& : : ill study and discuss § ; s the environment is unknown or noisy and uncontrolled (e.g., in underwater opera-
ications. In this chapter, we Wi s -outines ? i 5 X
?th;;igggilﬁzlt'li?l?:gé Pl‘OceSSi“gpand image analysis, with affewtzxz?apl:f;r?l?lgg;tr- tions), the systems are not very accurate and require additional processing of the
eC rofess : e, : . . S o - -
developed for certain purposes. TlLe fluiii;e;‘nd;tﬁ ggécgion Tt s pecaminisnded that ;11122;1:&11:})};3:&;12;];;}1; :;;c;;;;tcwzﬂliow speeds. In addition, a three-dimensional co
i ision routines, but o ' g
e pos’c?lbledvéilggntinue studying the subject through other references;w -
W 5 o s
the mrtl?}ll'cstcex:efew sections present some fundamental definitions of ter
en

basic concepts that we will use throughout the chapter. 8.4 WHAT IS AN IMAGE?

image of the internal characteristics of the object.

ing, and pattern recogn All three-dimensional vision systems share the problem of coping with many-

An image is a representation of a real scene, either in black and white or in color,

8.2 IMAGE PROCESSING VERSUS IMAGE ANALYSIS and either in print form or in a digital form. Printed images may have been repro-

‘ ti f an image for later analysis and use. duced either by multiple colors and gray scales (as in color print or halftone print)
ion o

: ara : & : ; : : i
Image processing relates to the prep r technique (e.g., by a scanner) are not nec or by a single ink source. For example, in order to reproduce a photograph with

Images captured by a camera or a simila analysis routines. Some may need im- real halftones, one has to use multiple gray inks, which, when combined, produce an
essarily in a form that can be used by lmaged to be simplified, and still others may image that is somewhat realistic. However, in most print applications, only one
provement to reduce noise, others may neiﬁi%l d, etc. Image processing is the 01_01' color of ink is available (such as black ink on white paper in a newspaper or copier).
need to be enhanced, altered, _segmeritedr terie. sirr;plify enhance, or otherwise In that case, all gray levels must be produced by changing the ratio of black versus
lection of routines and techniques that improve, ¥ Wwhite areas (the size of the black dot). Imagine that a picture to be printed is divided

alter an image.

248




250

Chapter 8 Image Processing and Analysis with Vision Systems

b
) Figure 8.1 Examples of gray i
tensity creation in printed images,
In print, only one color of ink jg
used, while the ratio of the black
to the white area of the pixel jg
changed to create different gray
levels.

into small sections. In each section, if the ink portion Qf the section is smaller com.
pared to the white, blank area, the section will look lighter gray. (See e.xam.p]es in
Figure 8.1.) If the black ink area is larger (_:ompared to the white area, it will look
darker gray. By changing the size of the printed dot, many gray levels may be pro.
duced. and collectively, a gray-scale picture may bc-:. printed. N .

Unlike printed images, television and digital images are divided into small sec-
tions called picture cells, or pixels (in three-dimensional images, tl.ley are calleq vol-
ume cells or voxels), where the size of all pixe}s are thelsame, while th_e lllt_er}suy of
light in each pixel is varied to create the gray images. Since we d_eal w1_tl} digital im-
ages, we will always refer to pixels of the same size with varying intensities.

8.5 ACQUISITION OF IMAGES

There are two types of vision cameras: analog and digital. Analog cameras are not
very common any more, but are still around; they used to be standzu:d at Lf:lewsum
stations. Digital cameras are much more common and are mostly similar to each
other. A video camera is a digital camera with an aqded videotape recording sec-
tion. Otherwise, the mechanism of image acquisition_ is the same as in olh_el: cameras
that do not record an image. Whether the captured image is analog or fiagll:al, in vi-
sion systems the image is eventually digilized.h!n a digital form, all data are binary
: ored in a computer file or memory chip.

e al"l?hset following shop;t discussion is about analog and digital cameras and how
their images are captured. Although analog cameras are not commfm an_ymor;,
since the television sets available today are still mostly analo.g,‘ undmstar‘:dmﬂ%‘ hl ?
way the camera works will help in understanding how the television set works. Thus,
both analog and digital cameras ar¢ examined here.

8.5.1 Vidicon Camera

A vidicon camera is an analog camera that transforms an image i‘nto an analog elefi-
trical signal. The signal, a variable voltage (or c!.lrreni) versus time, can be Ssli?rizlé
digitized, broadcast, or reconstructed into an image. Figure 8:2 sl‘lgws zii o
schematic of a vidicon camera. With the use of a lens, the scene is projected 0 -
screen made up of two layers: a transparent metallic film andla pbotocgndugllyeht o
saic that is sensitive to light. The mosaic reacts to tl_w varying 1pte1151ty of !ll%ldﬁ g
varying its resistance. As a result, as the image'is pro;ected onto it, the ma;gmon il
the resistance at each location varies with the intensity of the light. An e]n‘.ctr‘ "
generates and sends a continuous cathode beam (a stream of electrons with a neg
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Figure 8.2 Schematic of a vidicon camera.

tive charge) through two pairs of capacitors (deflectors) that are perpendicular to
each other. Depending on the charge on each pair of capacitors, the electron beam
is deflected up or down, and left or right, and is projected onto the photoconductive
mosaic. At each instant, as the beam of electrons hits the mosaic, the charge is con-
ducted to the metallic film and can be measured at the output port. The voltage
measured at the output is V = IR, where I is the current (of the beam of électrons),
and R is the resistance of the mosaic at the point of interest.

Now suppose that we routinely change the charges in the two capacitors and
thus deflect the beam both sideways and up and down, so as to cause it to scan the
mosaic (a process called a raster scan). As the beam scans the image, at each instant
the output is proportional to the resistance of the mosaic or proportional to the in-
tensity of the light on the mosaic. By reading the output voltage continuously, an
analog representation of the image can be obtained.

To create moving images in televisions, the image is scanned and reconstruct-
ed 30 times a second. Since human eyes possess a temporary hysteresis effect of
about 1/10 second, images changing at 30 times a second are perceived as continu-
ous and thus moving. The image is divided into two 240-line subimages, interlaced
onto each other. Thus, a television image is composed of 480 image lines, chang-
ing 30 times a second. In order to return the beam to the top of the mosiac, another
45 lines are used, creating a total of 525 lines. In most other countries, 625 lines are
the standard. Figure 8.3 depicts a raster scan in a vidicon camera.

If the signal is to be broadcast, it is usually frequency modulated (FM); that is,
the frequency of the carrier signal is a function of the amplitude of the signal. The
signal is broadcast and is received by a receiver, where it is demodulated back to
the original signal, creating a variable voltage with respect to time. To re-create the
image — for example, in a television set — this voltage must be converted back to an
image. To do this, the voltage is fed into a cathode-ray tube (CRT) with an electron
gun and similar deflecting capacitors, as in a vidicon camera. The intensity of the
electron beam in the television is now proportional to the voltage of the signal, and
is scanned similar to the way a camera does. In the television set, however, the beam
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Figure 8.3 A raster scan depiction of a \ Light
vidicon camera.

| | . . Figure 8.4 Image acquisition with a digit i
is projected onto a phosphorous-based material on the screen, which glows propor- each pixel location, 0;1 a charge propaor;ﬂ:ﬁf&?ﬁ?ﬁgﬁ :a‘;islxzh;ig:lvéll“ct’g?;z;eaits

tionally to the intensity of the beam, thus re-creating the image. then read by moving the charges to optically isolated shift registers and readin
For color images, the projected image is decomposed into the three colors of them at a known rate. g
red, green, and blue (RGB). The exact same process is repeated for the three im-
ages, and three simultancous signals are produced and broadcast. In the televi-
sion set, three electron guns regenerate three simultaneous images in RGB on the
screen, except that the screen has three set of small dots (pixels) that react by glow- ’
ing in RGB colors and are repeated over the entire screen. All color images in any
system are divided into RGB images and are dealt with as three separate images. Photosite — - |
If the signal is not to be broadcast, it either is recorded for later use, is digi- i RN -
tized (as discussed later), or is fed into a monitor for direct viewing. )

-~ Shift register

.
o
.
-
g
—

8.5.2 Digital Camera

Sampled voltage

A digital camera is based on solid-state technology. As with other cameras, a set of i ™ Tt . _
lenses is used to project the area of interest onto the image area of the camera. The ' ’ ‘ ‘ |
main part of the camera is a solid-state silicon wafer image area that has hundreds of I | | I :
thousands of extremely small photosensitive areas called photosites printed on it. . i |
Each small area of the wafer is a pixel. As the image is projected onto the image
area, at each pixel location of the wafer a charge is developed that is proportional to Output
the intensity of light at that location. (Thus, a digital camera is also called a charge
coupled device, or CCD camera, and a charge integrated device, or CID camera). @
The collection of charges, if read sequentially, would be a representation of the
image pixels. (See Figure 8.4).

The wafer may have as many as 520,000 pixels in an area with dimensions of
a fraction of an inch (¥is X Y4). Obviously, it is impossible to have direct wire con-
nections to all of these pixels to measure the charge in each one. To read such an
enormous number of pixels, 30 times a second the charges are moved to optically
isolated shift registers next to each photosite, are moved down to an output line,
and then are read [1,2]. The result is that every thirtieth of a second the charges
in all pixel locations are read sequentially and stored or recorded. The output isa
discrete representation of the image — a voltage sampled in time — as shown in Fig-
ure 8.5(a). Figure 8.5(b) is the CCD element of a VHS camera. ®)

Similar to CCD cameras for visible lights, long-wavelength infrared cameras TR 6T .
yield a televisionlike image of the infrared emissions of a scene [3]. cargnuerrea.' (2) Image data collection model. (b) The CCD element of a VHS
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8.6 DIGITAL IMAGES 8.8 FOURIER TRANSFORM AND FREQUENCY CONTENT OF A SIGNAL

The sampled voltages from the aforementioned process are first digitized through
an analog-to-digital converter (ADC) and then either stored in the computer stor-
age unit in an image format such as TIFF, JPG, Bitmap, etc., or displayed on a mon-
itor. Since it is digitized, the stored information is a collection of 0s and 1% that
represent the intensity of light at each pixel; a digitized image is nothing more than
a computer file that contains the collection of these 0’s and 1's, sequentially stored to
represent the intensity of light at each pixel. The files can be accessed and read by a
program, can be duplicated and manipulated, or can be rewritten in a different
form. Vision routines generally access this information, perform some function on
the data, and either display the result or store the manipulated result in a new file.

An image that has different gray levels at each pixel location is called a gray
image. The gray values are digitized by a digitizer, yielding strings of 0’s and 1% that
are subsequently displayed or stored. A color image is obtained by superimposing
three images of red, green, and blue hues, each with a varying intensity and each
equivalent to a gray image (but in a colored state). Thus, when the image is digi-
tized, it will similarly have strings of 0s and 1’ for each hue. A binary image is an
image such that each pixel is either fully light or fully dark —a 0 or a 1. To achieve a
binary image, in most cases a gray image is converted by using the histogram of the
image and a cut-off value called a threshold. A histogram determines the distribu-
tion of the different gray levels. One can pick a value that best determines a cutoff
level with least distortion and use that value as a threshold to assign 0’s (or “off”) to
all pixels whose gray levels are below the threshold value and to assign 1’ (or “on”)
to all pixels whose gray values are above the threshold. Changing the threshold will
change the binary image. The advantage of a binary image is that it requires far less
memory and can be processed much faster than gray or colored images.

8.7 FREQUENCY DOMAIN VS. SPATIAL DOMAIN

Many processes that are used in image processing and analysis are based on the fre-
quency domain or the spatial domain. In frequency-domain processing, the fre-
quency spectrum of the image is used to alter, analyze, or process the image. In this
case, the individual pixels and their contents are not used. Instead, a frequency rep-
resentation of the whole image is used for the process. In spatial-domain processing,
the process is applied to the individual pixels of the image. As a result, each pixel is
affected directly by the process. However, the two techniques are equally important
and powerful and are used for different purposes. Note that although spatial- and
frequency-domain techniques are used differently, they are related. For example,
suppose that a spatial filter is used to reduce noise in an image. As a result, noise
level in the image will be reduced, but at the same time, the frequency spectrum of
the image will also be affected, due to the reduction in noise.

The next several sections discuss some fundamental issues about frequency
and spatial domains. The discussion, although general, will help us throughout the
entire chapter.

As you may remember from your mathematics or other courses, any periodic signal
may be decomposed into a number of sines and cosines of different amplitudes and
frequencies as follows:

o

b, sin nwt. (8.1)

n=1

a [ee]
ft) = 70 + Y a,cosnwt +
n=1

If you add these sines and cosines together again, you will have reconstructed the
original signal. Equation (8.1) is called a Fourier series, and the collection of differ-
ent frequencies present in the equation is called the frequency spectrum or frequen-
cy content of the signal. Of course, although the signal is in the amplitude-time
domain, the frequency spectrum is in the amplitude—frequency domain. To under-
stand this concept better, let’s look at an example.

Consider a signal in the form of a simple sine function like f(r) = sin (¢). Since
this signal consists of only one frequency with a constant amplitude, if we were to
plot the signal in the frequency domain, it would be represented by a single line at
the given frequency, as shown in Figure 8.6. Obviously, if we plot the function repre-
sented by the arrow in Figure 8.6(b) with the given frequency and amplitude, we will
have reconstructed the same sine function. The plots in Figure 8.7 are similar and
represent f(t) = 2,_;3 ;5(1/n) sin(nt). The frequencies are also plotted in the fre-
quency-amplitude domain. Clearly, when the number of frequencies contained in
f(?) increases, the summation becomes closer to a square function.

Theoretically, to reconstruct a square wave from sine functions, an infinite
number of sines must be added together. Since a square wave function represents
a sharp change, this means that rapid changes (such as an impulse, a pulse, a square
wave, or anything else similar to them or modeled by them) have a large number
of frequencies. The sharper the change, the higher is the number of frequencies
needed to reproduce it. Thus, any video (or other) signal that contains sharp
changes (such as noise, high contrasts, or an impulse or step function) or that has

f(#)=sin (5

\/ Time 1 )

(a) ©®)

Figure 8.6 Time-domain and frequency-domain plots of a simple sine function.
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} | 8.9 FREQUENCY CONTENT OF AN IMAGE: NOISE, EDGES

Consider sequentially plotting the gray values of the pixels of an image (on the y-
axis) against time or pixel location (on the x-axis) as the image is scanned. (See Sec-
tion 8.5.) The result will be a discrete time plot of varying amplitudes showing the
t intensity of light at each pixel, as indicated in Figure 8.8. Let’s say that we are on the
. - ninth row and are looking at pixels 129-144. The intensity of pixel 136 is very dif-
\/\/ Time r 3 w ferent from the intensities of the pixels around it and may be considered to be noise.

(Generally, noise is information that does not belong to the surrounding environ-
ment.) The intensities of pixels 134 and 141 are also different from the neighboring
A A pixels and may indicate a transition between the object and the background; thus,
these pixels can be construed as representing the edges of the object.

Although we are discussing a discrete (digitized) signal, it may be transformed
into a large number of sines and cosines with different amplitudes and frequen-
cies that, if added together, will reconstruct the signal. As discussed earlier, slowly

changing signals (such as small changes between succeeding pixel gray values) will

t A — require few sines and cosines in order to be reconstructed, and thus have low fre-

\/V\/ Time 13 5 ® quency content. On the other hand, quickly varying signals (such as large dif- |

ferences between pixel gray levels) will require many more frequencies to be |

reconstructed and thus have high frequency content. Both noises and edges are in-

stances in which one pixel value is very different from the neighboring ones. Thus, I

noises and edges create the larger frequencies of a typical frequency spectrum,

whereas slowly varying gray level sets of pixels, representing the object, contribute
to the lower frequencies of the spectrum.

However, if a high-frequency signal is passed through a low-pass filter —a
1 filter that allows lower frequencies to go through without much attenuation in am-

Intensity

- | A A . plitude, but that severely attenuates the amplitudes of the higher frequencies in the
g U L J

Figure 8.7 Sine functions in the time and frequency domain for a successive set of 17 lim] . 1

frequencies. As the number of frequencies increases, the resulting signal becomes

closer to a square function. ] _ Possible noise
100 i

Row of ‘

£(b) = sin(®) + (1/3)sin(31)

Amplitude
Amplitude

£ (1) = sin(?) + (1/3)sin(3t) + (1/5)sin(51)

Amplitude

Amplitude

£ (1) = sin(?) + (1/3)sin(3¢) + ...
+ (1/15)sin(15¢)

Amplitude

Amplitude

N -

- interest . Possible edge

detailed information (high-resolution signals with fast, varying changes) will have a L - J/
larger number of frequencies in its frequency spectrum. = :
A similar analysis can be applied to nonrepeating signals as well. (The equa- T EEEEEEEmE | | | |
ALl 1]

50 |-

tion used is a Fourier transform or, sometimes, a fast Fourier Transform, or FFT) T I

Although we will not discuss the details of the Fourier transform in this book, suf- =l i | i =| 1 T 10 |
fice it to say that an approximate frequency spectrum of any signal can be found. | 129 144

Although, theoretically, there will be infinite frequencies in the spectrum, gener- Pixel #

ally, some of the major frequencies within the spectrum will have larger ‘.':lmplll.u(lCS. Figure 8.8 Noise and edge information in an intensity diagram of an image. The pixels with

These major frequencies, or harmonics, are used in identifying and labeling a signal, intensities that are much different from the intensities of neighboring pixels can be consid-

including recognizing voices, shapes, objects, etc. ered to be edges or noise.
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signal — the filter will reduce the influence of all high frequenpies, includu_lg th.e
noises and edges. This means that, although a low-pass filter will reduce noises, it
will also reduce the clarity of an image by attenuating the c?dg:es, thus softening the
image throughout. A high-pass filter, on the other hand, will increase the apparent
effect of higher frequencies by severely attenuating the low-frequ.ency amph.tudqs_
In such cases, noises and edges will be left alone, but slowly changing areas will dis-
from the image.

appea{“o see how thegFourier transform can be applied in this case, let.’s look at tl}e
data of Figure 8.8 once again. The grayness level of the pixels of row 9 is repeated in
Figure 8.9(a). A simple first-approximation Fourier ‘Fransform of the gray values [4]
was performed for the first four harmonic frequencies, and then the signal was re-
constructed, as shown in Figure 8.9(b). Comparing the two grap.hs reveals that a dig-
ital, discrete signal can be reconstructed, even if its accuracy 1s dependent on the
number of sines and cosines, as well as the method of integration, etc.

100 |-

U,

129 144
Pixel #
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Intensity
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)

Figure 8.9 (a) Signal. (b) Discrete signal reconstructed from the Fourier trans-
form of the signal in (a), using only four of the first frequencies in the spectrum.
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8.10 SPATIAL-DOMAIN OPERATIONS: CONVOLUTION MASK

Spatial-domain processes access and operate on the information contained in an in-
dividual pixel. As a result, the image is directly affected by the operation. Most pro-
cesses used in vision systems are in the spatial domain. One of the most popular and
most common techniques in the spatial domain is the convolution mask, which can
be adapted to many different tasks, from filtering to edge finding, to photography,
and many more. We next examine the basic principles behind convolution masks,
without referring to any particular type of mask. Later, we will adapt the convolu-
tion mask idea to different purposes.

Imagine that an image is composed of pixels, each with a particular gray level
or color information, that collectively constitute the image. (Suppose that the gray
level is not digitized into 0% and 1%, but the analog value is indicated.) As an ex-
ample, let’s say that the image in Figure 8.10 is part of a larger image with pixel val-
ues shown symbolically as A, B, C, . ... Let’s also assume that there is a 3 X 3 mask
that has the values indicated by my, . . ., m in its cells.

Applying the mask onto the image involves first superimposing the mask on
the upper left corner of the image and taking the summation of the product of the
value of each pixel and the corresponding mask value and then dividing the summa-
tion by a normalizing value. This yields

(A><m1+B><m2+C><m3+E><m4+F><m5+G><m6+1><m7+JXm8+K><m9)

) ,
(8.2)

where
S=|m+my+my+ ...+ my (8.3)

is the normalizing value. However, if the summation is zero, a “1” is used.
The result X of this operation will be substituted for the value of the pixel in
the center of the block that was superimposed. In this case, X will replace the value

A | B cC | D my | m, | my
E|F| G| H ny | ms | mg Figure 8.10 A convolution mask
—— —t—— superimposed on an image can change
I J | K| L my | mg | my the image pixel by pixel. Each step con-
sists of superimposing the cells in the
M| N|O|P mask onto the corresponding pixels,

multiplying the values in the mask’s cells
by the pixel values, adding the numbers,

and normalizing the result, which is sub-
stituted for the pixel in the center of the

o area of interest. The mask is moved
over pixel by pixel, and the operation is

T repeated until the image is completely
processed.
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of F (X = Fe). Usually, the substitution takes place in a new file in order to not
alter the original file. The mask is then moved one pixel to the right, and the same 50 | 6x0 | 2x1 | 8
operation is repeated for a new value of X, which will replace G in a new file as
follows: 3x1 | 3x1_| 5x1| 6 e 2
2,2 —
Jro— _(B><m1+C><m2+D><mi-i-FXmQ_G><_m5+H><m6+J><m7+K><n13+LXmL)) T —] lﬁl 1
i B S ——— axt | 3x0 | 20 | 6 =
1 0|0
Next, the mask is moved over one more pixel, and the operation is repeated until all 8 6 5 9
the pixels in the row are changed. Then the operation continues with the subse-
quent rows until the image is completely affected. The resulting image will show |
characteristics that may be slightly or very severely affected by the operation, de- s | exo | 2x0 | 81
pending on the m values in the mask. The first and last rows and columns are not af-
fected and are usually ignored. Some systems insert zeros for the first and last rows 2 | 31 | sxt | ext 0| 0] 1
X
and columns. 23 |

- . A . . . & »—._._,________‘-

For an image I(R,C) with R Tows and C columns of pixels, and for a mask s szutlerilieso 11
M(n,n) with n rows and columns in the mask, the value of the pixel (I, )new at the % Rl
center of a block can be calculated by 8 15

n n 6 5 9
M' ; >< I nt . nt .
2 XM D)l ) |
(I.\',y)new = = 9 (84)
1S 5 6 2 8
where |
e | i 3x0 | 3x0 | Sx1 | 6 0] 0|1
S = . EM,,/\ if the summation # 0 (8.5) \ ’ | —— T 1|1
=1j=1 4x1 | 3x1 7 2x1 | 6
and ipongo
§=1 if the summation = 0. O R
|
Note that the normalizing or scaling factor S is arbitrary and is used to prevent sat- |
uration of the image. As a result, the user can always adjust this number to get the 5 6 5 3
best image without saturation.
0
Example 8.1 - 3 | 3x0 | 5x0 | 6x1 s
Consider the pixels of an image, with values as shown in Figure 8.11, as well as a con- , Jig| et/ l=il
volution mask with the given values. Calculate the new values of the given pixels. 4 | 3x1 | 2xl | 6x] Fr ll
1] 0 0
Solution We will substitute zeros for the first and last columns and rows, because | 8 | 6x1 | sx0 | 9x0 ! !
they are not affected by convolution. For the remaining pixels, we will superimpose A
the mask on the remaining cells of the image and will use Equations (8.2) and (8.3) to |
calculate new pixel values, as shown in Figure 8.12(a), with the result as indicated in (b)
0 0 0 0
|
034 5 0
0 |44]|46| 0
Eigure 8.;1 An example of a convolu- 0 0 0 0 Figure 8.12 (a) S i ine th
tion mask. . a) Superimposing the
®) mask onto the cells of the image. (b) The
result of the operation.
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Figure 8.12(b). Superimposing the mask on the image for each remaining element, we
have the following equations:

220 5(0)+6(0)+2(1)+3(1)+3(1)+5(1)+4(1)+3(0)+2(0)/5 = 3.4;
23 6(0)+2(0)+8(1)+3(1)+5(1)+6(1)+3(1)+2(0)+6(0)/5 = 5;
32: 3(0)+3(0)+5(1)+4(1)+3(1)+2(1) +8(1)+6(0)+5(0)/5 = 44;
330 3(0)+5(0)+6(1)+ 3(1)+2(1)+6(1) +6(1)+5(0)+9(0)/5 = 4.6.
We next consider common routines and techniques that are used in image pro-
cessing and image analysis.

8.11 SAMPLING AND QUANTIZATION

To be useful in image processing, the image must be digitized bol‘h' spana_]ly as v\‘»'ell
as in amplitude. Spatial digitization is the process lhat_ was mentioned in Secllc:)n
8.5.2, wherein the intensities of light at each pixel Io:;atlon are rcz?d. The more pix-
els that are present and individually read, the better is lhc re'solulu‘):} of the.came:g
and the image. This technique is called mmp’ﬁn.g. as thc. light mtcnsm.es are aampleti
at equally spaced intervals. A larger sampling rate will create a larger number o
yixel data and thus better resolution.
4 Figure 8.13 shows the same image sample_d at (a) 432 x 576, (b) 10.8 X flc::l:
(c) 54 X 72, and (d) 27 X 36 pixels. As the samplmg,_ rate dccrtfases, the clarity o 't :i
image is lost. The voltage or charge read at czl.f.:h plx‘cl value 1s an analqg value an
must also be digitized. Digitization of the light intensity values at each plxe'l location
is called quantization. Depending on the number of b11§ used 1.?16 rﬂesolullon (?f the
image will change. The total number of gray level possmlhue_fs is 2", where n 18 .lhe
number of bits. For a 1-bit analog-to-digital converter (ADC), tl?erc are only two
possibilities: “off” or “on,” or, alternatively, 0 or 1 (called a binary mjmge). For quan-
tization with an 8-bit ADC, the maximum number of gray ‘levels will be _256. Thus,
the image will have 256 different gray levels in it. Quantization and samplmg resq]u-
tions are completely independent of each other. For example,v a Ilugh_-resolu‘gon
image may be converted into a binary image, and thus },he1q}lantlzatlon is o'nly into
two digits (0 and 1, or black and white, or “off” and “on”). bll'll, the same 1m.clg;3 m’ay
be quantized into 8 bits, which can yield a spectrum of 256 different shades of gray.

@

Figure 8,13  Effect of different sampling rates on an image at (a) 432 X 576,
(hj 108 % 144, (c) 54 % 72, and (d) 27 X 36 pixels. As the resolution decreases,
the clarity of the image diminishes accordingly.
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(d)

Figure 8.14 An image quantized at 2, 4, 8, and 44 gray levels. As the quantization
resolution increases, the image becomes smoother.

Figure 8.14 shows the same image quantized at (a) 2 levels, (b) 4 levels, (c) 8 levels,
and (d) the original 44 levels.

The sampled light at a pixel, when quantized, will yield a string of 0’s and 1’
representing the light at that pixel location. The total memory required to store an
image is the product of the memory needed for the total number of samples and the
memory needed for each digitized sample. The larger the image size, the resolution
of the image, or the number of gray levels, the larger is the memory requirement.

Example 8.2

Consider an image with 256 by 256 pixels. The total number of pixels in the image will
be 256 X 256 = 65,536. If the image is binary, it will require 1 bit to record each pixel as
0 or 1. Thus, the total memory needed to record the image will be 65,536 bits, or, with
8 bits to a byte, 8,192 bytes. If each pixel were to be digitized at the rate of 8 bits for
256 shades of gray, it would require 65,536 X 8 = 524,288 bits, or 65,536 bytes. If the
image were in color, it would require 65,536 bytes for each of the three colors of red,
green, and blue. For a color video clip changing at the rate of 30 images per second, the
memory requirement will be 65,536 X 3 X 30 = 5,898,240 bytes per second. Of course,
this is only the memory requirement for recording the image pixels and does not in-
clude index information and other bookkeeping requirements.

8.12 SAMPLING THEOREM

Can you tell what the image in Figure 8.15 represents? Of course, since it is a very
low resolution 16 X 16 image, it is difficult to guess what the object is. This simple il-
lustration signifies the relationship between the sampling rate and the information
obtained from it. To understand the relationship, we will discuss some fundamental
issues connected with sampling.

Consider a simple sinusoidal signal with frequency f, as shown in Figure
8.16(a). Suppose that the signal is sampled at the rate of f,. This means that the sam-
pling circuit will read the amplitude of the signal with a frequency of f;. The arrows
in Figure 8.16(b) show the corresponding sampled amplitudes.

Now suppose that we want to use the sampled data to reconstruct the signal.
(Doing this would be similar to sampling a sound source such as a CD player and
then trying to reconstruct the sound signal from the sampled data through a speak-
er.) One possibility would be that, by chance, the same signal might be reconstruct-
ed. However, as you see in Figure 8.17, it is quite possible that, from the same data,
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Figure 8.15 A low-resolution (16 X 16)
image.

Ze10
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period (@)

Y

ZETO

|

Sampling

period )

Figure 8.16 (a) Sinusoidal signal with a frequency of f. (b) Amplitudes sampled at
the rate of f;.

another signal may be reconstructed which is completely different frorp the orlgmacil
signal. Both signals are valid, and in fact, many other signals can be valu_j as }Jvell illnd
might be reconstructed from the sampled data. This loss of information is calle

aliasing of the sampled data, and it can be a serious problem.
In order to prevent aliasing,
theorem, the sampling frequency must be at least tw

accorcling to what is referred to as the .\‘m'npz’f'ng
ice as large as the largest fre-
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Second signal

Zero \

N

Original signal

Sampling
period

Figure 8.17 Reconstruction of signals from sampled data. More than one signal
may be reconstructed from the same sampled data.

quency present in the signal. In that case, one can reconstruct the original signal
without aliasing. The highest frequency present in the signal can be determined
from the frequency spectrum of the signal. Using the Fourier transform, one finds
that the frequency spectrum of a signal will contain many frequencies. However, as
we have seen, the higher frequencies may have smaller amplitudes. One can always
pick a maximum frequency that may be of interest, while assuming that the fre-
quencies with very low amplitudes beyond that point can be ignored without much
effect in the system’s total representation. In that case, the sampling rate’of the sig-
nal must be at least twice as large as this maximum frequency. In practice, the sam-
pling rate is generally chosen to be even larger, to further ensure that aliasing of
the signal will not occur. Frequencies four to five times as large as the maximum
frequency are common. As an example, consider a CD player. Theoretically, human
ears can hear frequencies of up to about 20,000 Hz. If the CD player is to be able to
reconstruct the digitized sampled music, the sampling rate of the laser sensor must
be at least twice as large, namely, 40,000 Hz. In practice, CD players sample at the
rate of about 44,100 Hz; at lower sampling rates, the sound may become distorted.

In the example of Figure 8.18, the sampling rate is lower than the higher fre-
quencies of the signal. Although the lower frequencies of the signal are reconstruct-
ed, the signal will not have the higher frequencies of the original signal. The same
may happen to any signal, including audio and video signals.

For images, too, if the sampling rate (which translates into the resolution of
the image) is low, the sampled data may not have all the necessary detail, the infor-
mation in the image is lost, and the image cannot be reconstructed to match the
original. The image in Figure 8.15 is sampled at a very low rate, and the information
in it is lost. This is why you cannot tell what the image is. However, if the sampling
rate is increased, there will be a time when there will be enough information to be
able to recognize the image. The still higher resolutions or sampling rates will trans-
fer more information, and thus, increasingly more detail can be recognized. Fig-
ure 8.19 is the same image as in Figure 8.15, but at 2, 4, and 16 times higher resolu-
tions. Now suppose that you need to recognize the difference between a bolt and a
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Time

Figure 8.18 The original signal in (a) is
sampled at a sampling rate that is lower
than the higher frequencies of the signal.
The reconstructed signal in (b) will not
= have the higher frequencies of the origi-

Time nal signal.

(®)

Figure 8.19 The image of Figure 8.15, presented at higher resolutions of
(a) 32 X 32, (b) 64 X 64, and (c) 256 X 256.

nut in a vision system in order to direct a robot to pick up the parts. Because the
information representing a bolt is very different f_rom that represen‘Fmg a nut, lovy—
resolution images will still enable you to determine what‘ the pa.rt is. However, in
order to recognize the license plate number of a car while moving in tr.afﬁc, one
would need to have a high-resolution image to extract enough information about
the details, such as the numbers on the license plate.

j
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8.13 IMAGE-PROCESSING TECHNIQUES

As was mentioned earlier, image-processing techniques are used to enhance, im-
prove, or otherwise alter an image and to prepare it for image analysis. Usually, dur-
ing image processing information is not extracted from the image. The intention is
to remove faults, trivial information, or information that may be important, but not
useful, and to improve the image. As an example, suppose that an image was ob-
tained while the object was moving, and as a result, the image is not clear. It would
be desirable to see if the blurring in the image could be reduced or removed before
the information about the object (such as its nature, shape, location, orientation,
etc.) can be determined. Again, consider an image that is corrupted by direct light-
ing that is reflected back, or an image that is noisy because of low light. In all these
cases, it is desirable to improve the image and prepare it before image analysis rou-
tines are used. Similarly, consider an image of a section of a city that is fully detailed,
with streets, cars, shadows, etc. It may actually be more difficult to extract informa-
tion from this image than if all unnecessary detail, except for edges, were removed.

Image processing is divided into many subprocesses, including histogram
analysis, thresholding, masking, edge detection, segmentation, region growing, and
modeling, among others. In the next few sections, we will study some of these pro-
cesses and their application.

8.14 HISTOGRAM OF IMAGES

A histogram is a representation of the total number of pixels of an image at each
gray level. Histogram information is used in a number of different processes, includ-
ing thresholding. For example, histogram information can help in determining a
cutoff point when an image is to be transformed into binary values. It can also be
used to decide whether there are any prevalent gray levels in an image. For instance,
suppose a systematic source of noise in an image causes many pixels to have one
“noisy” gray level. Then a histogram can be used to determine what the noisy gray
level is in order to attempt to remove or neutralize the noise.

Now suppose that an image has all its pixel gray levels clustered between two rel-
atively close values, as in Figure 8.20(a). In this image, all pixel gray values are be-
tween 120 and 180 gray levels, at four-unit intervals. (The image is quantized at
16 distinct levels between 0 and 256.) Figure 8.20(c) is the histogram of the image, and
clearly, all pixel gray levels are between 120 and 180, a relatively low range. As a result,
the image is not very clear and details are not visible. Now suppose that we equalize
the histogram such that the same 16 gray levels present in the image are spread out be-
tween 0 and 255 gray levels, at intervals of 17 units, instead of the present 120-180
gray levels at intervals of 4 units. Then, due to the equalization, the image is vastly im-
proved, as shown in Figure 8.20(b), with its corresponding histogram in Figure 8.20(d).
Notice that the number of pixels at each gray level is exactly the same in both cases,
but that only the gray levels are spread out. The grayness values are given in Table 8.1.
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Figure 8.20 Effect of histogram equalization in improving an image.

TABLE 8.1 THE ACTUAL GRAYNESS VALUES AND NUMBER OF PIXELS FOR THE IMAGES IN FIGURES 8.20
(A) AND (B)
Levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. of

Pixels O 750 5223 8147 8584 7,769 6419 5839 5,392 5179 5,185 3,451 2,078 1,692 341 0
F

(2?)r 0 17 34 51 68 g8 102 119 136 153 170 187 204 221 238 256
For

(b) 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180

8.15 THRESHOLDING

Thresholding is the process of dividing an image into dif[t?renl porlipns (or leve‘ls)
by picking a certain grayness level as a threshold, comparing cagh pixel value with
the threshold, and then assigning the pixel to the different portions or levels, de-
pending on whether the pixel’s grayness level is below the. threshold (off or Zero, 01
not belonging) or above the threshold (on or 1, or belongmg_). Thr‘esholdm.g can be
performed either at a single level or at multiple levels, in which the image is
processed by dividing it into “layers,” each with a sclf.:cted threshold. To aid in
choosing an appropriate threshold, many different techmgues have b§en suggested,
ranging from simple routines for binary images to sophisticated techniques for com-
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plicated images. Early routines used for a binary image had the object lighted and
the background completely dark. This condition can be achieved in controlled light-
ing in industrial situations, but may not be possible in other environments. In bina-
ry images, the pixels are either on or off, and thus, choosing a threshold is simple
and straightforward. In certain other situations, the image will have multiple gray
levels, and its histogram will exhibit a bimodal distribution. In this case, the valley is
chosen as the threshold value. More advanced techniques use statistical information
and distribution characteristics of the image pixels to develop a thresholding value.
As the thresholding value changes, so does the image. Figure 8.21 shows an original
image with 256 gray levels and the result of thresholding at grayness levels of 100
and 150.

Figure 8.21 Thresholding an image with 256 gray levels at values of (b) 100 and ,
(c) 150.

Thresholding is used in many operations, such as transforming an image into
binary values, filtering operations, masking, and edge detection.

8.16 CONNECTIVITY

Sometimes we need to decide whether neighboring pixels are somehow “con-
nected” or related to each other. Connectivity establishes whether they have the
same properties, such as being of the same region, coming from the same object,
having a similar texture, etc. To establish connectivity of neighboring pixels, we first
have to decide upon a connectivity path. For example, we need to decide whether
only pixels that are on the same column and row are connected or whether diago-
nally situated pixels are also accepted as being connected.

There are three fundamental connectivity paths for two-dimensional image
processing and analysis: +4- or X4-connectivity, H6 or V6 connectivity, and 8-con-
nectivity. In three dimensions, connectivity between voxels (volume cells) can range
from 6 to 26. The following terms are defined with respect to Figure 8.22.

+4-connectivity applies when a pixel p’s relationship is analyzed only with re-
spect to the four pixels immediately above, below, to the left, and to the right of
p (namely, b,g,d, and e).
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For a pixel p(x,y) the relevant pixels are as follows: Figure 8.23 The image for Example 8.3.
o for +4-connectivity: (x+1,y), x—=1y), xy+1), (xy- 1); (8.6)
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V6-connectivity applies when a pixel p’s relationship is analyzed only with re- = :
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 for V6-connectivity: (x—1,y+1), x-1y), x—- Ly~ 1),
x+1Ly+1), x+1Ly), x+1Ly- 1).

8-connectivity applies when a pixel p’s relationship is analyzed with respect to

all eight pixels surrounding it (a, b, ¢, d, ¢, f, &, h). A i
For a general pixel p(x,y), the relevant pixels are as follows: 201132 331154 L35 136, |51 521 Bt e

x—1y—1), Ly —1), x+Ly—1), & -1Ly) 61 [62|63|64]65[66||6162[63[64]65]|66

(8.10) ;
(x+1,y), x—1,y+1), (x,y +1), x+ 1,y +1). v 8
. . . Fi 824 T g ivi
So far, we have studied some general issues and fundamental techniques that e ek GIFTOHINE conectvicarcheOREXampICIE:
are used in image processing and analysis. Next, we will discuss particular tech-

niques that are used for specific applications. o )

ous ones for additional connected pixels, until you are done. All of the remaining pix-
els will not be connected. We will use the same rules later for other purposes, such as
region growing.

4142 (43|44 45|46 |41 |42 4348|4546

Example 8.3

In the image of Figure 8.23, starting with pixel (4,3), find allsucceeding pixels that can be
considered as connected to each other based on +4-, X4-, H6-, V6-, and 8-connectivity

rules. 8.17 NOISE REDUCTION

Solution Figure 8.24 shows the results of the five connectivity searches. For each

search, take one pixel, find all others that are connected to it based on the rule you are Like other signal-processing mediums, vision systems contain noises. Some noises '
working with, and then search the pixels that were found to be connected to the previ- are systematic and come from dirty lenses, faulty electronic components, bad mem-
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ory chips, and low resolution. Others are random and are caused by environmen-
tal effects or bad lighting. The net effect is a corrupted image that needs to be pre-
processed to reduce or eliminate the noise. In addition, sometimes images are not of
good quality, due to both hardware and software inadequacies; thus, they have to be
enhanced and improved before other analyses can be performed on them. On the
hardware level, in one attempt [S], an on-chip correction scheme was devised for de-
fective pixels in an image sensor. In this scheme, readouts from nearest neighbors
were substituted for defective pixels that had been identified. However, in general,
software schemes are used for most filtering operations.

Filtering techniques are divided into two categories. Frequency-related tech-
niques operate on the Fourier transform of the signal, whereas spatial-domain tech-
niques operate on the image at the pixel level, either locally or globally. The
following is a summary of a number of different operations for reducing noise in an
image.

8.17.1 Convolution Masks

As was mentioned in Section 8.10, a mask may be used for many different purposes,
including filtering operations and noise reduction. In Section 8.9, it was also men-
tioned that noise, as well as edges, produces higher frequencies in the spectrum ofa
signal. It is possible to create masks that behave like a low-pass filter, such that the
higher frequencies of an image are attenuated while the lower frequencies are not
changed very much. Thereby, the noise is reduced.

Neighborhood Averaging

Neighborhood averaging can be used to reduce noise in an image, but it also re-
duces the sharpness of the image. Consider the 3 X 3 mask shown in Figure 8.25 to-
gether with its corresponding values, as well as a portion of an imaginary image with
its gray levels indicated. As you can see, all the pixels but one are at a gray value of
20. The pixel with a gray level of 100 may be considered to be noise, since it is dif-

20

20 | 20 | 20 il 1 1

20

20

100 | 20 | 20 1 1 1

20 | 20 | 20 1 1 1

Figure 8.25 Neighborhood-averaging

mask.
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Figure 8.27 5 X 5 and 3 X 3 Gaussian
averaging filters.

5x5 3x3

fe}'ent from the.pixels around it. Applying the mask over the corner of the image,
with a normalizing value of 9 (the sum of all the values in the mask), yields:

(20X14+20X1+20X1+20X1+100X1+20X1+20X1+20X1+20X1)
9

=29.

As a result of applying the mask on the indicated corner, the pixel with the vatue of
.100 changes to 29, and the large difference between the noisy pixel and the surround-
ing pixels (100 vs. 20) becomes much smaller (29 vs. 20), thus reducing the noise. With
this characteristic, the mask acts as a low-pass filter. Notice that the operation will in-
troduce new gray levels into the image (29) and thus will change its histogram. Simi-
larly, t‘his averaging low-pass filter will also reduce the sharpness of edges, making the
resultmg image softer and less focused. Figure 8.26 shows an original image (a), a cor-
rupted image with noise (b), the image after a 3 X 3 averaging filter application (c),
and the image after a 5 X 5 averaging filter application (d). As you can see, the 5 X 5
filter works even better than the 3 X 3 filter, but requires a bit more processing.

There are other averaging filters, such as the Gaussian averaging filter (also
called the mild isotropic low-pass filter), which is shown in Figure 8.27. This filter
will similarly improve an image, but with a slightly different result.

8.17.2 Image Averaging

In this technique, a number of images of the exact same scene are averaged togeth-
er. Since the camera has to acquire multiple images of the same scene, all actions in
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the scene must be halted. As a result, in addition to being time consuming, the tech-
nique is not suitable for operations that are dynamic and change rapidly. Image av-
eraging is more effective with an increased number of images. It is fundamentally
useful for noise that is random; if the noise is systematic, its effect on the image will
be exactly the same for all multiple images, and as a result, averaging will not reduce
the noise. If we assume that an acquired image A(x,y) has random noise N(x,y),
then the desired image I(x,y) can be found from averaging because the summation
of random noises will be zero; that is,

Alxy) = I(xy) + N(xy) i

S Ay) Sy + Nxy)  Slry) X MEY)
o SR T n + n

n n n

=I(xy). (811)

Although image averaging reduces random noise, unlike neighborhood averaging,
it does not blur the image or reduce its focus.

8.17.3 Frequency Domain

When the Fourier transform of an image is calculated, the frequency spectrum
might show a clear frequency for the noise, which in many cases can be selectively
eliminated by proper filtering.

8.17.4 Median Filters

One of the main problems in using neighborhood averaging is that, along with re-
moving noises, the filter will blur edges. A variation of this technique is to use a me-
dian filter. in which the value of the pixel is replaced by the median of the values
of the pixels in a mask around the given pixel (the given pixel plus the eight surrounding
pixels), sorted in ascending order. A median is the value such that half of the values in
the set are below and half are above the median (also called the 50th percentile). Since,
unlike an average, the median is independent of the value of any single pixel in the set,
the median filter will be much stronger in eliminating spikelike noises without blurring
the object or decreasing the overall sharpness of the image. Suppose that we apply a
median filter to the image in Figure 8.25. Then sorted values, in ascending order, will
be 20, 20, 20, 20, 20, 20, 20, 20, 100. The median is thus the fifth 20 in the sequence. Re-
placing the center pixel’s value with 20 will completely eliminate the noise. Of course,
noises are not always this easily removed, but the example shows how the effect of me-
dian filters can be very different from averaging. Notice that median filters do not cre-
ate any new gray levels, but they do change the histogram of the image.

Median filters tend to make the image grainy, especially if applied more than
once. Consider the image in Figure 8.28(a). The gray values, in ascending order, are
1,2,3,4,5,6,7,8,9. The middle value is 5, resulting in the image in (b). Observe
that the image has become grainy because the pixel sets with similar values appear
longer (as in 5 and 5).
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Figure 8.28 Application of a median filter.

Figure. 8.29 . (a) Original image. (b) The same image corrupted with a random
Qauss1an noise. (¢) The image improved by a 3 X 3 median filter. (d) The same ,
image improved with a 7 X 7 median filter.

Figure 8.29 shows an original image (a), the image corrupted with random

Gaussian noise (b), and the image improved with a 3 X 3 median filter (c) and a
7 X 7 median filter (d).

8.18 EDGE DETECTION

Edge detection is a general name for a class of routines and techniques that operate
on an image and result in a line drawing of the image. The lines represent changes in
values such as cross sections of planes, intersections of planes, textures, lines, and
colors, as well as differences in shading and textures. Some techniques are mathe-
matically oriented, some are heuristic, and some are descriptive. All generally oper-
ate on the differences between the gray levels of pixels or groups of pixels through
masks or thresholds. The final result is a line drawing or similar representation that
.requires much less memory to be stored, is much simpler to be processed, and saves
in computation and storage costs. Edge detection is also necessary in subsequent
processes, such as segmentation and object recognition. Without edge detection, it
may be impossible to find overlapping parts, to calculate features such as a diameter
and an area, or to determine parts by region growing. Different techniques of edge
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detection yield slightly different results; thus, they should be chosen carefully and
wed vxzegas mentioned earlier, like noise, edges create higher frequencigs in the
spectrum and hence can be separated by high-pass filters. Masks can be de§1gned ‘to
behave like a high-pass filter, reducing the amplitudfa of the lower frequencies whlle
not affecting the amplitudes of the higher frequencies as much_, thereby separating
the noises and edges from the rest of the image. Consider thet image and ‘Fhe' mask
(called a Laplacianl filter) in Figure 8.30. Th_e mask h?s negative numbers in it. Ap-
plying the mask to the image at the corner will result in

(20X ~1+20 X 0+20 X —1+20 X0 +100 X 4 +20X0+20 X ~1+20X0+20 X —1)
o 1

=320

The normalizing factor is 1, which results in the value of 100 being replgced
with 320, accentuating the original difference (from 100 vs. 20 to 320 vs. 20). S1r‘1ce
this mask accentuates differences (higher frequencies), it is a high-pass filter, which
also means that the noise and edges of objects in images will .be shown more effec-
tively. As a result, the mask acts as an edge detector. Spme high-pass filters can act
as an image sharpener. Figure 8.31 shows some other hlgh-Pass filters.

Still other masks have the effect of differentiating an image through ‘Fhe use of
gradients. In this case, the horizontal and vertical gradients between neighboring

20 [ 20 | 20 | 20 Lo -1
20 [100 | 20 | 20 0| 4]0
20 {20 | 20 | 20 -1 0] -1
Figure 8.30 A typical high-pass edge
detector mask (Laplacianl).
1] -1]-1 0|-1]0 0|-1]0
-1| 8] -1 1] 6 | -1 11 51|41
-1 1] 0|-1120 0|-110

Laplacian2 Sharpen, low Sharpen, medium  Figure 8.31 Other high-pass filters.
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pixels are calculated and squared, and then the square root of the sum is found.

Mathematically,
_ af 2 6_f 271/2
Vi= [(5) ¥ (ay> ] : (8.12)

Equation (8.12) is equivalent to calculating the absolute value of the differences
between pixel intensities. The three masks [6,7,8,9,10] shown in Figure 8.32 and
called the Sobel, Roberts, and Prewitt edge detectors, effectively do the same gra-
dient differentiation with somewhat different results and are very common. When
they are applied to an image, the two pairs of masks calculate the gradients in the
x and y directions, are added, and then are compared with a threshold. Figure 8.33
is an original image (a) with its edges detected by a Laplacian1 (b), Laplacian2 (c),
Sobel (d), and Robert’s (e) edge detectors. The result for other images may be dif-
ferent because the histogram of the image and the chosen thresholds have great ef-
fects on the final outcome. Some routines allow the user to change the thresholding
values, and some do not. In each case, the user must decide which routine performs
the best.

Other simple routines that are easy to implement and that yield continuous
edges can be used for binary images. In one example [11], a search technique,
dubbed left-right (L-R) in this book, is used that can quickly and efficiently detect
edges in binary images of single objects which look like a blob. Imagine a binary
image such as that shown in Figure 8.34. Suppose that gray pixels are “on” (or rep-
resent the object) and white pixels are “off” (or represent the background). Assume
that a pointer is moving from one pixel to another, in any direction (up, down, right,
or left). Anytime the pointer reaches an “on” pixel, it will turn left. Anytime it
reaches an “off” pixel, it will turn right. Of course, as shown, depending on the di-
rection of the pointer, “left” and “right” might mean different directions as well.

1 0 0 1 -1 2] - -1 0 1 -1 | -1 -1 -1 0 1
0] -1 I -1] 0 0 | 0 0 210 2 0 0 0 -1 0 1 |
1 2 1 -11 0 1 1 1 | 1_ -1 0 1
(a) Sobel (b) Roberts (¢) Prewitt

Figure 8.32 The Sobel, Roberts, and Prewitt edge detectors.

() (c) (@

Figure 8.33 An image (a) and its edges from Laplacianl (b), Laplacian2 (c),
Sobel (d), and Roberts (e) edge detectors.
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Figure 8.34 Left-right search technique for edge detection [11].

Starting at pixel 1,1, moving to 1,2, to the end of the row and then onto row 2, rf‘)w 3,:
etc., the pointer finds the first “on” pixel at 3,3, turns left and encounters an off
pixel, turns right twice, then left, and goes on. The process continues until tl}e first
pixel is reached. The collection of the pixels on the pointer’s path is one F:ontmuoqs
edge. Other edges can be found by continuing the process with a new pixel. In this
example, the edge will be pixels 3,3; 3,4;3,5; 3,6;, . ..,3,9;4,9; 4,10, 4,11, seees
Masks may also be used to intentionally emphasize some.charactfarlstw of .the
image. For example, a mask may be designed to emphasize horl.zontal lines, vertical
lines, or diagonal lines. Figure 8.35 shows three such masks. Figure 8.36 shows an

3 16| 3 3 3 3 3 3 |-6

31 6|3 6| 6| -6 31 6] 3

31613 3 3 3 6| 3 3 Figure 8.35 Masks emphasizing the ver-
tical, horizontal, and diagonal lines of an

Vertical mask Horizontal mask Diagonal mask image.

(@) ©) (c) (d)
Figure 8.36 An original image (a) with effects of vertical mask (b), horizontal
mask (¢), and diagonal mask (d).

Section 8.19 Hough Transform 279

original image (a), along with the effects of a vertical mask (b), a horizontal mask
(c), and a diagonal mask (d).

8.19 HOUGH TRANSFORM

As you have probably noticed, in most edge detection techniques, the resulting
edges are not continuous. However, in many applications, continuous edges are
either necessary or preferred. For example, as we will see later, in region growing,
edges that define an area or a region must be continuous and complete before a
region-growing routine can detect the region and label it. In addition, it is desirable
to be able to calculate the slope of detected edges in order to either complete a bro-
ken line or to detect objects. The Hough transform [12] is a technique used to de-
termine the geometric relationship between different pixels on a line, including the
slope of the line. For example, one can determine whether a cluster of points is on a
straight line. This kind of determination aids in further developing an image in
preparation for object recognition, since it transforms individual pixels into recog-
nizable forms. The Hough transform is based on transforming the image space into
an (r,0) space, which in turn is based on the fact that an infinite number of straight
lines go through any point in a plane. The normal to any one of these lines through
the origin will have an angle of 6 with respect to the x-axis and will be at a distance
of r from the origin. The transformation into the (1,6) plane (also called the Hough
plane) showing these values is the Hough transform. Alternatively, a line in the xy-
plane, with slope m and intercept ¢, can be transformed into a Hough plane of m,c,
with x and y as its slope and intercept. Thus, a line in the xy-plane with a particular
slope and intercept will transform into a point in the Hough plane. All lines through
a point will transform into a single line in the Hough plane. If a group of points are
collinear, their Hough transforms will all intersect. By examining these properties in
a particular case, it can be determined whether a cluster of pixels is on a straight
line. Hough transforms can also be used to determine the angle or orientation of a
line, whereupon the orientation of an object in a plane can be determined by calcu-
lating the orientation of a particular line in the object.

To make this clearer, let’s consider a plane xy (Figure 8.37) with a line in it.
The line can be described by its slope () and intercept (c) as

y=mx + c. (8.13)
Equation (8.13) can also be written in terms of m and ¢ as
c=—xm+y, (8.14)

where, in the mc-plane, the x and y will be the slope and the intercept.

Clearly, the line given by Equation (8.13) with m and ¢ will be shown as a single
point A in the mc- (Hough) plane. This is because all points on the line have the same
slope and intercept m,c¢, and all produce the same location in that plane. Whether the
line is drawn with this equation or in polar coordinates with (1,6), the result is the same.
Thus, a line (and all the points on it) are represented by a point in the Hough plane.
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Figure 8.37 Hough transform.

Now consider the Hough plane in Figure 8.37 (b). Two lines intersect at point
A. From Equation (8.14), Line 1 has a slope and intercept of x, and y,, which can be
shown as point C in the xy-plane. Similarly, Line 2 can be shown as point B in the
xy-plane. Thus, each line in the mc-plane transforms into a point in xy-plane. This
means that if two lines intersect in the mc-plane, they will form a line in the xy-
plane. If a third line intersects at the same point, it will have to be on the same line
in xy-plane. As a result, if a number of points in the xy-plane are on the same line,
they correspond to intersecting lines in the mc-plane. This property can be used to
determine whether a number of points are all on the same line. If one takes five
points in the xy-plane, for example, so long as they all are on the same line, their
corresponding lines will all intersect at the same point in the mc-plane. Of course,
using the slope and intercept of the line, one can add points to the line to make it

continuous or to close a shape.

Example 8.4

Following are the coordinates of five points:
y X
3 1
2 2
1.5 3
1 4
0 5

Using the Hough transform, determine which points are on the same line. Find the
slope and intercept of the line.

Solution Of course, any two points are on a line. So we will look for at least three
points that will be on the same line. Looking at the graph of the points, we see that it is
very easy — even trivial — to answer the questions. However, in computer vision, since
the computer does not have the intelligence to understand an image, it must be calcu-
lated. Imagine having thousands of points in a computer file representing an image. It
is impossible, for either a computer or a human being, to tell which points are on the
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same line and which are not. We will use a Hough transform to determine which points
fall on the same line. The following table summarizes the lines formed in the mc-plane
that correspond to the points shown in the xy-plane:

y X xy mc
1 3=ml +c c=—1m+3
2 2=m2+c c=-2m+?2
1.5 3 1.5=m3+c¢ c=-3m+ 15
1 4 l=md+c c=—4m+1
0 5 0=mS+c c=—-5m+0

Figure 8.38 shows the five corresponding lines drawn in the mc-plane. Three of the
lines are intersecting, while the other two are not. The latter lines correspond to points
1,3 and 5,0. The slope and intercept of the line representing the points that are on the
same line are —0.5 and 3, respectively. Once again, these lines intersect at other points
as well, indicating that any two points form a line. This shows how the Hough trans-
form can be cluttered with numerous intersecting lines. Determining which lines are
intersecting is the main issue in Hough transform analysis.

A similar analogy may be made for circles and points instead of lines and points. All
points on a circle correspond to intersecting circles in the Hough plane. (See [7] for
more information.)

The Hough transform has many desirable features. For example, because
each point in the image is treated independently, all points can be processed simul-
taneously with parallel processing methods. This makes the Hough transform a
suitable candidate for real-time processing. It is also insensitive to random noise,
since individual points do not greatly contribute to the final count of the part itself.
However, the Hough transform is computationally intensive. To reduce the num-
ber of calculations needed to determine whether lines are actually intersecting

n

\ c=—1m+3

c=-2m+2

g c=-3m+15
C=—dm+1
c=-5m+0

Figure 8.38 Hough transform for Example 8.4.
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with each other at the same location, one must define a “circle” (or other bound-
ary) within which, if the lines are intersecting with each other, they are assumed to
be intersecting in general. Many variations of the Hough transform have been de-
vised to increase its efficiency and utility for different tasks, including object recog-

nition [13].

8.20 SEGMENTATION

Segmentation is a generic name for a number of different techniques that divide the
image into segments of its constituents. The purpose of segmentation is to separate
the information contained in the image into smaller entities that can be used for
other purposes. For example, an image can be segmented by the edges in the scene,
by small areas, efc. Each of these entities can then be used for further processing,
representation, or identification. Segmentation includes, but is not limited to, edge
detection, region growing, and texture analysis.

The early segmentation routines were all based on edge detection of simple
geographic models such as polyhedrons. In the three-dimensional analysis of ob-
jects, models such as cylinders, cones, spheres, and cubes were used as well. Al-
though these shapes and figures do not necessarily match those of any real objects,
they provided a means for early developmental work, which evolved into more so-
phisticated routines and techniques. They also provided a means of developing rou-
tines that could process complicated shapes and recognize objects. As an example,
with very little processing power the routines could model a tree as a cone mounted
on a cylinder and could match the resulting figure with a model of a tree. The tree
could thus be expressed with only a few pieces of information, such as the diameters
of the cone and cylinder and their heights. Representing all the information per-
taining to a tree could be staggering in comparison.

8.21 SEGMENTATION BY REGION GROWING AND REGION SPLITTING

Region growing and image splitting are techniques of segmentation, as are edge de-
tection routines. Through these techniques, an attempt is made to separate the dif-
ferent parts of an image into segments or components with similar characteristics
that can be used in further analysis, such as object detection. While an edge detec-
tor will find the separation lines of textures, colors, planes, and gray levels, segmen-
tation by regions will naturally result in complete and closed boundaries. (For a
survey of other segmentation techniques, see [14].)

Two approaches are used for region segmentation. One is to grow regions
by similar attributes, such as gray-level ranges or other similarities, and then try
to relate the regions by their average similarities or spatial relationships. The other
is region splitting, which will split images into smaller areas by using their finer
differences.

One technique of region splitting is thresholding. The image is split into closed
areas of neighboring pixels by comparing them with thresholding value or range.
Any pixel that falls below a threshold (or between a range of values) will belong to

i
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a given region; otherwise, it belongs to another region. Thresholding will split the
image into a series of regions or clusters of pixels that have common or similar at-
trlbutc_ss. Generally, although it is a simple technique, it is not very effective, because
choosing an appropriate threshold is difficult. The results are also highly dependent
on the threshold value and will change accordingly when the thresholds change
$t1ll, thresholding is a useful technique under certain conditions, such as backlight—.
ing, and for images with relatively uniform regions.

¥n region growing, first nuclei regions are formed on the basis of some specific
selepthn law. (Nuclei regions are the small clusters of pixels that are formed at the
beginning qf segmentation. They are usually small and act as a nucleus for subse-
quent growing and merging, as crystals do in alloys.) The result is a large number of
httl_e regions. Successively, these regions are combined into larger regions on the
basis qf some other attributes or rules. Although these rules will merge many small-
er regions together to create a smoother set of regions, they may unnecessarily
merge certain features that should not be merged, such as holes, smaller but distinct
areas, or distinct areas with similar intensities.

. A.simple search technique for growing regions for a binary image (or, with the
application of thresholding, for gray images as well), uses a bookkeeping approach to
find all pixels that belong to the same region [15]. Figure 8.39 shows a binary image.
Each pixel is referred to by a pair of index numbers. Assume that a pointer starts at the
top and will search for a nucleus to start a region. As soon as a nucleus that does not al-
rc?ady belong to another region is found, the program assigns a region number to it. All
pixels connected to that nucleus will receive the same region number and are placed in
a stack. The search continues with all the pixels in the stack until the stack is emptied.
The poir.ltﬁ:r will then continue searching for a new nucleus and a new region number.

' It is important to decide what form of connectivity is to be used in growing re-
gions, as the form determines the final outcome. As was discussed in Section 8.16
+4-, X4-, H6-, V6-, and 8-connectivity can be used for region growing. In Figuré
8.39, the first nucleus is found at cell 2d. Suppose we have chosen +4-connectivity.

Round 1 Stack

Columns 2d —» Region A
abcde fgh Search next 3d

1 e
. 4 Round 2 Stack
2 —
T 2d —» Region A
i . 3d —» Region A
- | . E, ’ Search next 3¢
g - — 3e
S s 4d
6
; 3 Round 3 Stack
8 +4-connectivity gg —_— E:ggng
n
: 3c —» Region A
Search next 3e
4d
3b

Figure 8.39 Region growing based on a search technique.
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Then the program will check the four corresponding pixels around the nucleus to
determine their connectivity. If there is an “on” pixel, the index numbers of its loca-
tion are placed in a stack, the cell is given the region number (A), and the pointer is
moved down in the stack to the next cell, 3d. At this location, the connectivity of
pixels around the cell is checked again, the “on” pixel index numbers are placed in
the search stack, the cell is given the A region designation, and the process is re-
peated for the next index number in the stack, 3c. The process continues until the
stack is empty.

Notice that, on the basis of +4-connectivity, as the pointer gets to pixels 4f and
6e, it will not assign them to the same region. On the basis of X4-, H6-, V6-, or 8-
connectivity, both regions would be part of region A. Otherwise, the pointer contin-
ues until new nuclei are found for the next regions — say, region B and region C.

This kind of search technique is nothing more than a bookkeeping instrument
to make sure that the computer program can find all connected pixels in the region
without missing any. Otherwise, it is a simple search technique.

8.22 BINARY MORPHOLOGY OPERATIONS

Morphology operations refer to a family of operations that are performed on the
shape (and thus the morphology) of subjects in an image. They include many differ-
ent operations, both for binary and gray images, such as thickening, dilation, ero-
sion, skeletonization, opening, closing, and filling. These operations are performed
on an image in order to aid in its analysis, as well as to reduce the “extra” informa-
tion that may be present in the image. For example, consider the binary image in
Figure 8.40 and the stick figure representing one of the bolts. As we will see later, a
moment equation may be used to calculate the orientation of the bolts. However,
the same equation can also be applied to the stick figure of the bolt, but with much
less effort. As a result, it would be desirable to convert the bolt to its stick figure or
skeleton. In the sections that follow we will discuss a few of these operations.

2 VA
3
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F e
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Figure 8.40 The binary image of a bolt
(a) ) and its stick (skeleton) representation.

8.22.1 Thickening Operation

The thickening operation fills the small holes and cracks on the boundary of an
object and can be used to smooth the boundary. In the example of Figure 8.40 (a),
a thickening operation will reduce the appearance of the threads of the bolts.
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This will become important when we try to apply other operations, such as skele-
tonization, to the object. The initial thickening will prevent the creation of whiskers
caused by the threads, as we will see later. Figure 8.41 shows the effect of three
rounds of thickening operations on the threads of the bolts.

N \ Figure 8.41 The threads of the bolts

are removed by a triple application of a

thickening operation, resulting in smooth
(@) )] edges.

8.22.2 Dilation

In dilation, the background pixels that are 8-connected to the foreground (object)
are changed to foreground pixels. As a result, a layer is effectively added to the ob-
ject every time the process is implemented. Because dilation is performed on pixels
that are 8-connected to the object, repeated dilations can change the shape of the
object. Figure 8.42(b) is the result of four dilation operations on the objects in Fig-
ure 8.42(a). As can be seen, the objects have bled into one piece. With additional
applications of dilation, the objects, as well as the disappearing hole, can become
one solid piece and hence cannot be recognized as distinct objects anymore.

-
.

(@) ®

Figure 8.42 Effect of dilation opera-
tions. Here, the objects in (a) were sub-
jected to four rounds of dilation (b).

8.22.3 Erosion

In erosion, foreground pixels that are 8-connected to a background pixel are elimi-
nated. This effectively eats away a layer of the foreground (the object) each time
the operation is performed. Figure 8.43(b) shows the effect of three repetitions of
the erosion operation on the binary image in Figure 8.43(a). Since erosion removes
one pixel from around the object, the object becomes increasingly thinner with each
pass. However, erosion disregards all other requirements of shape representation. It
will remove one pixel from the perimeter (and holes) of the object even if the shape
of the object is eventually lost, as in (c) with seven repetitions, where one bolt is
completely lost and the nut will soon disappear. The final result of too many ero-
sions will be the loss of the object. That is to say, if the reversing operation of dila-
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Figute 8.43 Effect of L’l(}hiﬂn on ObjeCtS

(a) (b) (c) (a) with (b) 3 and (c) 7 repetitions.

tion, which adds one pixel to the perimeter of the object with each pass, is used, the
dilated object may not resemble the original object at all. In fact, if the object is to-
tally eroded to one pixel, dilation will result in a square or a circle. As a result, ero-
sion can irreparably damage the image. However, it can also be successfully used to
eliminate unwanted objects in an image. For example, if one is interested in identi-
tying the largest object in an image, successive erosions will eliminate all other ob-
jects before the largest is eliminated. Thus, the object of interest can be identified.

8.22.4 Skeletonization

A skeleton is a stick representative of an object in which all thicknesses have been
reduced to one pixel at any location. Skeletonization is a variation of erosion.
Whereas in erosion the thickness of an object may go to zero and the object may
be totally lost, in skeletonization, as soon as the thickness of the object becomes one
pixel, the operation at that location stops. Also, although in erosion the number of
repetitions are chosen by the user, in skeletonization the process automatically con-
tinues until all thicknesses are one pixel thick. (The program stops when no new
changes are made as a result of the operation.) The final result of skeletonization
is a stick figure (skeleton) of the object, which is a good representation of it—
indeed. sometimes much better than the edges. Figure 8.44(b) shows the skeleton of
the original objects in Figure 8.44(a). The whiskers are created because the ob-
jects were not smoothed by thickening. As a result, all threads are reduced to one
pixel, creating the whiskers. Figure 8.45 shows the same objects, thickened to elimi-
nate the threads, resulting in a clean skeleton. Figure 8.45(c) is the result of dilat-
ing the skeleton seven times. As can be seen, the dilated objects are not the same

. 7
¢ ||J\J |[J[|f,[[1j b Figure 8.44 The effect of skeletoniza-
M5 tion on an image without thickening. The
threads of the bolts have resulted in the
(@) ®) creation of whiskers.
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o \ . I i J \ o
N f ~ N Figure 8.45 The skeieton of the objects

in (a) after the application of thickening
results in a clean skeleton (b). Part (c) i
. . is
(@) (b) (© the dilated image of the skele,:tons.

zz rtl];(:,) 1(t)srllglnal ones. Notice how the smaller screw appears to be as big as the big-

Al.though dilating a skeleton will also result in a shape different from that of
the original object, skeletons are useful in object recognition, since they are gener-
ally a betteF representation of an object than other representations. When f stick
representation of an object is found, it can be compared with the avéilable a priori
knowledge of the object for matching. e

8.22.5 Open Operation

Ofpenmg.is erosion followed by dilation and causes a limited smoothing of convex parts
of the object. Opening can be used as an intermediate operation before skeletonization.

8.22.6 Close Operation

Closing is dilation followed by erosion and causes a limited smoothing of convex

parts of the object. Like opening, closin i i
: } g can be used as an intermed i
before skeletonization. RS

8.22.7 Fill Operation

The fill op.eration ﬁ!]s the holes in the foreground (object). In Figure 8.46, the hole
in the nut is ﬁll.ed with foreground pixels until it is eliminated. ’
Information on other operations may be found in vision systems manufactur-

, . o
ers refgrences. Different companies include other operations to make their soft-
ware unique.

|. Figure 8.46 As a result of a fill opera-

tion, the hole in the nut is filled with
foreground pixels and is thus eliminated.

(a) (®)
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8.23 GRAY MORPHOLOGY OPERATIONS

Gray morphology operations are similar to binary morp.hology operations, cxc\el’xt
that they operate on a gray image. Usually, a 3 X 3 mask is ulscd to apply !hf: opera-
tions, where each cell in the mask may be either 0 or 1. Imagine that a gray image 1S
a multilayered three-dimensional image in which the light areas are pstaks ar_ld the
dark areas are valleys. The mask is applied to the imz_nge by moving it from pixel to
pixel. Wherever the mask matches the gray values in the image, no changes are
made. If the gray values of the pixels do not rnalt?h the mas.'k. they will be changed
according to the selected operation, as described in the sections that follow.

8.23.1 Erosion

In this case, each pixel is replaced by the value of thfa darkest pixel in its 3 X3
neighborhood, known as a min operator and effectively erodes the object. Of
course. the result is dependent on which cells in the mask are 0 or 1. Gray morphol-
ogy erosion removes light bridges between dark objects.

8.23.2 Dilation

In this case, each pixel is replaced by the value of liu? ]ighte_st pixel in its. 3 X3
neighborhood, known as a max operator and effectively dilates the object. Of
course, the result is dependent on which cells in the mask are 0 or 1. Gray morphol-
ogy dilation removes dark bridges between light objects.

8.24 IMAGE ANALYSIS

Image analysis is a collection of operations and techniqueg that are use;d to extract 1n-.
formation from images. Among these operations and techniques are object recpgnlilon,
feature extraction; analysis of the position, size, orientation, and qther properties of D.»h"_
jects in images; and extraction of depth information. Some lechmq‘ues may be us‘ecl 1.01.
multiple purposes, as we will see later. For exam]ffl?, momcnt.equat_mns may be' used for
object recognition, as well as to calculate the pos;lu_)n and opcntatmn of an object. '
Generally, it is assumed that image-processing routines have already t_)ecn‘ap-
plied to the image or that they are available for fur‘{hcr use, when neede_d, to improve
and prepare the image for analysis. Image analysis routines and tech.mques may be
used on both binary and gray images. Some of these techniques are discussed next.

8.25 OBJECT RECOGNITION BY FEATURES

Objects in an image may be recognized by their features, which may include, bu‘F are
not limited to, gray-level histograms, morphological features such as area, perime-

Section 8.25 Object Recognition by Features 289

ter, number of holes, etc., eccentricity, cord length, and moments. In many cases, the
information extracted is compared with a priori information about the object,
which may be in a lookup table. For example, suppose that two objects are present
in the image, one with two holes and one with one hole. By using previously dis-
cussed routines, it is possible to determine how many holes each part has, and by
comparing the two parts (let’s say they are assigned regions 1 and 2) with informa-
tion about them in a lookup table, it is possible to determine what each of the two
parts are. As another example, suppose that a moment analysis of a known part is
performed at different angles, that the moment of the part relative to an axis is cal-
culated for these angles, and that the resulting data are collected in a lookup table.
Later, when the moment of the part in the image is calculated relative to the same
axis and is compared with the information in the lookup table, the angle of the part
in the image can be estimated.

We next discuss a few techniques and different features that may be used for
object recognition.

8.25.1 Basic Features Used for Object Identification

The following morphological features may be used for object recognition and
identification:

a. The average, maximum, or minimum gray levels may be used to identify dif-
ferent parts or objects in an image. As an example, assume that the image is
divided into three parts, each with a different color or texture that will create
different gray levels in the image. If the average, maximum, or minimum gray
levels of the objects are found, say, through histogram mapping, the objects
can be recognized by comparing them with this information. In other cases,
even the presence of one particular gray level may be enough to recognize
a part.

b. The perimeter, area, and diameter of an object, as well as the number of holes
it has and other morphological characteristics, may be used to identify the
object. The perimeter of an object may be found by first applying an edge
detection routine and then counting the number of pixels on the perimeter.
The left-right search technique of Section 8.18 can also be used to calculate
the perimeter of the object by counting the number of pixels that are on the
object’s path in an accumulator. The area of the object can be calculated by
region-growing techniques. Moment equations can also be used, as will be dis-
cussed later. The diameter of a noncircular object is defined as the maximum
distance between any two points on any line that crosses the identified area of
the object.

¢. An object’s aspect ratio is the ratio of the width to the length of a rectangle en-
closed about the object, as shown in Figure 8.47. All aspect ratios, except for
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Figure 8.47 Aspect ratio of an object, with minimum aspect ratio shown in part (b).

the minimum aspect ratio, are sensitive to orientation. Thus, the minimum as-
pect ratio is generally used to identify objects.
d. Thinness is defined as one of the following two ratios:

(perimeter)?

1. Thinness = (8.15)
area
diameter
28 Thinness = — ot (8.16)
area

e. Moments are discussed in the next section, due to their special importance.

8.25.2 Moments

Imagine an object within a binary image. The object is represented by pixels that
are turned on, and the background is represented by pixels that are turned off.
This effect can be achieved either by backlighting or by rendering the image in bi-
nary form. '

Now consider the general moment equation

M., = DxY, (8.17)
Xy

where M, , is the moment of the object within the image with indicc?s a and b and x
and y are the coordinates of each pixel that is turned on within the image, ralseq to
powers of a and b, as in Figure 8.48. In such a case, a routine based on Equation
(8.17) will first determine whether each pixel belongs to the object (is tur.ned on)
and, if so, will then raise the coordinates of the location of the pixel to the given val-
ues of a and b. The summation of this operation over the whole image will be the
particular moment of the object with a and b values. M, is the moment of the ob-
ject with a = 0 and b = 0. This means that all x and y values are raised to a power of
0. M,, means that all x values are raised to the power of 0, all y values are raised to
powef of 2, etc. All combinations of values between 0 and 3 are common.
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1 2 3 4 5 6 7 8

- X
X1

Figure 8.48 Calculation of the moment
i I of an image. For each pixel that belongs
to the object, the coordinates of the pixel
are raised to the powers indicated by the
moment’ indices. The summation of the
'y values thus calculated will be the particu-
y lar moment of the image.

e e N« Y S 7 N

Distances x and y are measured either from a fictitious coordinate frame lo-
cated at the edge of the image (x,y) or are measured from a coordinate frame
formed by the first row and column of the image. Since the distances are measured
by counting the number of pixels, the use of the first row and column as the coordi-
nate frame is more logical. Note, however, that in this case all distances should be
measured to the centerline of the pixel row or column. As an example, the first
“on”-pixel in the second row is 1, 4. The x distance of the pixel from the x, y, coordi-
nate frame will be 3, whereas the same distance from the xy coordinate is 4 (or,
more accurately, 3.5). As long as the same distances are used consistently, the choice
is not important.

Based on the preceding discussion, since all numbers raised to the power of 0
are equal to 1, then all x”s and y®s are equal to 1. As a result, the moment M, is the
summation of as many 1% as there are “on”-pixels, yiclding the total number of “on’-
pixels, which is the area of the object. In other words, the moment M, is the same as
the area of the object. This moment can be used to determine the nature of an object
and to distinguish it from other objects that have a different area. Obviously, the
moment My can also be used to calculate the area of an object within an image.

Similarly, My is Zx° y', or the summation of 1 X y’s, which is the same as the
summation of each pixel area multiplied by its distance from the x-axis. This is sim-
ilar to the first moment of the area relative to the x-axis. Then the location of the
center of the area relative to the x-axis can be calculated by

Ey%

y = = i 8.18

Y~ area My, (8.18)
So, simply by dividing the two moments, you can calculate the y coordinate of the
center of the area of the object. Similarly, the location of the center of the area rela-

tive to the y-axis will be
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2 My

area My,

x = (8.19)
This way, an object may be located within an image, independently of its orienta-
tion. (The orientation will not change the location of the center of an area.) Of
course, this information can be used to locate an object, say, for grabbing by a robot.

Now consider My, and M, . My, is £x° y* and represents the second moment
of the area relative to the x-axis. Similarly, M, is the second moment of the area rel-
ative to the y-axis. As you can imagine, the moment of inertia of an object such as
the one in Figure 8.48 will vary significantly as the object rotates about its center.
Suppose that one would calculate the moments of the area about, say, the x-axis, at
different orientations. Since each orientation creates a unique value, a lookup table
that contains these values can later be used to identify the orientation of the object.
Thus, if a lookup table containing the values of the moments of inertia of the known
object at different orientations is prepared, the subsequent orientation of the object
can be estimated by comparing its second moment with the values in the table. Of
course, if the object translates within an image, its moments of inertia will also
change. However, if the coordinates of the center of the area of the object are
known, then, with a simple application of the parallel axes theorem, the second mo-
ments about the center of the area can be calculated independently of their loca-
tion. As a result, with the use of the moment equations, an object, its location, and
its orientation can be identified. In addition to identifying the part, the information
can be used in conjunction with a robot controller to direct the robot to pick up the
part or operate on it.

Other moments can be used similarly. For example, M, , represents the prod-
uct of inertia of the area and can also be used to identify an object. Higher or-
der moments such as My3,M;,M, 5, etc., can also be used to identify objects and
their orientations. Imagine two objects that are relatively similar in shape, as in Fig-
ure 8.49(a). It is possible that the second moments, areas, perimeters, or other mor-
phological characteristics of the objects may be similar or close to each other, such
that they may not be useful in identifying the object. In this case, a small difference
between the two objects may be exaggerated through higher order moments, mak-
ing identification of the object possible. The same is true for an object with a small
asymmetry (Figure 8.49(b)). The orientation of the object may be found by higher
order moments.

Figure 8.49 Small differences between
objects or a small asymmetry in an object
may be detected by means of higher

(a) ®) order moments.

>
P
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A moment invariant is a measure of an object based on its different moments
and is independent of the location and orientation of the object, as well as of the
scale factor used to represent the object. There are seven different moment invari-
ants, of which one is

= .1‘.."5":1.111'1‘5!:"1 - M.]‘.-” + MygMgy, — l'"‘f::l
IM[%l.n ’

(See [6] for the other six moment invariants.)

1

(8.20)

Example 8.5

For the simple object in the low-resolution image of Figure 8.50, calculate the area,
center of the area, and second moments of inertia of the object relative to the x, and

yj-axes.
1 2 3 4 5 6 7 8
X
1 =X
2
3_
A |
5 —_—
6 —
7
8
9
|
4y1 Figure 8.50 Image used for
Y Example 8.5.

Solution Measuring the distances of each pixel from the x,- and y,-axes and substitut-
ing the measurements into the moment equations yields the following results:

Mgy = 22"y’ =12(1) = 12;
M= X x'y" = Jx=2(1) + 1(2) +3(3) + 3(4) + 1(5) + 2(6) = 42;

My, = Sx%' = Sy =1(1) +502) + 53) + 1(4) = 30

- My 4 35 d My, 30 25
—— =-—=235 an e =—==2.5;
My, 12 YT My 12 :

Myy= D%y’ = S x? =2(1)" + 1(2)> + 3(3)* + 3(4)* + 1(5)> + 2(6)> = 178;

M()‘Z

Salyr = Yyt =1(1)* + 5(2) + 5(3)* + 1(4)” = 82.
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Figure 8.51 Image used for Example 8.6.

The same procedure may be used for an image with much higher resolution; there will
just be many more pixels to deal with. However, a computer program can handle as
many pixels as necessary without difficulty.

Example 8.6

In a certain application, a vision system looks at an 8 X 8 binary image of‘rectangles
and squares. The squares are either 3 X 3-pixel solids, or 4 X 4 hollows, Wlll‘lt‘ the rc!c-.
tangles are 3 X 4 solids. Through guides, jigs, and brackcls,. we can be cur%am tlﬁal l]n:
objects are always parallel to the reference axes, as shown in Figure 8.51, and that the
lower left corner of the objects is always at the pixel 1,1. .We want to use the moment
equations only to distinguish the parts from each other. Find one set of luwezfi values t‘i-'
and b in the moment equation that would be able to f]o $0, Wll:h corresponding vz;I.ue.s
for each part. Use the absolute coordinates of each pixel for distances from the corre-
sponding axes.

Solution Using the moment equations, we calculate the different moments for all
four until we find one set that is unique for each object:
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Square with hole  Solid square Fat rectangle Tall rectangle
My, =12 My, =9 Myy =12 Moy =12
My, =30 M,, =18 My, =24 My, =30
M;y=30 M ,=18 M, =130 M,,=24
M, =75 M, =36 M, =60 M, =60
My, =94 My, =42 M,, =56 My, =90

The lowest set of moment indices that yields a unique solution for each object is M,
Of course, M, would result in similar numbers.

Example 8.7

For the image of the screw in Figure 8.52, calculate the area, X, y, M, My, M, My,
@x, My, @y, and the moment invariant. M;; @ y means M, about centroidal y-axis.
Similarly, M, @ x is the moment of inertia about centroidal x-axis.

\ Figure 8.52 Image used for

Example 8.7.

Solution A macro called moments.macro was written for the Optimas™ 6.2 vision
software to calculate the moments. In this program, distances used for moments are all
in terms of the number of pixels and not in units of length. The values were calculated
for five separate cases: horizontal, 30°, 45°, 60°, and vertical. Small variations in the re-
sults are due to rotations. Every time a part of an image is rotated, since every point in
it must be converted with a sine or cosine function, the image changes slightly. Other-
wise, the results are consistent. For example, as the part is rotated in place, the location
of its center of area does not change. Also, the moment invariant is constant, and using
information about the moment of inertia about the centroid, we can estimate the ori-
entation of the part. This information can now be used to identify the object or to di-
rect a Tobot controller to send the robot arm, with the proper orientation, to the
location to pick up the part.

Horizontal 30° 45° 60° Vertical
Area 3713 3747 3772 3724 3713
x 127 123 121 118 113
y 102 105 106 106 104
M,, 38.8 E6 43.6 E6 46.4 E6 47.6 E6 47.8 E6
M, 67.6 E6 62.6 E6 59 E6 53.9E6 478 E6
My, 48.1 E6 51.8 E6 52 E6 49.75 E6 4375 E6
Moment Invariant 7.48 7.5 7.4 7.3 7.48
M,,@Xx 75E6 5.7E6 3.94 E6 2.07 E6 0.264 E6
My, @y 0.264 E6 2.09 E6 3.77E6 5.7E6 7.5 E6

Although the moments.macro program cannot directly be used with other software, we
list it next to show how simply a program can be developed to do similar moment op-
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erations. The Excel part of the program is nothing more than a simple set of Excel
equations that operate on the coordinates of all pixels and, later, are summed up. The

following is a listing of the program:
/*MOMENTS.MAC PROGRAM Written by Saeed Niku, Copyright 1998

This macro checks an active image within the Optimas vision system and records the coordinates
of all pixels above the given threshold. It subsequently writes the coordinates into an- Excel
worksheet, which determines the moments. Moments.mac will then read back and display the
data. The DDE commands communicate the data between Excel and the Optimas macro. If the
number of coordinates is more than 20,000 pixels, you must change the DDEPoke command

below. */

BinaryArray = GetPixelRect (ConvertCalibToPixels(ROI));
INTEGER NewArrayl,]; Real MyArea; Real XBar; Real YBar; .
Real Mymoment02; Real Mymoment20; Real Mymoment11; Real VariantM;

Real MyMXBar; Real MyMYBar;

For(XCoordinate = 0; XCoordinate < = (VectorLength(BinaryArray[0,)-1); XCoordinate ++)

{ ) .
For(YCoordinate = 0; YCoordinate < = (VectorLength(BinaryArray[,0])-1); YCoordinate ++)

{
If (BinaryArray[YCoordinate,XCoordinate] > 100)
{
NewArray ::= XCoordinate : YCoordinate;
}
}

}
hChanSheet1 = DDElnitiate ("Excel,”"Sheet1”);

DDEPoke(hChanSheet1,”R1C1 :R20000C2," NewArray);
DDETerminate(hChanSheet1);

Show("Please Enter to Show Values");

hChanSheet1 = DDE!Initiate ("Excel,”"Sheet1");
DDERequest(hChanSheet1,"R1C14,"MyArea);
DDERequest(hChanSheet1,"R2C14,"YBar);
DDERequest{hChanSheet1,"R3C14,")(Bar);
DDERequest(hChanSheet1,” R4C14,"Mymoment02);
DDERequest{hChanSheeﬂ,"R5C14,"MymomentZO);
DDERequest(hChanSheet1 ,"R6C14,"Mymoment11);
DDETerminate(hChanSheet1);

VariantM:(MyArea*Mymomentzo*1000000.0—)(Bar*)(Bar
+MyArea*Mymoment02*1 000000.0-YBar*YBar)

AMyArea*MyArea*MyArea);

MyMYBar=(Mymoment20*1 000000.0-MyArea*XBar*XBar)/1000000.0;
MyMXBar:(Mymoment02*1000OO0.0-MyArea*YBar*YBar)/1 000000.0;

MacroMessage(“Area=,"MyArea,”\n,"” " XBar=, “XBar,"\n,”
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“YBar=,"YBar,”"\n,” "Moment02=,"Mymoment02,” x10/6,"
“\n,””"Moment20=,"Mymoment20,” x1046,”“\n,"” "Moment11="
Mymoment11,” x1076,”"\n,” “Invariant 1="
,VariantM);

MacroMessage(” Moment20@Xbar=,”"MyMXBar,” x1076,”"\n,”
“Moment02@Ybar=," MyMYBar,” x1076");

8.25.3 Template Matching

Another technique for object recognition is model, or template, matching. If a suit-
able line drawing of a scene is found, the topological or structural elements, such as
the total number of lines (sides), vertices, and interconnections can be matched to
a model. Coordinate transformations (e.g., rotation, translation, and scaling) can
be performed to eliminate the differences between the model and the object result-
ing from differences in position, orientation, or depth between them. This technique
is limited by the fact that a priori knowledge of the models is needed for matching.
Thus, if the object is different from the models, they will not match, and the object
will not be recognized. Another major limitation is that if one object is occluded by
other objects, it will not match a model.

8.25.4 Discrete Fourier Descriptors

In a manner similar to a Fourier transform that is calculated for an analog signal, a
discrete fourier transform (DFT) of a set of discrete points (such as pixels) can be cal-
culated. This means that if the contour of an object within an image is found (such as
in edge detection), the discrete pixels of the contour can also be used for DFT calcu-
lations. The result of a DFT calculation is a set of frequencies and amplitudes in the
frequency domain that describe the spatial relationship of the points in question [16].
To calculate the DFT of a set of points in a plane, assume that the plane is the
complex-number plane, such that each point is described by the relationship x + iy. If
the contour surrounding the set of points is completely traced around, starting from
any pixel, and the locations of the points are measured, the information can be used
to calculate the corresponding frequency spectrum of the set. These frequencies can
then be matched with the frequencies found for possible objects in a lookup table in
order to determine the nature of the object. In one unpublished experiment, matching
eight frequencies yielded enough information about the nature of the object (an air-
plane), and matching 16 frequencies could determine the type of airplane from a large
class of planes. An advantage of this technique is that the Fourier transform can be
normalized for size, position, and orientation very simply. A disadvantage of the tech-
nique is that it requires a complete contour of the object. Of course, other techniques,
such as the Hough transform, can be used to complete broken contours of objects.

8.25.5 Computed Tomography (CT)

Tomography is a technique of determining the distribution of material density in
the part being examined. In computed tomography (CT), a three-dimensional
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image of the density distribution of the object is reconstructed from a large num-
ber of two-dimensional images of the material density taken by different scanning
techniques, such as X-rays or ultrasonics. In computed tomography, it is assumed
that the part consists of a sequence of overlaying slices. Images of the density distri-
bution of each slice are taken repeatedly around the object. Although partial cover-
age of the part has been used as well, a complete coverage of 360° is preferred. The
data are stored in a computer and subsequently are reduced to a three-dimensional
image of the part’s density distribution, which is shown on a CRT. Tomography is
the only efficient technique for mapping the internals of objects.

Although this technique is completely different from the other techniques
mentioned, it is a viable one for object recognition. In many situations, either alone
or in conjunction with other techniques, CT may be the only way to recognize an
object or differentiate it from other, similar objects. Specifically, in medical situa-
tions, a CT scan can be used in conjunction with medical robots, with the three-
dimensional mapping of the internal organs of the human body used to direct the
robot as it performs surgical operations.

8.26 DEPTH MEASUREMENT WITH VISION SYSTEMS

Depth information is extracted from a scene by means of two basic techniques. One
is the use of range finders in conjunction with a vision system and image-processing
techniques. In this combination the scenes are analyzed in relation to the informa-
tion gathered by the range finders about the distances of different portions of an en-
vironment or the location of particular objects or sections of the object in that
environment. Second is the use of binocular or stereo vision. In this technique, as in
humans and animals, two cameras look at a scene simultaneously, or one camera
takes an image of a scene, mOves a certain distance, takes another image, and con-
tinues for multiple images. As long as the scene does not change during this opera-
tion, the results will be the same as that obtained with the use of multiple cameras.
Since the locations of the two cameras in relation to any particular point in the
scene are slightly different, the two cameras will develop slightly different images.
By analyzing and measuring the differences between the two scenes, depth informa-

tion can be extracted.

8.26.1 Scene Analysis vs. Mapping

Scene analysis refers to the analysis of complete scenes of images developed by a
camera or another, similar device. In other words, the image is a complete replica of
the scene, within the limits of resolution of the device. In this case, more processing
is generally required to extract information from the image, but more information
can be extracted. For instance, in order to identify an object within a scene, the
image may have to be filtered and enhanced, as well as segmented by edge detection
or thresholding. Then the part is isolated by region growing and identified by ex-
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tracting its features and comparing them with information in a template or a looku

ttable. By contrast, mapping refers to drawing the surface topology of a scene or obrf
ject where the image consists of a set of discrete distance measurements, usually at
19W resglgtions. The final image is a collection of lines that are linked wit’h the era-
t1ye positions of points on the object at discrete locations. Since the image is alread

shce.d, less processing is required in the analysis of mapped images, but less infor}-’
mation can be extracted from the scene as well. Each technique has,its own merits
benefits, and limitations and is used for different purposes, including navigation. ’

8.26.2 Range Detection and Depth Analysis

Range measurement and depth analysis are performed using many different tech-
niques, such as active ranging [22], stereo imaging, scene analysis, or specialized
lighting. Humans employ a combination of techniques to extract infé)rmation about
'the depth a}nd positional relationship between different elements of an image. Even
in a two-dimensional image, humans can extract useful information from details
such as the changing size of similar elements, vanishing lines, shadows, and the
cl}anglng intensity of textures and shades. Since many artiﬁcial-intellige,nce tech-
niques are based on, and in fact are studied to gain an understanding of, the way hu-

mans do things, a number of depth measurement techniques are designed after
similar human operations [17].

8.26.3 Stereo Imaging

An image is th-e projection of a scene onto the image plane through an ideal lens
Thus, every point in the image will correspond to a certain point in the scene How-'
ever, the distance of the point from the plane is lost in this projection and can.not be
retrieved simply from the single scene. If two images of the same scene are formed
then thg relative depths of different points from the image plane can be extracted b};
comparing the two images; the differences represent the spatial relationship be-
twee.n different points [18,19]. Humans do the same automatically by combining the
two images and forming a three-dimensional one [20,21]. The stereo image used for
depth' measurement is actually considered to be a 2.5-dimensional image; man

more images are required to form a true three-dimensional image. , ’

Depth measurement using stereo images requires two operations:

1L A deterrpination of the point pairs in the two images that correspond to the
same point in the scene. This is called the correspondence or disparity of the
pomt pair. It is a difficult operation to carry out, since some points in one
image may not be visible in another, or because sizes and spatial relationships
may be different in the two images due to perspective distortion.

2. A determination of the depth or location of the point on the object or in the
scene by triangulation or other techniques.
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Camera 2 Camera 2

Camera 1 Camera 1

Cameral Camera?2 Cameral Camera?2

A B B A AB

(a) ®

Figure 8.53 Correspondence problem in stereo imaging.

A B

Generally, if the two cameras (or the relative locations ofa single‘camera.use(.i twice
to get two images of a static scene) are accurately calibrated, triangulation is rela-
tively simple as long as enough corresponding points have ‘been fopnd.

Correspondence points can be determined by matching specific fegtures, §uch
as corners or small segments, from the two images. Depending on their locations,
correspondence points can create matching problems. Consider the two marks A
and B in Figure 8.53. In each case, the two cameras will see the marks as shqwn in
(a) and (b). Although the locations of the marks are different, the cameras will see
them similarly. As a result, the marks may be located wrongly.

The accuracy of depth measurement in stereo imaging depends on the angle
between the two images and thus the disparity between them. However, larger dis-
parities require more searching over larger areas. To improve the accuracy and
reduce computation time, multiple images of the same scene can be': us;d [18]. A
similar technique was employed in the Stanford Cart, wherein the navigation system
would use a camera mounted on a shaft to take multiple images of the scene in
order to calculate distances and find obstacles [23].

8.26.4 Scene Analysis with Shading and Sizes

Humans use the details contained in a scene to extract information about the loca-
tions of objects, their sizes, and their orientation. One of these details is the shading
on different surfaces. Although the smoothly changing intensity of shades on sur-
faces is a source of difficulty in some other operations, such as segmentation, i_t can
be indirectly used in extracting information about the depth gnd shape of objects.
Shading is the relationship between the orientation of the object and the reflected
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light. If this relationship is known, it can be used to derive information about the ob-
ject’s location and orientation. Depth measurement using shading requires a priori
knowledge of the reflectance properties of the object and exact knowledge of the
light source. As a result, its utility is limited and difficult.

Another source of information to be used for depth analysis is the texture gra-
dient, or the changes caused in textures as a result of changes in depth. These varia-
tions are due to changes in the texture itself, which is assumed to be constant,
changes in the depth or distance (scaling gradient), or changes in the orientation of
the plane (called the foreshortening gradient). An example is the perceived change
in the size of bricks on a wall. By calculating the gradient of the brick sizes on the
wall, a depth can be estimated.

8.27 SPECIALIZED LIGHTING

Another possibility for depth measurement is to utilize special lighting techniques
that will yield specific results, which can then be used to extract depth information.
Most of these techniques have been designed for industrial applications where spe-
cialized lighting is possible and the environment is controlled. The theory behind
the technique is that if a strip of light is projected over a flat surface, it will generate
a straight line in relation to the relative positions and orientations of the plane and
light source. However, if the plane is not flat and an observer looks at the light strip
in a plane other than the plane of the light, a curved or broken line will be observed.
(See Figure 8.54.) By analyzing the reflected light, we can extract information about
the shape of the object, its location, and its orientation. In certain systems, two
strips of light are used such that in the absence of any object on the table, the two
strips will intersect exactly on the surface. When an object is present, the two strips

Camera

Plane of
light

The image as
seen by the camera

Figure 8.54 Application of a strip of light in depth measurement. A plane of light
strikes the object. The camera, located at a different angle than that of the plane
of light, will see the reflection of the light plane on the object as a curved line. The
curvature of the line is used to calculate depth.
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of light develop two reflections. The reflections are picked up by a camera, and a
routine calculates the object’s features and reports them. A commcrma}l system
based on this technique was developed by GM and is called CONSIGHT T A dis-
advantage of the technique is that only information about the points tha_t are lit can
be extracted. Thus, in order to have information about the complete image, 1t is

necessary to scan the entire object or scene.

8.28 IMAGE DATA COMPRESSION

Electronic images contain large amounts of information and thus require data
transmission lines with a large bandwidth capacity. The requirements for the tem-
poral and spatial resolution of an image, the number of imagcs. per second, and.the
number of gray levels (or colors for color images) are determined by tl}e required
quality of the images. Recent data transmission anq storfigc techm_qu_es have
significantly improved image transmission capabilities, including transmission over
the Internet. .

Although there are many different techniques of data compression, oply some
of them relate directly to vision systems. (The subject of data transmission in gener-
al is beyond the scope of this book and will not be discussed here.) Image.data com-
pression techniques are divided into intraframe (within-frame) and interframe

(between-frame) methods.

8.28.1 Intraframe Spatial Domain Techniques

Pulse code modulation (PCM) is a popular technique of data transmissiop in which
an analog signal is sampled, usually at the Nyquist rate (a rate th'at will prevent
aliasing), and quantized. The quantizer will have N levels, where Nis a power of 2
If N is 8, then 28 will yield a quantizer with 256 different gray levels (a}n eight-bit
image quantizer). This arrangement is very common for televia?ion-typq images and
vision systems. Certain other applications (e.g., space and medical applications) use
higher resolutions, such as 2! or 2", _
In a technique called pusedorandom quantization dithering [24], random noise
is added to pixels’ gray values to reduce the number of bits necessary to represent
the image with the same quality as the original. If the number of bits in a quantizer
is reduced without any dithering, contouring will take place. Due to the smaller
number of available gray levels in the image, there will be contours of gray !ev;ls
in the image that make it look like a topological map. (See Section 8..11 and Fig-
ure 8.14.) These contours can be broken up by adding a small amount of l{)roadband
psuedorandom, uniformly distributed noise, called dither, to }he signal prior to sam-
pling. The dither causes the pixel to oscillate about the original quantization level,
removing the contours. In other words, the contours are forced to randt_amly .make
small oscillations about their average value. The proper amount of noise will en-
able the system to have the same resolution while the number of bits is reduced

significantly.
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Another technique of data compression is to use halftoning. In this technique,
a pixel is effectively broken up into a number of pixels by increasing the number of
samples per pixel. Instead, every sample is quantized by a simple one-bit binary
quantizer into a black or a white pixel. Since the human eye will average the groups
of pixels, the image will still look gray and not binary.

Predictive coding refers to a class of techniques that are based on the theory
that, in highly repetitive images, only the new information (innovations) need be
sampled, quantized, and transmitted. In these types of images, many pixels remain
without change for many images. Thus, data transmission can be significantly re-
duced if only the changes between successive images are transmitted.

A predictor is used to predict an optimum value for each pixel, based on the in-
formation obtained from the previous images. The innovation is the difference be-
tween the actual value of the pixel and the predicted value. The predicted value is
transmitted by the system to update the previous image. If, in an image, many pixels
remain the same, innovations are few and transmission is reduced. In many situa-
tions, the images are highly repetitive, elements do not move fast, and large portions
of any image, such as the background, do not change. Thus, predictive coding can be
used effectively.

In an attempt to reduce the amount of data transmission by the Voyager 2
spacecraft, its computers were reprogrammed to use a differential coding tech-
nique while the vehicle was in space. At the beginning of its journey into space,
Voyagers system was designed to transmit information about every pixel at a
256-gray-level scale. It took 5,120,000 bits to transmit one image, not including error
detection and correction codes, which were about the same length. Beginning with
the Uranus flyby, the system was reprogrammed to send only the difference between
successive pixels, rather than the absolute brightness of the pixels. Thus, if there were
no differences between successive pixels, no information would be transmitted. In
scenes such as those in space, where the background is essentially black, many pixels
are similar to their neighbors; hence, data transmission was reduced by about 60%
[25]. Other examples of fixed background information include TV news sets, theatri-
cal sets, and industrial images.

In constant-area quantization, or CAQ [26,27], data transmission is reduced by
transmitting fewer pulses at lower resolution in low-contrast areas compared with
high-contrast areas. This practice, in effect, takes advantage of the fact that higher
contrast areas have higher frequency content and require more information trans-
mission than lower contrast areas.

8.28.2 Interframe Coding Techniques

These methods take advantage of the redundant information that exists between suc-
cessive images. The difference between interframe coding techniques and the intra-
frame methods is that, rather than using the information within one image, a number of
different images are used to reduce the amount of information transmitted.

A simple technique to achieve this aim is to use a frame memory at the re-
ceiver. The frame memory will hold an image and will continually show it at the display.
When information about any pixel is changed, the corresponding location in the frame
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memory is updated. Thus, the rate of transmission is significantly reducgd. The c_lis-
advantage of this technique is that there is flickering in the presence of rapidly moving

elements.

8.29 REAL-TIME IMAGE PROCESSING

In many of the techniques considered so far, the image is digitized and storeq before
processing. In other situations, although the image is not st_ored, the' processing rou-
tines require long computational times before they are ﬁr_nshed. This means that, in
general, there is a long lapse between the time an image is taken and t.he‘: time a re-
sult is obtained. This may be acceptable in situations in which the dec1§1ons do not
affect the process. However, in other situations, there is need for rcal-tlmf‘: process-
ing such that the results are available in real time or in a short c.nough time to be
considered real time. Two different approaches are considered for real-time pro-
cessing. One is to design dedicated hardware such that the processi_ng is fa§l enough
to occur in real time [28]. The other is to try to increase the efficiency of both the
hardware (or parts of it) and the software and thereby reduce processing and com-
putational requirements such that the required times become shorter and clgser to
real times. In many situations, although a process does not truly h‘alppeq in real
time, compared with the speed of changes in the system and the decision time, the
processing time is fast enough to be considered real time.

8.30 HEURISTICS

Heuristics are a collection of rules of thumb that are developed for semiintelligent
systems in order to enable them to make decisions based on the current sit}lauo.n.
Heuristics are used in conjunction with mobile robots, but have applications 1n
many fields.

Consider a mobile robot that is supposed to navigate through a maze. Irna_g-
ine that the robot starts at a point and is equipped with a sensor which a]_erts its
controller that the robot has reached an obstacle such as a wall. At this point, the
controller has to decide what to do next. Let’s say that the first rule is that, when.er%-
countering an obstacle, the robot should turn left. As the robot continues, if it
reaches another wall, it will turn left again and continue. Suppose that after three
left turns the robot reaches the starting point. In this case, should it continue to
turn left? Obviously, doing so will result in a never-ending loo[x The second rulf:
may be to turn right if the first point is encountered. Now imagine that after a left
turn, the robot gets to a dead end. Then what? A third rule may be to trace ]DE.le
the path until an alternative route can be found. As you see, then'a are many differ-
ent situations the robot may encounter. Each one of these sitnations rgust be con-
sidered by the designer, and a decision must be provided. The collection gf these
rules will be the heuristics rule base for the controller to “intelligently” decide how
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to control the motions of the robot. However, it is important to realize that this in-
telligence is not a true intelligence, since the controller is not really making deci-
sions, but merely selects from a set of decisions that have already been made. If a
new situation is encountered that is not in the rule base, the controller will not
know how to respond [29].

8.31 APPLICATIONS OF VISION SYSTEMS

Vision systems may be used in many different applications, sometimes in con-
junction with robotic operations and robots. Vision systems are commonly used
for operations that require information from the work environment and that in-
clude inspection, navigation, the identification of parts, assembly operations, and
communication.

Suppose that in an automatic manufacturing setting, a circuit board is to be
manufactured. One important part of this operation is the inspection of the board at
different stages — before and after certain operations. A very common application
for vision systems is to set up a cell wherein an image of the part to be inspected is
taken. Subsequently, image-processing routines are used to modify, improve, and
alter the image. Then the processed image is compared with an image from the
memory. If there is a match, the part is accepted. Otherwise, the part either is re-
jected or is repaired. This image-processing-and-analysis operation generally is
made up of the processes that were mentioned earlier. Most commercial vision sys-
tems have embedded routines that can be called from a macro, making it very easy
to set up such a system.

In navigation, a scene is usually analyzed in order to find acceptable pathways,
obstacles, and other elements that confront a robot. In some operations, the vision
system sends its information to an operator, who controls the motions from a dis-
tance. This configuration is very common in telerobotics, as well as in space applica-
tions [30]. In some medical applications, too, the surgeon guides the device, be it a
surgical robot or a small investigative, exploratory device that produces an an-
giogram through its operations. Autonomous navigation requires the integration of
depth measurement with the vision system, either by stereo vision analysis or by
range finders. It also requires heuristic rules of behavior for the robotic device to
navigate around an environment.

In another application [31,32], an inexpensive laser diode was mounted next to
a camera. The projected laser light was captured by the camera and was used to
measure the depth of a scene, as well as to calibrate the camera. In both cases, due
to the brightness of the laser light and bleeding effects, the image contained a large,
bright circular spot. To identify the spot and separate it from the rest of the scene,
histogram and thresholding operations were used. Subsequently, the circle was
identified and then skeletonized until only its center remained. The location of the
pixel representing the center of the circle was then used in a triangulation method
to calculate the depth of the image or to calibrate the camera.
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These simple examples are all related to what we have discussed. Although many
other routines are available, fundamental knowledge about vision systems enables one
to proceed with an application and adapt to it what vision systems have to offer.

8.32 DESIGN PROJECT

There are many inexpensive digital cameras on the market that can be used to cre-
ate a simple vision system. These cameras are simple, small, and lightweight and
provide a simple image that can be captured by computers and be used to develop a
vision system. In fact, many cameras come with software to capture and digitize an
image. Standard VHS video cameras can also be used in conjunction with products
such as Snappy'", which allows you to digitize and save images in your computer.
You may also use a standard digital camera to capture an image and to download
the image into your computer. In this case, although you can capture an image for
later analysis, due to the additional steps involved in downloading the image from
the camera to the computer, the image is not available for immediate use.

There are many simple programs, such as Adobe Photoshop ™, that have many
routines similar to those we have discussed in this chapter. Additional routines may
be developed using common computer languages, such as C. The final product will
be a simple vision system with some vision capability that can be used to perform
vision-related tasks. This development may be done independently or in conjunc-
tion with a three-axis robot and can include routines for identifying and picking up
parts, developing mobile robots, and creating other, similar devices.

All images shown in this chapter were captured and processed by the vision
systems including MVS909™ and Optimas™ 6.2 vision systems, in the Mechanical
Engineering Robotics laboratory at Cal Poly, San Luis Obispo, CA. You may also
develop your own simple vision system using other programming languages and sys-
tems that can handle an image file. Among these systems are Excel ™ LabView ",
and other development systems.

8.33 SUMMARY

In this chapter, we studied the fundamentals of capturing an image, image process-
ing to modify, alter, improve, or enhance an image, and image analysis through
which data can be extracted from an image for subsequent application. Vision sys-
tems may be used for a variety of applications, including manufacturing, surveil-
lance, navigation, and robotics. Vision systems are flexible, inexpensive, powerful
tools that can be used with ease.

There are countless different routines that can be used for variety of purposes.
Most of these routines are created for specific operations and applications. However,
certain fundamental techniques, such as convolution masks, can be applied to many
classes of routines. We have concentrated on these techniques, which enable you to
adopt, develop, and use other routines and techniques for other applications. The
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advan.c'es in techpology ha_\ve created tremendous opportunities for vision system
and vision analysis. There is no doubt that the trend will continue into the future

REFERENCES

1. Madonick, N., “Improved CCDs for Industrial Vi N i ;
s id M i
pp. 167-172. €o,” Machine Design, April 1982,

2. Wilson, A., “Solid-State C i L ] . ‘
pp. 3846, amera Design and Application,” Machine Design, April 1984,

3. “A 640 X 486 Long-Wavelength Infrared Camera,” NA i
pp. 44-47. a, SA Tech Briefs, June 1999,

4. Meagher, J., Fourier.xle Program, Mechanical Engi i i
her, J., rier.x A gineering Department, Cal i -
technic State University, San Luis Obispo, CA, 1999. = nt. California Poly

5. Doudoumopoulos, Roger, “On-Chi i i i i
. , , p Correction for Defective Pixel -
sor,” NASA Tech Briefs, May 2000, p. 34. i an fmage Sen

. Gonzalez, R. C,, Richard Woods, Digital Image Processing, Addison-Wesley, 1992,
Low, Adrian, Introductory Computer Vision and Image Processing, McGraw-Hill, 1991,
. Horn, B.K.P., Robot Vision, McGraw-Hill, 1986.

. Edge Detectl()ll fOI C()Ill[)uteI V1S10 y te luecha”lcal F:’l neer-
IIlldI eth Ellen, n S S 3
? m g

10. Olson, Clark, “Image Smoothing and Ed i i
s ) ge Detection Guided by St “
Tech Briefs, September 1999, pp. 68-69. y Stereoscopy,” NASA

11. G]()()Ve] ]V[. I. et al. Indusl' lal RObOthS Technolo 1 rogrammin a’ld Appllcatlons
H 4 ’ > gy’ g g»‘ il

12. Hough, P. V. C. iving
o 9g,654, = , A Method and Means for Recognizing Complex Patterns, U.S. Patent

13. ?llingworth, 1, J. Kittler, “A Survey of the Hough Transform,” Computer Vision, Graph-
ics, and Image Processing, Vol. 44,1988, pp. 87-116. ,

14. Kanade, T., “Survey; Region Se, ion: Si .
» Lo 5 gmentation: Signal vs. Semantics,” C ¢ :
and Image Processing, Vol. 13, 1980, pp. 279-297. omputer Graphics

15. Snyder, Wesley, Industrial Robots: Computer Interfacing and Control, Prentice Hall, 1985.

16. Gonzalez, Raf Wi i . i
Wldios afael, P. Wintz, Digital Image Processing, 2d ed., Addison-Wesley, Reading,

17. ?}ijou, S. P, R. C. J.ain, “Road Following Using Vanishing Points,” Proceedings of
: E4E1 C;‘06mputer Society Conference on Computer Vision and Pattern Recognition, 1986
p‘ N . e 3

18. Nevatia, R., Machine Perception, Prentice-Hall, 1982.

19. Iu K. S. GOIIZale R. - cC C S G RObOthS C -
z, (: 5 L 3 .. .y y ontr Ol, Se”s"l f [’ ision a’ld lfllell
’ ? g > l

20. Marr,D., T. P<.)ggi0, “A Computational Theory of Human Stereo Vision,” Proceedings of
the Royal Society, London, B204, 1979, pp. 301-328.

21. Marr, D., Vision, Freeman and Co., 1982.
22. Pipitone, Frank, T. G. Marshall, “A Wide-field Scanning Triangulation Rangefinder for

O o o




308 Chapter8 Image Processing and Analysis with Vision Systems

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

Machine Vision,” International Journal of Robotics Research, Vol. 2, No. 1, Spring 1983,
pp. 39-49.
Moravec, H. P, “Obstacle Avoidance and Navigation in the Real World by Seeing Robot
Rover,” Stanford Artificial Intelligence Laboratory Memo, AIM-340, Sep. 1980.
Thompson, J. E., “A 36-Mbit/s Television Coder Employing Psuedorandom Quantiza-
tion,” IEEE Transactions on Communication Technology, COM-19, No. 6, Decem-
ber 1971, pp. 872-879. '
Goldstein, Gina, “Engineering the Ultimate Image, The Voyager 2 Mission,” Mechanical
Engineering, December 1989, pp. 30-36.
Pearson, J. J., R. M. Simonds, “Adaptive, Hybrid, and Multi-Threshold CAQ Algo-
rithms,” Proceedings of SPIE Conference on Advanced Image Transmission Technology,
Vol. 87, August 1976, pp. 19-23.
Arnold, J. E, M. C. Cavenor, “Improvements to the CAQ Bandwidth Compression Scheme,”
IEEE Transactions on Communications, COM-29, No. 12, December 1981, pp. 1818-1822.
McHugh, Peter, “Vision and Manufacturing,” NASA Tech Briefs, June 1999, pp. 36, 37.
Chattergy, R., “Some Heuristics for the Navigation of a Robot,” International Journal of
Robotics Research, Vol. 4, No. 1, Spring 1985, pp. 59-66.
Ashley, Steven, associate editor, “Roving Other Worlds by Remote,” Mechanical Engi-
neering, July 1997, pp. 74-76.
Niku, S. B., “Active Distance Measurement and Mapping Using Non Stergn Vision Sys-
tems,” Proceedings of Automation '04 Conference, July 1994, Taipei, Taiwan, R.O.C,,
Vol. 5, pp. 147-150.
Niku, S. B., “Camera Calibration and Resetting with Laser Light,” Proceedings of the
Third International Conference on Mechatronics and Machine Vision in Practice, Septem-
ber 1996, Guimaraes, Portugal, Vol. 2, pp. 223-226.

PROBLEMS

If you do not have access to an image, simulate the image by creating a file ca}lleq I,.,, where
m and n are the row and column indices of the image. Then, using the fo!lowmg image
matrix, create an image by substituting 0's and 1s or gray-level numbers in the file:

12345678 9101112131415

O 0 ~1 N W
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In a binary image, the 0’s represent “off,” dark, or background pixels, while 1’ repre-
sent “on,” light, or object pixels. In gray images, each pixel is represented by a correspond-
ing grayness value. A computer routine can then be written to access this file for image data.
The result of each operation can be written to a new file, such as R, ,, where R represents
the result of the operation and m and » are the row and column indices, respectively, of the
resulting file.

Alternatively, you may use your own graphics system or any commercially available
graphics language to create, access, and represent an image.

1. Write a computer program for the application of a 3 X 3 averaging convolution mask
onto a 15 X 15 image.

2. Write a computer program for the application of a 5 X 5 averaging convolution mask
onto a 15 X 15 image.

3. Write a computer program for the application of a 3 X 3 high-pass convolution mask
onto a 15 X 15 image for edge detection.

4. Write a computer program for the application of an n X n convolution mask onto a
k X k image. Write the routine such that the user can choose the size of the mask and
the values of each mask cell individually.

5. Write a computer program that will perform the left—right search routine for a 15 X 15
image.

6. Using the left-right search technique, find the outer edge of the object shown in Fig-
ure P.8.6.

Figure P.8.6

7. Write a computer program that will perform a region-growing operation based on +4-
connectivity. The routine should start at the 1,1 corner pixel, search for a nucleus, grow
a region with a chosen index number, and, after finishing that region, continue searching
for another nucleus until all object pixels have been checked.

8. Using +4-connectivity logic and starting from the pixel 1,1, write the sequence of pixels,

in the correct order, that will be detected by a region-growing routine for the image
shown in Figure P.8.8.
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9. Write a computer program in which different moments of an (?bject in an image canb
be calculated. The program should query you for moment indices. The results may be
reported to you in a new file or may be stored in memory. -

10. For the 10 X 10 binary image of the key shown in Figure P.8.10, calculate the following:

e Perimeter, based on the left—right search technique.

Area

Center of gravity. . 9.1 INTRODUCTION
o Moment M, about the origin (pixel 1,1) and about the lowest pixel of a rectangular
box around the key. Consider the following statement: Tuesday, October 26 was supposed to be a very
warm day in San Luis Obispo, and in fact it turned out to be pretty hot. When the ro- |
. botics lab was opened in the morning, we found out that the steam line had leaked into
1234 5678351 . the room, and much heat and humidity had been released into the environment. When
the hydraulic power unit for the robots was turned on, it added even more heat to the
lab, raising the temperature even further. Eventually, it got so hot that we had to bring
in large fans to cool down the lab a bit to make it a little more comfortable for students.

This true statement is a very good example of what fuzzy logic is about. Let’s
look at the statement again, noticing the italicized words:

Tuesday, October 26 was supposed to be a very warm day in San Luis Obispo,
and in fact it turned out to be pretty hot. When the robotics lab was opened in the
morning, we found out that the steam line had leaked into the room, and much heat
and humidity had been released into the environment. When the hydraulic power
unit for the robots was turned on, it added even more heat to the lab, raising the
temperature even further. Eventually, it got so kot that we had to bring in large fans

Figure P.8.10. to cool down the !ab a bit to make it a little more comfortable fo'r students. |

As you see, in this statement, there are a number of “descriptors” used to state |
certain conditions that are not very clear. For example, when we state that the day
was supposed to be very warm, what do you think it was supposed to be? 85°F? Or
maybe 100°F? In fact, if you live in San Luis Obispo, even 80°F may be a warm day.
Then, as you can see, this description of the temperature is in fact fuzzy. It is not
very clear what the temperature may be. As you go on, the statement continues to
be fuzzy. We also don’t know exactly what is meant by so hot, or a bit, or large fans.
How large? How much cooler did the temperature get when we turned on the fans?
Now I suggest that you read the paragraph you are reading once again and see how
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