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0.1 Introduction

A very large body of work is associated with vision systems, image processing,.and pat}tlern
recognition that addresses many different halrdware.and software related topics on ti desce1
subjects. This information has been accumulated since the 1950s, and w1th. tl'le adde

interest in the subject from different sectors of the industry and economy, 1t 1s rapidly
growing. The enormous number of papers published every year 1nd.1cates that ngly
useful techniques constantly appear in the literatu're. At Fhe same time, it al§o means-t at
many of these techniques may be suitable for certain apphcagons only. In tbls chapt'el, we
will study and discuss some fundamental techniques for image processing apd nnage.
analysis, with a few examples of routines developed fpr certain purposes. This chapter
does not intend to be a complete survey of all possible vision routines, but only. an
introduction. If interested, it is recommended that you continue studying the subject

through other references.

9.2 Basic Concepts

The following sections include some fundamental definitions of terms and basic concepts
that we will use throughout the chapter.

9.2.1 Image Processing versus Image Analysis

Image processing relates to the preparation of an image for later analysis and use. Images,
as captured by a camera or other similar techniques (such as a scanner), are not necessarily
in a form that can be used by image analysis routines. Some may need improvement to
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reduce noise; some may need to be simplified; others may need to be enhanced, altered,
segmented, filtered, and so on. Image processing is the collection of routines and
techniques that improve, simplify, enhance, and otherwise alter an image.

Image analysis is the collection of processes by which a captured and processed image is
analyzed to extract information about the content and to identify objects or other related
facts about the objects within the image or the environment.

9.2.2 Two- and Three-Dimensional Image Types

Although all scenes are three-dimensional, images can either be two-dimensional
(lacking depth information) or three-dimensional (containing depth information).
Most images with which we normally deal, obtained by cameras, are two-dimensional.
However, other systems such as Computed Tomography (CT) and CAT-scans create
three-dimensional images that contain depth information. Therefore, these images can
be rotated about different axes in order to better visualize the depth information. A two-
dimensional image is extremely useful for many applications even though it has no depth
information. This includes feature extraction, inspection, navigation, parts handling, and
many more.

Three-dimensional images are used with applications that require motion detection,
depth measurement, remote sensing, relative positioning, and navigation. CAD/CAM-
related operations also require three-dimensional image processing, as do many inspec-
tion and object recognition applications. For three-dimensional images, either X-rays or
ultrasonics are used to get images of one slice of the object at a time; later, all images are
put together to create a three-dimensional image representation of the internal character-
istics of the object.

All three-dimensional vision systems share the problem of coping with many-to-one
mapping of scenes to images. To extract information from these scenes, image processing
techniques are combined with artificial intelligence techniques. When the system is
working in environments with known characteristics (e.g., controlled lighting), it
functions with high accuracy and speed. On the contrary, when the environment is
unknown or noisy and uncontrolled (e.g., underwater operations), the systems are not

very accurate and require additional processing of the information, and therefore, operate
at lower speeds.

9.2.3 The Nature of an Image

An image is a representation of a real scene, either in black and white (B/W) or in color,
and either in print or in digital form. Printed images may be reproduced either by
multiple colors and gray scales, such as CMYK in color print or halftone black and white
print, or by a single ink source. For example, to reproduce a photograph with real
halftones, we use multiple gray inks, which when combined, produce a somewhat
realistic image. However, in most print applications, only one ink color is available (such
as black ink on white paper in a newspaper or copier). In this case, all gray levels must be
produced by changing the ratio of black versus white areas (the size of the black dot).
Imagine that a picture to be printed is divided into small sections. In each section, if the
ink portion of the section is smaller than the white, the section will look a lighter gray
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Figure 9.1 Examples of how gray intensities are created in printed images. In print, only
one color ink is used, while the ratio of black to white area of the pixel is changed to create

different gray levels.

(Figure 9.1). If the black ink area is larger than the white area, it will look a darker gray.

By changing the size of the printed dot, many gray levels may be produced and,/

collectively, a gray scale picture may be printe_d.h . - . 1

Similar to printed images, electronic and digital images are a]:so‘ divided into sma11
sections called picture cells, or pixels (in three-dimensional images, it 1s called Y01L1111.e ce 7
or voxel), where the size of all pixels is the same. To capture an 1mage, the 11‘1tens1;y ;)1
each pixel is measured and recorded; similarly, to recreate an image, the intensity lof 1;(; t
at each pixel location is varied. Therefore, an image ['.IlC is rl:}e‘ cm?l]cctmn of ‘t‘u&: LE}‘{.IR
representing the light intensities of a large nunﬂ.bq of plxr_-:}s. This file can be l’t.LI’LFlt{;lt ,
processed, modified, or analyzed. A color image is essentially the same, except t}mt the
original image is separated into three images t)‘f‘l‘{;‘{l, grccn._a.nd blue before capturing and
digitization. When the three colors with different intensities at each pixel location are
superimposed, color images are recreated.

9.2.4 Acquisition of Images

There are two types of vision cameras: analog and digital. Analog cameras are no 10.11ger
common but are still around and used to be the standard camera at teleui1s‘1on stations.
Digital cameras are the current standard and are practically all t!w same. A digital moving-
picture camera is similar to a digital still-camera plus a recording section; otl}cr\vlsc, thc-
mechanism of image acquisition is the same. Wheth‘cr the cal:.)tl:u'ed image is analog‘ or
digital, in vision systems, the image is eventually digitized. I.n ch.gftal systems, all Cl{-ll':\ isin
binary form and is stored in a computer file or memory device. T l}m:efm'c.‘ we ultimately
deal with a file of numbers 0 and 1, from which we extract information and make
decisions. y |

Appendix B presents a short discussion about :11'1;1]‘0g :End digital cameras and ]10\:\{ r.:;e
image is captured. The final outcome of these systems isa fllC.! that contains scquenn:.d pixel-
location and pixel-intensity data that we use in our L‘IISCLISS.I(.‘N?IS. Refer to Appendlx B for
understanding the fundamental issues about image acquisition. For more information
about details of these systems, refer to digital data acquisition references.

9.2.5 Digital Images

The light intensities at each pixel location are measured and converted to digital form
regardless of the type of camera or image acquisition system. The data is either stored in
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Figure 9.2 An image and the binary representation of its first row using 4 bits per pixel.

memory, in a file, or in recording devices with an image format such as TIFF, JPG,
Bitmap, and so on, or is displayed on a monitor. Since it is digitized, the stored
information is a collection of Os and 1s that represent the intensity of light at each pixel; a
digitized image is nothing more than a computer file that contains the collection of these
0Os and 1s, sequentially stored to represent the intensity of light at each pixel. However,
these files can be accessed and read by a program, duplicated and manipulated, or
rewritten in a different form. Vision routines generally access this information and
perform some function on the data and either display the result or store the manipulated
result in a new file. A fundamental issue is to be able to extract information or manipulate
this collection of 0 and 1 values in a meaningful way.

To understand this better, consider the simple low resolution image in Figure 9.2.
Each pixel is referred to by row and column numbers. Assuming the system is digitized
with only 4 bits (we will discuss this further shortly), there will be up to 2* = 16 distinct
light intensities possible. The sequence of 0 and 1 numbers representing the first row of
the image will look as shown in the figure (all with only 4 bits per pixel). Different file
formats list these numbers differently. In a simple Portable Gray Map (PGM) format, the
intensities are listed sequentially as shown. A header at the beginning of the file will
indicate the number of pixels in each row and column (in this case, it is 12 x 12). The
program knows that every 4 bits is 1 pixel. Therefore, it can access each pixel intensity
directly. However, as you notice, the file is reduced to a string of 0 and 1 values, to which,
image processing routines are applied, and from which, information is extracted. Now
imagine the size of the string of 0 and 1 values that represents a large image (sometimes in
mega-pixel range) at up to 24 bits per pixel, for three primary colors.

An image with different gray levels at each pixel location is called a gray image. A color
image results by superimposing three images of red, green, and blue hues (RGB), each
with a varying intensity and each equivalent to a gray image (but in one of the three hues).
Therefore, when the image is digitized, it will similarly have strings of Os and 1s for each
hue (an alternative way is to assign a number to each color, all declared in a header at the
beginning of the image file. Then the number representing the pixel represents the color
reference and intensity). A binary image is an image where each pixel is either fully light
or fully dark, either a 0 or a 1. To achieve a binary image, in most cases, a gray image is
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converted using the histogram of the image and a cut-off value called a threshold. A
histogram of the pixel gray levels will determine the distribution of the different gray
Jevels. We can pick a value that best determines a cut-off level with the least distortion
and use this value as a threshold to assign a 0 (or off) to all pixels whose gray levels are
below the threshold value and to assign a 1 (or on) to all pixels whose gray values are
above the threshold. Changing the threshold will change the binary image. The
advantage of a binary image is that it requires far less memory, and it can be processed
much faster than gray or colored images.

9.2.6 Frequency Domain versus Spatial Domain

Many processes used in image processing and analysis are either based on frequency domain
or on spatial domain. In frequency domain processing, the frequency spectrum of the image
is used to alter, analyze, or process the image. In this case, the individual pixels and their
contents are not used. Instead, a frequency representation of the whole image is used for the
process. In spatial domain processing, the process is applied to the individual pixels of the
image. As a result, each pixel is affected directly by the process. Both techniques are equally
important and powerful and are used for different purposes. It should be noted here that
although spatial and frequency domain techniques are used differently, they are both
related. For example, suppose a spatial filter is used to reduce noise inan image. Asaresultof
this filter, noise level in the image will be reduced, but at the same time, the frequency
spectrum of the image will also be affected due to this reduction in noise.

The following sections discuss some fundamental issues about frequency and spatial
domains. This discussion, although general, will help us throughout the entire chapter.

9.3 Fourier Transform and Frequency Content of a Signal

As you may remember from your mathematics or other courses, any periodic signal may
be decomposed into a collection of sines and cosines of different amplitudes and
frequencies, called Fourier series, as follows:

o) (0]
f(t) :%0-{— ;ancos nwt + ;bn sin nwt (9-1)

When these sines and cosines are added together, the original signal is reconstructed.
This conversion to frequency domain is called Fourier series, and the collection of
different frequencies present in the equation is called frequency spectrim or frequency content
of the signal. Of course, although the signal is in the amplitude-time domain, the
frequency spectrum is in the amplitude-frequency domain. To understand this better,
let’s look at an example.

Consider a signal in the form of a simple sine function like f(¢) = sin(¢). Since this
signal consists only of one frequency and a constant amplitude, the frequency spectrum
representing it consists of a single value at the given frequency, as shown in Figure 9.3.
Obviously, if we plot the function represented by the arrow in Figure 9.3(b) with the
given frequency and amplitude, we will have the same sine function reconstructed. The

1
plots in Figure 9.4 are similar and represent f(f) = Z —sin(nt). The frequencies are
n=13--15 ,

flit)=sin(1)

9.3 Fourier Transform and Frequency Content of a Signal

355

/) \ ]

N [\

-]
-

Amplitude
Bk

L2

Amplitude

&
L

LI

L

P Frequency

(@) b

Figure 9.3 Time domain and frequency domain plots of a simple sine function.

also plott.ed in the frequency-amplitude domain. As you can see, when the number of
frequencies contained in f(t) increases, the summation gets closer to a square
function.

' Figure 9.5(a) shows a signal from a sensor and its frequency content. Although the
signal is not a true sine function, the dominant frequency is 0.75 Hz. However, due to
these discrepancies and the variations in the signal, the frequency spectrum contair,ls many

f(O)=sin(t)+(1/3)sin(3t)
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Figure 9.4 Sine functions in time and frequency domains for a successive set of

frequ_enc1es. As the number of frequencies increases, the resulting signal gets closer to a square
function.
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— frequencies in the spectrum, generally there will be some major frequencies within the
= spectrum with larger amplitudes called harmonics. These major frequencies or harmonics
are used in identifying and labeling a signal, including recognizing voices, shapes, objects,
and the like.

? 9.4 Frequency Content of an Image; Noise, Edges

i Figure 9.6 shows a low resolution artificial image and a graph of its pixel intensities versus
‘ their positions. A representation such as this may be obtained when an image is scanned
by an analog camera or a frame grabber is used with a digital system to sample and hold
the data (see Appendix B). The graph is a discrete representation of varying amplitudes
s ot showing the intensity of light at each pixel (or versus time). Let’s say we are on the 9th
Frequency row and are looking at pixel numbers 129-144. The intensity of pixel number 136 is very
different from the ones around it and may be considered noise, which is generally
information that does not belong to the surrounding environment. The intensities of
— pixels 134 and 141 are also different from the neighboring pixels and may indicate a
| : transition between the object and the background, and therefore, can be construed as an
N e B B 1 edge of the object.
/\J’.\/""‘"W : ' 7 L ndr Y _ Although this is a dis_crete (digitized) signal, as discussed earlier, it may be transformed
et o e T A 1 6 S _J L into a large number of sines and cosines with different amplitudes and frequencies which,
hgge ifadded, will reconstruct the signal. As discussed earlier, portions of the signal that change
slowly, such as small changes between succeeding pixel gray values, will require fewer
sines and cosines to be reconstructed, and consequently, contribute more low frequencies
to the spectrum. On the other hand, parts of the signal that vary quickly or significantly,
such as large differences between pixel gray levels, require a large number of higher
10 Hz frequencies to be reconstructed and, as a result, contribute more high frequencies to the
) spectrum. Both noises and edges are among cases where one pixel value is substantially
(®) different from the neighboring pixels. Therefore, noises and edges contribute to the
higher frequencies of a typical frequency spectrum, whereas slowly varying gray level sets
of pixels, representing the object, contribute to the lower frequencies of the spectrum.
If a high frequency signal is passed through a low-pass filter—a filter that allows lower
other frequencies. Figure 9.5(b) shows a signal with more Frcq}lem: variations :mcli i'ts frequencies through without much attenuation in amplitude, but which severely
frequency spectrum. Clearly, many more sine and cosine ﬁrmcnons must be addu‘ in
order to reconstruct this signal; therefore, the spectrum contains many more frcqucnt:{es.
Theoretically, to reconstruct a square wave from sin(_e functions, an infinite nu mbm}qf 0 o
sines must be added together. Since a square wave function represents a sharp chang_e, t;ls
means that rapid changes (such as an impulse, a plllsg. square wave, or other snmlar
functions) decompose into a large number of ﬁ'equen(:@& The s}mrpcr thr% change, ]l:w-
higher the number of frequencies needed to reconstructit. Theretore, any Hgeo e 1 5 oo 0
signal that contains sharp changes (noise, edges, high contrasts, mllpulse, step fugctlon) (03¢
has detailed information (high resolution signals with fast, varying changes) will have a
larger number of frequencies in its frequency spectrun. st 1 10
A similar analysis can be made on nonrepeating signals too (called Fourier Transform,
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Figure 9.5 Two signals and their frequency spectrums.
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attenuates the amplitudes of the higher frequencies in the sigqal—it will reduce the
influence ofall high frequencies, including the noises and edges. This means th'at althougha
low-pass filter reduces noise, it also reduces the clarity of an image by attenuating the edges
and softening the image throughout. A high-pass filter, on the other hand, will increase the
apparent effect of higher frequencies by severely attenuating the IOW frequency .amphtudes.
In such cases, noise and edges will be left alone, but slowly changing areas Wlﬂ disappear
from the image. The application of different methods for noise reduction and edge
detection will be discussed further in later sections of this chapter.

9.5 Resolution and Quantization

Two measures significantly affect the usefulness of an image and th_e data‘ Epntained
within it. The first one is resolution, which is affected by how often a signal i§ measured
and read or sampled. Higher numbers of samples at equally spaced periodic times res.ult
in higher resolution, and therefore, more data. The resolution of an_analog signal is a
function of sampling rate. The resolution of a digital system is a function of hoW many
pixels are present. Fundamentally, these two are the same measure; reading the
light intensity of the image at more pixel locations is the same as sampling more often.
Figure 9.7 shows an image sampled at (a) 432x576, (b) 108><1f¥4, {c) 54x72, and
(d) 27%36 pixels. The clarity of the image is lost when the sampling rate decreasps. '
The second issue is how accurately the value of the signal at any given point is
converted to digital form. This is called quantization—a function of how many bits are

© (@

Figure 9.7 Effect of different sampling rates on an image at (a) 432 X 576,.(b) 108 x 144,
(c) 54 x 72, and (d) 27 X 36 pixels. As the resolution decreases, the clarity of the image decreases

accordingly. 1
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@
Figure 9.8 An image at different quantization levels of 2, 4, 8, and 44 gray levels. As the
quantization resolution increases, the image becomes smoother., ,

used to represent the digitized magnitude of the sampled signal. Depending on the
number of bits used for quantization, the grayness variations of the image will change.
The total number of gray level possibilities is 2", where n is the number of bits. For a 1 bit
analog to digital converter (ADC), there are only two possibilities, on or off, or 0 or 1
(called a binary image). For quantization with an 8-bit ADC, the maximum number of
gray levels will be 256. Therefore, the image will have 256 different gray levels (0-255).

Quantization and resolution are completely independent of each other. For example, a
high resolution image may be converted into a binary image, where there are only on and
off pixels (0 and 1, or dark and light), or the same image may be quantized into 8 bits,
which can yield a spectrum of 256 different shades of gray. Figure 9.8 shows the same
image quantized at (a) 2 levels, (b) 4 levels, (c) 8 levels, and (d) the original at 44 levels.

Both the resolution and quantization must be sufficiently high in order to provide
adequate information for a specific task. A low-resolution image may not be adequate for
recognition of parts with high detail, but enough for distinguishing between a bolt and a
nut. Low bit-count quantization may be enough for many applications where binary
images are adequate, but not in others where different objects must be distinguished from
each other. For example, a high-resolution image is necessary for reading the license plate
of a car or recognition of faces with a security camera. However, because the license plate
consists of primarily dark letters on a light background, even a binary image (only one bit
per pixel) may be sufficient. A similar image must be quantized at a higher bit-count in
order to allow face recognition. When choosing a camera, both these values must be
considered.
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The sampled light at a pixel, when quantized, yields a string of 0s and 1s representing
the light at that pixel location. The total memory required to store an image is the
product of the memory needed for the total number of samples (pixels) and the memory
needed for each digitized sample. A larger image with higher resolution (total number of
pixels) and a higher number of gray levels requires a larger memory size. The total
memory requirement is a function of both values.

Example 9.1

Consider an image with 256 by 256 pixels. The total number of pixels in the image is
256 X 256 = 65,536. If the image is binary, it will require one bit to record each pixel
as 0 or 1. Therefore, the total memory needed to record the image will be 65,536
bits, or with 8 bits to a byte, it will require 8192 bytes. If each pixel were
to be digitized at the rate of 8 bits for 256 shades of gray, it would require
65,536 x 8 = 524,288 bits, or 65,536 bytes. For a video clip, changing at the
rate of 30 images per second, the memory requirement will be 65,536 x 30 =
1,966,080 bytes per second. Of course, this is only the memory requirement for
recording the image pixels, and does not include index information and other book-
keeping requirements. The actual memory requirement may be less depending on
the format in which the image is saved. R

9.6 Sampling Theorem

Can you tell from Figure 9.9 what the image represents? Of course, since this is a very
low-resolution 16X 16 image, it is difficult to guess what the object is. This simple
illustration signifies the relationship between sampling rate and the information obtained
from it. To understand this, we will discuss some fundamental issues about sampling,

Consider a simple sinusoidal signal with frequency fas shown in Figure 9.10. Suppose
the signal is sampled at the rate of f,. The arrows in 9.10(b) show the corresponding
sampled amplitudes.

Now suppose we want to use the sampled data to reconstruct the signal. This would be
similar to sampling a sound source such as a CD and trying to reconstruct the sound signal
from the sampled data through a speaker. One possibility would be that, by chance, the
same signal might be reconstructed. However, as you can see in Figure 9.11, it is very

Figure 9.9 A low-resolution (16x16) image.
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Ffijgure 9.10 (a) Sinusoidal signal with a frequency of f, (b) sampled amplitudes at the rate
of f..

ppssible that another signal may be reconstructed from the same data that is completel
different from the original signal but yields the same sampled data. Both are valid ang
many other signals can be valid and might be reconstructed from this sampled data, too
This loss of information is called aliasing of the sampled data, and it can be a ve ous
problem. ’ R
In order to prevent aliasing, according to what is called sampling theorem, the sampling
frequency must be at least twice as large as the largest frequency present in’ the signal. In
that case, we can reconstruct the original signal without aliasing. The highest freque;lcy
present in the signal can be determined from the frequency spectrum of the signal. If a
signal’s fr‘equency spectrum 1s found using the Fourier transform, it will contain rr.lany
frequencies. However, as we have seen, the higher frequencies have smaller amplitudes
We can always pick a maximum frequency that may be of interest, while assuming thaé
the frequencies with very low amplitudes beyond that point can be ignored without

Second signal
Ze10

Original signal

| Sampling
period

Figure 9.11 Reconstruction of signals from the sampled data. More than one signal ma
be reconstructed from the same sampled data. !
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Amplitude

o Time
=

Figure 9.12 An inappropriate sampling rate may completely miss important data within a
signal.

much effect in the system’s total representation. The sampling rate of the signal must be at
least twice as large as this frequency. In practice, the sampling rate 1s generally chosen to
be larger than this minimum to further ensure that aliasing of the signal will not occur.
Frequencies 4-5 times as large as the desired maximum frequency are comimon. For
example, human ears can theoretically hear frequencies up to about 20,000 Hz. Ifa CD
player is to reconstruct the digitized, sampled music, the sampling rate of the laser sensor
must be at least twice as large, namely 40,000 Hz. In practice, CD players sample at the
rate of about 44,100 Hz. At lower sampling rates, the sound may become distorted. In
reality, if a signal changes more quickly than the sampling rate, the details of the change
will be missed, and therefore, the sampled data will be inadequate. For example, it has
been shown that the resulting vibration from a rotating gear with a broken tooth is
distinctly different from a regular gear (Figure 9.12). However, at a low sampling rate,
the sampled data may be completely void of this important information. Similarly, in
Figure 9.13, the sampling rate is lower than the higher frequencies of the signal. As shown,
although the lower frequencies of the signal are reconstructed, the signal will not have the
higher frequencies of the original signal. The same is true with sound and image signals. Ifa
sound signal is sampled at a low rate, the high frequency information will be lacking and the
reconstructed sound will lack high frequency sounds. The output of the system, even if the
best speakers are used, will be distorted and different from the real signal.

For images too, if the sampling rate is low, translating into a low resolution image, the
sampled data may not have all the necessary detail; the information in the image is lost,
and the image cannot be reconstructed like the original image. Figure 9.9 1s sampled at a
very low rate, and the information in it is lost. This is why you cannot decipher the

Amplitude
Amplitude

Time Time
@ (b)

Figure 9.13 The original signal in (a) is sampled at a sampling rate lower than the higher
frequencies of the signal. The reconstructed signal in (b) will not have the higher frequencies of
the original signal.
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Figure 9.14 The image of Fi 9 i i
: gure 9.9, presented at higher resolutions of (a) 32 x 32
(b) 64 x 64, (c) 256 x 256. © ,

image. However, when the sampling rate is increased, there will be a time when there is
enough information to recognize the image. The still higher resolutions or sampling rates
will transfer more information, and therefore, increasingly more detail can be recognized.
Figure 9.14 is the same image as in Figure 9.9, but at 2, 4, and 16 times higher resolutions.
Now suppose you need to recognize the difference between a bolt and a nut in a vision
system in order to direct a robot to pick up the parts. Because the information
representing a bolt and a nut is very different, a low-resolution image still enables
you to determine what the part is. However, in order to recognize the license plate
number of a car while moving in traffic, a high-resolution image is needed to extract
enough information about the details such as the numbers on the license plate.

9.7 Image-Processing Techniques

As was mentioned earlier, image-processing techniques are used to enhance, improve, or
otherwise alter an image and to prepare it for image analysis. Usually during image
processing, information is not extracted from an image. Instead, the intention is to
remove faults, trivial information, or information that may be important but not useful to
improve the image. As an example, suppose an image was obtained while the object was
moving, and as a result, the image is not clear. It would be desirable to see if the blurring
in the image could be reduced or removed before the information about the object (such
as its nature, shape, location, orientation, etc.) could be determined. Also consider an
image corrupted by reflections due to direct lighting or an image that is noisy because of
!OW light. In all these cases, it is desirable to improve the image and prepare it before
image analysis routines are used. Similarly, consider the image of a section of a city fully
detailed with streets, cars, shadows, and the like. It may actually be more difficult to
extract information from this image than if all unnecessary detail, except for edges, were
removed.

Image processing is divided into many sections, including histogram analysis,
thresholding, masking, edge detection, segmentation, region growing, modeling,
and many more. In the next sections, we will study some of these techniques and
their applications.
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9.8 Histogram of Images

A histogram is a representation of the total number of pixels of an image at §ach gray
level. Histogram information is used in a number of different processes, 1ncludlpg
thresholding. For example, histogram information can help in deterrm.mng a cutoff point
for converting the image into binary form. It can also be used to 'dec1de if there. are any
prevalent gray levels in an image. For instance, suppose a systematic source of noise in an
image causes many pixels to have one “noisy” gray level. A h1stogram can be .used to
determine the noisy gray level in order to attempt to remove or neutralize the noise. The
same may be used to separate an object from the background so long as they have
distinctly different colors or gray values. .

Figure 9.15(a) shows a low-contrast image that has all its pixel gray levels clustered
between two relatively close values. In this image, all pixel gray va’lucs are bcrwgen 120 to
180 gray levels, at intervals of 4 (the image is quantized at 16 distinct lcvels: between 0 to
256). Figure 9.15(c) shows the histogram of this image and, as you see, all pixel gray levels
are between 120 to 180, a relatively low range. As a result, the image is not very clear and
details are not visible. Now suppose we equalize the histogram such that the same 16 gray
levels present in the image are spread out between 0 to 255 gray levels at 1nteFval§ of 17,
instead of the present 120—180 at intervals of 4. As a result of this histogram f:qual.lzatlon, tbe
image is vastly improved, as shown in Figure 9.15(b), with its correspondmg histogram in
(d). Notice that the number of pixels at each gray level are exactly the same in both cases, but
the gray levels are spread out. The grayness values are given in Table 9.1.

@
# of pixels # of pixels
8K 8K
6K 8K
2K 2K l I
f | } |]Il " > | I i H I I i >
0 50 100 150 200 250 0 50 100 160 200 250
Gray level
© Gray level )

Figure 9.15 Effect of histogram equalization in improving an image.
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Table 9.1  The Actual Grayness Values and # of Pixels for Images in Figure 9.15(a) and 9.15(b).

Levels

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# of Pixels

0 750 | 5223 | 8147 | 8584 | 7769 | 6419 | 5839 | 5392 | 5179 | 5185 | 3451 | 2078 | 1692 | 341 0

For (b)

0 17 34 51 68 85 | 102 | 119 | 136 | 153 | 170 | 187 | 204 | 221 | 238 | 256

For (a)

120 | 124 | 128 | 132 | 136 | 140 | 144 | 148 | 152 | 156 | 160 | 164 | 168 | 172 | 176 | 180

Example 9.2

Assume the histogram of an image is spread between 100 and 150 out of the
maximum grayness level of 255. What is the effect of multiplying the range by 1.5 or
by 2? What is the effect of adding 50 to all gray values?

Solution: The two operations mentioned here are common in formatting images and
1n many vision systems. When all gray values are increased by the same amount, the image
becomes brighter but the contrast does not change. So long as the added value does not
increase the greyness level of any pixel beyond the 255 level, no information is lost and the
original image may be regained by decreasing all pixel values by the same amount.

If the pixel greyness levels are multiplied by a number, so long as the maximum
available gray levels are not exceeded, the histogram range is extended and contrast is
increased. In this example, since the range is between 100 and 150, equalizing the
histogram by 1.5 increases the range to 150 and 225. However, increasing the value
to 2 will extend the histogram to 200 and 300, therefore saturating the image beyond
255 and changing its nature. Unless the original image is saved, dividing the pixel
values by 2 will yield an image with a histogram between 100 and 127,

Figure 9.16(a) shows an original image that was later altered by an image-formatting
routine for increased brightness (Figure 9.16(c)) and increased contrast (Figure 9.16(e)).
As is evident in the histograms (b) and (d), when an image is brightened, its histogram
distribution simply shifts, in this case by 30 points. When the contrast of the image is
increased, in this case by 50%, the distribution of pixel gray levels is expanded, although
the relationship remains the same. However, unlike the previous example, the distribu-
tion of gray levels is different because new gray values are introduced.

9.9 Thresholding

Thresholding is the process of dividing an image into different portions, or levels, by
picking a certain greyness level as a threshold, comparing each pixel with the threshold
value, and assigning the pixel to the different portions (or levels) of interest depending on
whether the pixel’s greyness level is below the threshold (off, zero, or not belonging) or
above the threshold (on, 1, or belonging). Thresholding can either be performed at a
single level or with multiple thresholding values where the image is processed by dividing
the image into layers, each layer with a selected threshold. To aid in choosing an
appropriate threshold, many different techniques have been suggested. These techniques
range from simple routines for binary images to sophisticated techniques for complicated
images. Early routines were used for a binary image where the object was bright and the
background was completely dark. This condition can be achieved in controlled lighting
in industrial situations but may not be available in other environments. In binary
images, the pixels are either on or off; therefore, choosing a threshold is simple and
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straightforward. In other situations, the histogram may be a multimodal distribution. In
this case, the valley(s) are chosen as the threshold value. More advanced techniques use
statistical information and distribution characteristics of the image pixels to develop a
thresholding value. For example, the lowest value between two peaks, the midpoint
between two peaks, the average of two peaks, and many other scenarios may be used. As
the thresholding value changes, so does the image. Figure 9.17(a) shows an original image

et = with 256 gray levels and the result of thresholding at greyness levels of (b) 100 and (c) 150.
. t: : i i 3 " p : .
i P 00:’:‘ hl'CShOldmg is used in many operations such as converting an 1mage into bmary form,
Median: 136 ercentile I :

Pixels: 786432 filtering operations, masking, and edge detection.
Ixels:

N Example 9.3

Figure 9.18(a) shows an image of a cutting board and its histogram. Due to the nature
of this image, there are four peaks in the histogram. Figures 9.18(c), (¢), and (g) show

Mean: 164.07 Level: 180
Std Dev: 22.20 Count: 7212
Median: 166 Percentile: 89.15
Pixels: 786432
(@) |
Mean: 134.16 Level: 174
Std Dev: 44,27 Count: 5503 |
Median: 139 Percentile: 82.08
Pixels: 786432
(®

Figure 9.16 Increasing the contrast in an image expands the histogram to include new

gray values.

N () - - (h)
Figure 9.17 Thresholding an image with 256 gray levels at two different values of (b) 100

Figure 9.18 Images and histograms for Example 9.3,
and (c) 150.
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the effect of thresholding at different levels. In fact, in this case, different types of
wood can be identified and separated from each other due to their colors.

9.10 Spatial Domain Operations: Convolution Mask

Spatial domain processes access and operate on the individual pixel information. As a
result, the image is directly affected by the operation. Many processes used in vision
systems are in spatial domain. One of the most popular and most common techniques in
this domain is convolution, which can be adapted to many different activities such as
filters, edge finders, morphology, and many more. Many processes in commercial vision
systems and photography software are based on convolution, too. The following is a
discussion of basic principles behind convolution. Later, we will apply the convolution
idea to different purposes.

Imagine an image is composed of pixels, each with a particular gray level or color
information that collectively constitute the image (in this example, the gray level is not
digitized into Os and 1s, but the actual value is indicated). As an example, let’s say the
image in Figure 9.19(a) is part of a larger image with pixel values shown symbolically as
A, B, C. ... Let’s also assume there is a 3 % 3 kernel or mask, as shown, which has
values in its cells as indicated by m, through mo.

Applying the mask onto the image involves superimposing (convolving) the mask,
first on the upper left corner of the image and taking the summation of the product of the
value of each pixel multiplied by the corresponding mask value and dividing the
summation by a normalizing value. This will yield (please follow carefully):

R:(AXM1+BX1112+CXM3+EXH’!4+FXmS+GXﬂ16+IXVI17+J><M3+KXWI9)/S
(9.2)

E F G| H Hty | mo | M3
r|jlx|L my| ms| mg
M N O P Hi7 | tHg | Hig

Figure 9.19 When a convolution mask (kernel) is superimposed on an image, it can
change the image pixel by pixel. Each step consists of superimposing the cells in the mask onto
the corresponding pixels, multiplying the values in the mask’s cells by the pixel values, adding
the numbers, and normalizing the result. The result is substituted for the pixel in the center
of the area of interest. The mask is moved over pixel by pixel and the operation is repeated until
the image is completely processed.
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vslz(here S is the normalizing value. This is usually the summation of the values in the
mask, or

S=|m +my+my+...+ mo ©(9.3)

If the summation is zero, substitute S = 1 or cho

: , =S ose the largest number. The result R is
substltuted for. the value of thfj‘ pixel in the center of the block that was superimposed. In
this case, .R will replace the pixel value of F. Usually, the substitution takes place into a
new file in order to not alter the original file(R — .

The mask is then moved one pixel to the right and th i
which will replace G as follows: R

R:G,,E,,,z(B><m1+C><m2+D><m3+F><m4+G><m5+H><m6+J><m7+K><rn3+L><mg)/S

The resu}t is, once again, substituted for G in a new file. The mask is then moved over
one more pixel, and the operation is repeated until all the pixels in the row are changed
Then .the operation continues in a raster scan fashion (see Appendix B) withgthc;
followmg rows until the image is completely affected. The resulting image will show
characte;nstms that may be slightly or very severely affected by the operation, all
depending on the m values in the mask. The first and last rows and columns are,not
affected by this operation, and therefore, are usually ignored. Some systems insert zeros
for the first and last rows and columns or retain the original values. Another alternative is
to copy the first and last rows and columns into an additional layer of rows and columns
around thf: image in order to calculate new values for these pixels.

For an imagelgr ¢ with R rows and C columns of pixels, and for a mask M, , with
rows and columns in the mask as shown in Figure 9.20, the value for the pixel ZI” Jnew AS
the center of a block can be calculated by: R

Cl ii1\4""'><I[<oc_(’1+1)+1->,<y—(”“) o))

=1 j=1
2 2

Sh= ZiM,,- ifS # 0

i=1 j=1 (9.5)

S = 1 or largest number ifS=0

12.1 IZ,Z 12,3 12,4 IZ,S M1,1 MI,Z Ml,J
13,1 13,2 [3,3 13,4 13,5 MZ,I MZ,Z M2,3
I4.I 14,2 I4,3 I4.4 14,5 MJ_! M3.2 MH,Z

Figure 9.20 The representation of an image and a mask.
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Note that the normalizing or scaling factor S is arbitrary and is used to prevent
saturation of the image. As a result, the user can always adjust this number to get the best

image without saturation.

Example 9.4

Consider the pixels of an image, with values as shown in Figure 9.21, as Well.as a
convolution mask with the given values. Calculate the new values for the given

pixels. l
516218 ololi
313(5]|6 1 1 1
413|216 11010
gl6|5]9

Figure 9.21 An example of a convolution mask.

5%0 | 6x0 | 221 | 8 5 | 6x0 | 2x0 | 8x1 ol ol
0 0 1
3x1 | 3x1 45x1 | 6 3| 3R1 | Sx) g exl .= 1 1
- —— o S L ) L d
0 an 5
4x1 |3x0 |2x0 [ 6 4| 3xhi | 2x0 [ 60t 1| olo
1 0 0
8 6 5 9 8 i 5 9
2,2 23
2 8
5 6 2 8 5 6
0 0 1 0 0 1
350 | 3x0 | 5x1 6 3 3x0 | 5x0 | 6x1
_._1_-._-1 g and 1 __'1 1
4x1 || Sx gt | 4 3x1 | 2x1 | 6x1
1 0 V] - 1 0 0 |
8xl | 6x0 | 5x0 | 9 8 | 6x1 | 5x0 | 9x0
3,2 3,3

o)

Figure 9.22 (a) Convolving the mask onto the cells of the image; (b) the result of the

operation.
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Solution: We substitute zeros for the first and last columns and rows because they are
notaffected by this process. For the remaining pixels, we superimpose the mask on the
remaining cells of the image and use Equations (9.2) and (9.3) to calculate new pixel
values, as shown in Figure 9.22(a), with the result shown in Figure 9.22(b). Super-
imposing the mask on the image as shown for each remaining element, we get:

22 [5(0) +6(0) +2(1) +3(1) +3(1) +5(1) + 4(1) 4 3(0) +2(0)] /5 = 3.4
2,30 [6(0) +2(0) +8(1) +3(1) +5(1) + 6(1) + 3(1) + 2(0) + 6(0)] /5 = 5

320 [3(0) +3(0) +5(1) + 4(1) +3(1) +2(1) + 8(1) + 6(0) + 5(0)] /5 = 4.4
33:  [3(0) +5(0) + 6(1) +3(1) +2(1) + 6(1) + 6(1) + 5(0) + 9(0)] /5 = 4.6

In reality, greyness levels are integers, and therefore, all numbers are rounded to
whole numbers. Bl]

Example 9.5
Apply the 7 x 7 mask shown to the image of Figure 9.23.
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Figure 9.23 The image and mask for Example 9.5.

Solution: Applying the mask to the image results in Figure 9.24. As you can see, the
on-cells in the mask have convolved into the same shape within the image, albeit an
upside down and mirror image, when applied to a single on-pixel in the image. This, in
fact, demonstrates the real meaning of the convolution mask. Any set of numbers used
in the mask will convolve into the image and will affect it accordingly. Therefore, the
choice of numbers in the mask can have a significant effect on the image. Please also
notice how the first and last three rows and columns are unaffected by the 7 x 7 mask.
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Figure 9.24 The result of convolving the mask on the image of Example 9.5. -

9.11 Connectivity

In a number of instances, we need to decide whether or not neighboring pixels are
somehow “connected” or related to each other. This connectivity establishes whether
they are of the same properties, such as being of the same region or object, similar textures
or colors, and so on. To establish this connectivity of neighboring pixels, we first have to
decide a connectivity path. For example, we need to decide whether only pixels on the
same column and row are connected, or diagonally situated pixels are also accepted as
connected.

There are three fundamental connectivity paths for 2D image processing and analysis:
+4 or x4-connectivity, H6 or V6 connectivity, and 8-connectivity. In 3D, connectivity
between voxels (volume cells) can range from 6 to 26. Refer to Figure 9.25 for the
following definitions:

+4-connectivity—a pixel p’s relationship is only analyzed with respect to the 4 pixels
immediately above, below, to the left, and to the right of the pixel (b,d,e,g).

x 4-connectivity—a pixel p’s relationship is only analyzed with respect to the 4 pixels
diagonally across from it on 4 sides (a,c,f;h). For pixel p(x,y), these are defined as:

for -+ 4-connectivity (x 4+ 1,7), (x — 1,7), (%, ¥ + 1), (%, 7 — 1) (9.6)
for x4-connectivity (x + 1,y + 1), (x+ 1,y —1),(x =L,y + 1),(x—1,y—1)
9.7)

H6-connectivity—a pixel p’s relationship is only analyzed with respect to the 6
neighboring pixels on two rows immediately above and below the pixel (a,b,c,f.8,h).

alblc l
dlp|e
fle|h

Figure 9.25 Neighborhood connectivity of pixels.
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V6—c'onnec_tivit).7—a pixel p’s relationship is only analyzed with respect to the 6
n_elghbormg pixels on two columns immediately to the right and to the left of the
pixel (a,d,f,c,e,h). For pixel p(x,y), these are defined as:

for H6-connectivity
(x—1,y+1),(x,y—|—1),(x—|—1,y+1),(x—1,y—1),(x,y—1),(x+1,y—1)
for V6-connectivity 8]
(x—1,y+1),(x—1,y),(x—l,y—1),(x+1,y+1),(x+1,y),(x+1,y—1)
(9.9)

8-connectivity—a pixel p’s relationship i i
vity p is analyzed with respect to all 8 pi
surrounding it (a,b,¢,d,e,f,g,h). For pixel p(x,y), this is defined fs: pixel

(x—1,y=1), 0,y —1),(x+1,y—
R ¥ =1, (r = 1,9), (x + 1,y), (x = Ly +1
(e, y4+1), (x+1,y+ 1) ’ P oy 1),

(9.10)

Example 9.6

Z

In Figure 9.26, starting with pixel (4,3), find all succeeding pi
) 3, ing pixels that b i
connected to each other based on +4, x4, H6, V6, andg g—conneztif;}g rife(;nﬂdered

1 2 3 4 5 6

6

Figure 9.26 The image for Example 9.6.

Solution: Figure 9.27 shows the results of the connectivity search. Follow each one

You must take one pixel, find all others connected to it based on the applicable;
connectivity rule, and search the pixels found to be connected to the previous ones for
additional connected pixels, until done. The remaining pixels are not connected. We

will use th§ same rules lz_lter for other purposes such as region growing. The H6, V6, and
8-connectivity search is left for you to do as an exercise. Y
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Figure 9.27 The results of the connectivity searches for Example 9.6. il

So far, we have studied some general issues and fundamental techniques used in imgge
processing and analysis. Next, we will discuss particular techniques used for specific

applications.

9.12 Noise Reduction

9.12.1

Similar to other signal-processing mediums, vision systems contain noise. Some nois.e is
systematic and comes from dirty lenses, faulty electronic components, bad memory chips,
and low resolution. Others are random and are caused by environmental effects or bad
lighting. The net effect is a corrupted image that needs to be p.reprocessed to reduce or
eliminate the noise. In addition, some images have low quality due to hardware and
software inadequacies, and therefore, have to be enhanced and improved Pefore othf:r
analyses can be performed on them. At the hardware level, in one attempt, an on-chip
correction scheme was devised for defective pixels in an image sensor. In this scheme,
readouts from the nearest neighbors were substituted for identified def(?ctive pixels.
However, in general, software schemes are used for most filtering operations. .

Filtering techniques are divided into two categories of frequency domain and spatlal
domain. Frequency related techniques operate on the Fourier t.ransform of the signal,
whereas spatial domain techniques operate on the image at the pixel leyel, either loca}lly
or globally. The following is a summary of a number of different operations for reducing
noise in an image.

Neighborhood Averaging with Convolution Masks

As discussed in section 9.10, a mask may be used for many different purposes, includ%ng
filtering operations and noise reduction. In section 9.4, it was also discussed that noise,
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Figure 9.28 Neighborhood averaging mask.

along with edges, creates higher frequencies in the spectrum. It is possible to create masks
that behave like low-pass filters, such that the higher frequencies of an image are attenuated,
while the lower frequencies are not changed much, and thereby, reduce the noise.

Neighborhood averaging with a convolution mask can be used to reduce the noise
in images, but it also reduces the sharpness of an image. Consider the 3 x 3 mask in
Figure 9.28 with its corresponding values, as well as a portion of an imaginary image,
with its gray levels shown.

As you can see, all the pixels but one are at a gray value of 20. The pixel with a gray
level of 100 may be considered noise since it is different from the pixels around it.
Applying the mask over the corner of the image, with a normalizing value of 9
(summation of all values in the mask) will yield:

R=(20x14+20x1420x14+20x1 +100x1 +20x1 +20x 1
+20x1 +20x1)/9=29 /

As a result of applying the mask on that corner, the pixel with the 100 value will
change to 29. Consequently, the large difference between the noisy pixel and the
surrounding pixels (100 versus 20) becomes much smaller (29 versus 20), thus reducing
the noise. If the mask is applied to the set of pixels in columns 3, 4, 5, the average will be
20; therefore, the operation has no effect on the set. The difference between pixels
remains low. With this characteristic, this mask acts as a low-pass filter because it
attenuates the sharp differences between neighboring pixels but has little effect on pixels
whose intensities are similar. Notice that this routine will introduce new gray levels in the
image (29), and therefore, will change the histogram of the image. Similarly, this
averaging low-pass filter will also reduce the sharpness of edges, making the resulting
image softer and less focused. Figure 9.29 shows (a) an original image, (b) an image
corrupted with noise, (c) the image after a 3x3 averaging filter application, and (d) the
Image after a 5X5 averaging filter application. As you can see, the 5x5 filter works even
better than the 3x3 filter, but requires a bit more processing.

There are other averaging filters, such as Gaussian (also called Mild Isotropic Low-
Pass), shown in Figure 9.30. This filter will similarly improve the image, but with a
slightly different result.

9.12.2 Image Averaging

In this technique, a number of images of the exact same scene are averaged together.
Since the camera has to acquire multiple images of the same scene, all actions in the scene
must completely stop. As a result, in addition to being time consuming, this technique is
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(d)

Figure 9.29 Neighborhood averaging of an image.
1 4 6 4 1 11211
4116 | 24| 16 | 4 21412
6|24 36|24 ]6 11211
4116 |24 ] 16 | 4
1 4 6 4 T
5x5 3%3

Figure 9.30 5x5 and 3x3 Gaussian averaging filters.

not suitable for operations that are dynamic and change rapidly. Image averaging is more

effective at increased numbers of images an .
the noise is systematic, its effect on the image will ’
images and, as a result, averaging will not reduce the noise. If we

this averaging because the summation of random noises will be zero, or:
Alx,y) = 1(x,7) + N(x,y)

X, I(x,y) + N(x, ) Zl(xa)/) ZN(T ’
DAy Tl +NE) 3 +n/m/

= I(xa)/)

n n n n

Although image avers .
will not blur the image or reduce its focus.

9.12.3 Frequency Domain
When the Fourier transform of an image is calculated, the frequenc
show a clear frequency for the noise, which in many cases, can
by proper filtering.

d is fundamentally useful for random noise. If
be exactly the same for all multiple
assume that an acquired

image A(x,y) has random noise N(x,y), then the desired image I(x,y) can be found from

(9.11)
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Figure 9.31 Application of a median filter.

9.12.4 Median Filters

One of the main problems in using neighborhood averaging is that along with removing
noise, the filter will also blur the edges and reduce the sharpness of the image. A variation
to this technique is to use a median filter in which the value of the pixel is replaced by the
median of the values of the pixels in a mask around the pixel (the pixel plus the 8
surrounding pixels), sorted in ascending order. A median is the value where half of the
values in the set are below and half are above the median (also called 50th percentile).
Since, unlike an average, the median’s final value is independent of the value of any single
pixel in the set, the median filter will be much stronger in eliminating spike-like noises
without blurring the object or decreasing the sharpness of the image.

Suppose we apply a median filter to the image in Figure 9.28. The sorted values in
ascending order will be 20, 20, 20, 20, 20, 20, 20, 20, 100. The median is 20 (the fifth one
from the left). Replacing the center pixel’s value with 20 will completely eliminate the
noise. Of course, noise is not always this easily removed. But this example shows how the
effect of median filters can be very different from averaging. Notice that median filters do
not create any new gray levels, but they do change the histogram of the image.

Median filters tend to make the image grainy, especially if applied more than once.
Consider the image in Figure 9.31(a). The values in ascending order for the left-most
cornerare 1, 2, 3,4, 5, 6,7, 8, 9. The middle value is 5, resulting in the image in (b). The
values for the second set of 9 pixels are 1, 2, 2, 3, 4,5, 6,7, 9, and the median is 4. As you
can see, the image has become grainy because the pixel sets with similar values appear
longer (as in 5 and 5 or 4 and 4).

Figure 9.32 shows (a) an original image, (b) the image corrupted with random
Gaussian noise, (c) the image improved with a 3X3 median filter, and (d) a 7x7 median
filter. Generally, larger size median filters are more effective.

9.13 Edge Detection

aging reduces random noise, unlike neighborhood averaging, it

y spectrum might
be selectively eliminated

Edge detection is a general name for a class of routines and techniques that operate on an
image and result in a line drawing of the image. The lines represent changes in values such
as cross-sections of planes, textures, lines, and colors, differences in light intensities
between parts and backgrounds or features such as holes and protrusions, as well as
differences in shading and textures. Some techniques are mathematically oriented, some
are heuristic, and some are descriptive techniques. They generally operate on the
differences between the gray levels of pixels or groups of pixels through masks or
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| Figure 9.32 (a) is the original image, (b) is the same image corrupted with a random
Gaussian noise, (c) is the image improved by a 3X3 median filter, and (d) is the same image .
improved with a 7x7 median filter. Figure 9.33 Edge detection with first and second derivatives.

thresholds. The final result is a line drawing or similar representation that requires much
less memory, can be processed more easily, and saves in computational and storage costs. a1 ?
Edge detection is also necessary in subsequent processes such as segmentation and object o : N
recognition. Without edge detection, it may be impossible to find overlapping parts,
calculate features such as diameter and area, or determine parts by region growing.
Different techniques of edge detection yield slightly different results, and therefore,
should be chosen carefully and used wisely.

R /)

Intensity gradient

Figure 9.34 Gradient of image intensity.

Except in binary images, edges are generally not ideal. This means that instead of a I) jiretion = tAI ===t (9.13)
clear distinction between two neighboring pixels’ gray levels, the edge is spread over a (01/0x) '
number of pixels, as shown in Figure 9.33. A simple comparison between two pixels may Similarly, the second gradient of the intensity, called Laplacian, is shown as Equati
be inadequate for edge detection. The first and second derivatives of the graph are also (9.14). The magnitude and orientation of the s,econd adient )ca b lasl qléaFlon
shown. It is possible to assume that the edge is at the peaks of the first derivative or at the similar fashion. & B o¢ Ergiaein
zero crossing of the second derivative and to use these values to detect the edges. The
problem is exacerbated when the image is noisy; therefore, the derivatives have excessive V2] — 8_21 3_21
92 oy (9:14) |

numbers of peaks or zero crossings.

Generally, the edges are at regions of rapid intensity change. Referring to Figure 9.34,
the magnitude and direction of the gradient of image intensity can be calculated as: Digital Implementation Since images are discrete, a finite difference approach m |
be taken in order to calculate the gradients. For a one-dimensional systefr)lf, the ﬁni;Z

\v (61 81) difference between successive elements is:

bjc ) a_y f( i
o e ) — ()
fx)= J_{”_’.'n T (9.15)
V1) (81)2 L <5I)2 (9.12) In an im dx is 1 pixel wide. Th
e o o . In; age, dx i1s 1 pixel wide. Therefore, the finite difference for an image can be
N y simplified to F (x) = F(x 4 1) — F(x) and be implemented by kernel [ —1 gl] For a
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Location of the gradient

Figure 9.35 Intensity gradient between successive pixels.

two dimensional system, the same is applied in both x and y directions. Referring to
Figure 9.35, notice that when the finite difference is calcu.lated, it does not rel:llte to the
center of the pixel of interest; rather, there are two midp01nt§ between successive pixels
to which the gradients apply. To remedy this, the finite difference can be calcullated
between the pixels before and after the point of interest and averaged using the modified

1 -
kernel (mask) > [-1 0 1], yielding:
dF
dx
dF
dy

~ F(x+1)— F(x—1)
(9.16)
~ F(y+1)—F(y—1)

Similarly, the second derivative of the image intensities can be calculated with finite
difference as:

(9.17)

which can be implemented by a kernel [1  —2 1]. Therefore, the approxim_ate
magnitude of the Laplacian for a two-dimensional image can be calculated by applying
the following kernel (mask):

[0 1 0]

Laplacian(0°,90°) = |1 —4 1
L0 0: (9.18)

1 0 1

Laplacian(45°) = |0 —4 0

10 1]

As we will soon see, this is a common way of detecting edges. In fact, many other
common masks used for edge detection are variations of the gradient scheme.

As discussed earlier, like noise, edges are high frequency, and therefore, can be
separated by high-pass filters. Masks can be designed to behave l%ke a high—pgss filter,
reducing the amplitude of the lower frequencies, while not affecting the amplitudes of
the higher frequencies as much, thereby separating noises and edges from the rest of the
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-1 0 (-1

Figure 9.36 The Laplacian-1 high-pass edge detector mask.

image. Consider the image and the Laplacian kernel (mask) in Figure 9.36. As you see,
this mask has negative numbers. Applying the mask to the image at the corner yields:

R=(20x =1+20X0+20Xx ~1420 x 04100 x 4 +20 x 0 + 20 x —1
+20x 0420 x —1)/1 = 320

The normalizing factor is 1, which results in the value of 100 replaced with 320,
comparatively accentuating the original difference (from 100 versus 20 to 320 versus 20)
while applying the mask to the set afpixels in columns 3, 4, 5 yields zero, indicating that
the difference between pixels is not changed. Since this mask accentuates large intensity
variations (higher frequencies) while ignoring similar intensities (lower frequencies), it is
a high-pass filter. This also means that the noise and edges of objects in images will be
shown more effectively. As a result, this mask acts as an edge detector. Some high-pass
filters act as an image sharpener. Figure 9.37 shows some other high-pass filters.

The following three masks® ®—Sobel operator, Roberts edge, and Prewitt—shown in
Figure 9.38 effectively do the same gradient differentiation with somewhat different
results and are very common. When applied to an image, the two pairs of masks calculate
the gradients in the x and y directions, which are added and compared to a threshold.
Notice how these follow the gradient equations developed earlier.

-1 -1 -1 Of-1| 0 0|1-1]0
-1 8 (-1 1] 6] -1 -1 5| -1
-1 -1 -1 0(-1] 0 0|-1]10
Laplacian-2 Sharpen, Low Sharpen, Medium

Figure 9.37 Other high-pass filters.

110 o1 -1)-2)-1(f-1{0 1 “1)-1f(-1fj-1101]1
olall-]o 010]0 2102 0(0]0 11011
1121 -1 0] 1 111]1 1101

(a) Sobel (b) Roberts (c) Prewitt

Figure 9.38 The Sobel, Roberts, and Prewitt edge detectors.
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@ - @©

Figure 9.39 An image and its edges from Laplacian-1 (b), Laplacian-2 (c), Sobel operator
(d), and Robert’s edge (e).

Figure 9.39 is an original image (a) with il:s‘ edges detected by a Laplacian-1 (b),
Laplacian-2 (c), Sobel operator (d), and Robert’s edge (e). ' .

You must realize that although in this example the results are as shown, the result for
other images may be different. This is because the histogram of thi? image and the chosen
thresholds have great effects on the final outcome. Some routines allow the user ;0
change the thresholding values, and some do not. In each case, the user must decide
which routine performs the best. . . ‘ 1

Other simple methods can be used for;})inary images tl}at are simple to 1_111p]gm:nt angc
yield continuous edges. In one example,” a search technique, 'dub‘bcd L'eft—l’qghtq(lf—R)
in this book, is used to quickly and efficiently detect edges in bll“lﬂl’y‘lll‘lﬂges of smgl,t:
objects that look like a blob. Imagine a binary image as .slmwn in Fig,'urc 9.40. Let’s
assume that gray pixels are “on” (or the object) and white pixels are “off” (background).

Columns
1 | £ T
Left Right 2 ~
g | @,
+— —> 3| = - ]
&t
5
(=] —_—
o 1
T 5
= R N
“— —> =
Right Left l UE’Q:

Figure 9.40 Left-Right search technique for edge detection.’
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Table 9.2  Possible Left-Right Schemes Based on the Direction of Search.

If Vpresent-Vprevious>0 left Unext=Upresent—1

right Unext=Upresent+1

if Vpresent-Vprevious<0 right Unext=Upresent—1

left Unext=Upresent+1

If Upresent-Uprevious<Q right Vnext=Vpresent+1

left Vnext=Vpresent—1

If Upresent-Uprevious>0 right Vnext=Vpresent—1

% SEE B 2 R | I

left Vnext=Vpresent+1

Assume a pointer is moving from one pixel to another, in any direction (up, down, right,
left). Any time the pointer reaches an “on” pixel, it will turn left. Any time it reaches an
“oft” pixel, it will turn right. Of course, as shown, depending on the direction of the
pointer, the left and right might mean different directions. Starting at pixel 1,1, moving
to 1,2, to the end, then row 2, and then row 3, the pointer will find the first “on” pixel at
3,3, will turn left, and encounter an “off” pixel, turn right twice, then left, and will go on.
The process continues until the first pixel is reached. The collection of the pixels on the
pointer’s path is one continuous edge. Other edges can be found by continuing the
process with a new pixel. In this example, the edge will be pixels 3,3-3,4-3,5-3,6 . . .
3,9-4,9-4,10-4,11 . . .. .

Table 9.2 shows how a simple computer program can be developed to do the search.
U and V are pixel coordinates.

Masks may also be used for the intentional emphasis of some characteristic of the image.
For example, a mask may be designed to emphasize horizontal lines, vertical lines, or
diagonal lines. Figure 9.41 shows three such masks. Figure 9.42 shows an original image (a),
along with the effects of a vertical mask (b), a horizontal mask (c), and a diagonal mask (d).

3 |-613 3133 313]-6
3|1-6(3 -6 |-6|-6 31613
3 1-6(3 313(3 61313

Vertical emphasis mask  Horizontal emphasis mask Diagonal emphasis mask

Figure 9.41 These masks emphasize the vertical, horizontal, and diagonal lines of an
image.

9.14 Sharpening an Image

Image sharpening can be accomplished in many different ways. The simplest is to apply a
relatively high-pass filter to the image that increases the sharpness of the image by
eliminating some of the lower frequencies from the edges. However, in sharpening
operations, noise is increased too, and therefore, as the level of sharpening increases, so does
the noise level. Figure 9.37, partially repeated here, shows two simple sharpening masks.
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9.15 Hough Transform

As you have probably noticed, in most edge detection techniques, the resulting edges are
not continuous. However, there are many applications where continuous edges are
either necessary or preferred. For example, as we will see later, in region growing, edges
that define an area or region must be continuous and complete before a region growing
routine can detect and label it. Additionally, it is desirable to be able to calculate the slope
of detected edges in order to either complete a broken line, or to detect objects. Hough
transform® is a technique used to determine the geometric relationship between different
pixels on a line, including the slope of the line. For example, we can determine whether a
cluster of points is on a straight line or not. This also aids in the further development of an
image in preparation for object recognition since it relates individual pixels into
recognizable forms.

Figure 9.42 An original image (a) with effects of vertical emphasis mask (b), horizontal
emphasis mask (c), and diagonal emphasis mask (d).

of-1]o 0f-1f0 Hough transform is based on transforming the image space (x,y) into either (r,6) or
116 |1 EREL ! (m,c) space. The normal from the origin to any line will have an'angle of @ with respect to
o110 ol-1lo the x-axis and a distance of r from the origin. The transformation into the r, f-plane (also
SharEn oy Sharpen, Medium called Hough plane) showing these values is called Hough transform (Figure 9.44(a)).

Figure 9.37 Repeated

Figure 9.43 The original image (a), after an averaging mask was applied to it (b), the result
of sharpening with a low sharpening mask (c), Sobel edge (d), the result of adding the Sobel

edge to the original image.

Figure 9.43 shows a more sophisticated method to sharpgn images. In this case, a 3X3
mask was applied to the original image to decrease noise (b), followed by a low
sharpening mask (c), followed by a Sobel edge detector (d). The r.esu}t was added to
the original image (¢). As you can see, the image shows more detail and is somewhat
sharpened, but there is also more noise present.

Note that since all the points constituting the line in x,y-plane have the same 7, 8 values,
they are all represented by the same point A in r,6-plane. Therefore, all points on a
straight line are represented by a single point in the Hough plane. LY i

Similarly, a line in the x,y-plane with a slope m and intercept ¢ can be transformed into
a Hough plane of m,c with x and y as its slope and intercept (Figure 9.44(b)). Therefore, a
line in the x,y-plane with a particular slope and intercept will transform into a point in the
Hough plane. Since all points on this line have the same m and ¢, they are all represented
by the same point in the Hough plane.

Y r Hough plane

Y m Hough plane

J
|

()

Figure 9.44 The Hough transform from x,y-plane into r,6-plane or m,cplane.
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Figure 9.45 Hough transform.

Now consider the line in Figure 9.45(a), described by its slope m and intercept ¢ as:
y=mx+c (9.19)

Equation (9.19) can also be written in terms of m and ¢ as variables as:
c=—xm—+y (9.20)

where, in the m,c-plane, the x and y will be the slope and the intercept.

As discussed earlier, the line of Equation (9.19) with m and ¢ converts to a single point
A in the m,c-plane. Whether the line is drawn with this equation, or in polar coordinates
with (r, 8), the result is the same. Thus, a line (and all the points on it) are represented by a
point in the Hough plane.

The opposite is also true. As shown in Figure 9.46, an infinite number of lines may go
through a point in the x,y-plane, all intersecting at the same location. Although these
lines have different slopes m and intercepts ¢, they all share the same point x,y which
become the slope and intercept in the Hough plane. Therefore, the same x and y values
represent all these lines, and consequently, a point in the x,y-plane is represented by a line
in the Hough plane.

Hough transform converts the pixels (edges) within an image into lines in the
Hough plane. If a group of points are colinear, their Hough transforms will all intersect
at one point. By checking this, it can be determined whether a cluster of pixels is on a
straight line or met. Hough transforms can also be used in determining the angle or
orientation of a line. This application has found use in determining the orientation of
an object in a plane by calculating the orientation of a particular line in the object.
Since the intercept and slope of the line are now known, a broken line can easily be
completed by additional points.

V4 A I
Lige 1 /_ Line 2 /ﬂ

Y / Liiee 3 -
Y [

x x e

Figure 9.46 Transformation of a point in x,y-plane into a line in the Hough plane.

9.15 Hough Transform

Example 9.7

Th.e x and y coordinates of 5 points are given as (1,3), (2,2), (3,1.5), (4,1), and (5,0)
Using the Hough transform, determine which points are on the same line. Find ’the:
slope and intercept of the line.

Solution: Of course, any two points form a line. So, we will look for at least three
points that will be on the same line. Clearly, looking at the graph of the points, itis very
easy to answer the questions, a trivial matter. However, in computer vision, since the
computer does not have the intelligence to understand an image, it must be calculated

Imagine having thousands of points in a computer file representing an image. It is'
impossible, whether foracomputer orahuman, to tell which points are on the same line
and which onesare not. We will performa Hough transform to determine which points
fall on the same line. The following table summarizes the lines formed in the m -plane
that correspond to the points in the x,y plane: )

y x X,y m,c

3 1 3=ml+c c= —1m+3

2 2 2=m2+c c= —2m+2

155 3 1.5=m3+c ¢c= —3m+1.5
4 1=md+c ¢ = —4m+1

0 5 0=m5+c ¢ = —5mt+0

Figure 9.47 shows the five corresponding lines drawn in the m,c-plane. As you see
three different lines intersect at two different places, while other intersections are jus;
between two lines. These correspond to points (1,3), (3,1.5), (5,0) and to (2,2), (3,1.5),
and (4,1). The slope and intercept of the first line are —0.75 and 3.75. The slope and
mtercept for the second line are —0.5 and 3 respectively. This shows how the Hough
transform can be cluttered with an exceeding number of intersecting lines. Determining
which lines are intersecting is the main issue in Hough transform analysis.

The equations representing these lines are y = —0.75x + 3.75 and y = —0.5x
+3. Using these equations, additional points lying on these lines can be assigned to
the group, therefore completing broken lines.

At least three lines intersect here

n

Figure 9.47 Hough transform for Example 9.7.
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Coincidentally, the same analogy may be made for circles and points instead of lines
and points. All points on a circle will correspond to intersecting circles in the Hough
plane and vice versa. For more information, refer to Reference 3.

The Hough transform has many desirable features. For example, since each point in
the image is treated independently, all points can be processed simultaneously with
parallel processing methods. This makes the Hough transform a suitable candidate for
real-time processing. It is also insensitive to random noise, since individual points do not
greatly contribute to the final count of the part itself. However, Hough transform is
computationally intensive. To reduce the number of calculations needed to determine
whether lines are actually intersecting with each other at the same point, we may use a
circle within which, if the lines approximately intersect with each other, they are assumed
to be intersecting. Many variations to the Hough transform have been devised to increase
its efficiency and utility for different tasks, including object recognition.”

9.16 Segmentation

Segmentation is a generic name for a number of different techniques that divide the
image into segments or constituents. The purpose is to separate the information
contained in the image into smaller entities that can be used for other purposes. For
example, an image can be segmented by the edges in the scene, or by division into small
areas (blobs), and so on. Each of these entities can then be used for further processing,
representation, or identification. Segmentation includes, but is not limited to, edge
detection, region growing, and texture analysis.

The early segmentation routines were all based on edge detection of simple geographic
models such as polyhedrons. In three-dimensional analysis of objects, models such as
cylinders, cones, spheres, and cubes were used as well. Although these shapes and figures
did not necessarily match any real objects, they provided a means for early developmental
work that evolved into more sophisticated routines and techniques. They also provided a
means to develop schemes that could process complicated shapes and recognize objects. As
an example, the routines could model a tree as a cone or sphere mounted on a cylinder
(Figure 9.48) and could match it with a model of a tree, requiring very little processing
power; the tree could be expressed with only a few pieces of information such as the
diameters of the cone and cylinder and their heights, while representing all the information
pertaining to a tree could be enormous in comparison.

Figure 9.48 Representation of objects such as a tree with models such as a cone or sphere
mounted on a cylinder can reduce processing requirements.
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9.17 Segmentation by Region Growing and Region Splitting

[n addition to edge detection routines, region growing and image splitting are other
common techniques of segmentation. Through these techniques, an attempt is made to
separate the different parts of an image into segments or components with similar
characteristics that can be used in further analysis such as in object detection. Edges found
by an edge detector are lines of textures, colors, planes, and gray levels, and therefore, may
ormay not be continuous. However, segmentation by regions naturally results in complete
and closed boundaries. For a survey of other segmentation techniques, see Reference [10).

Two approaches are used for region segmentation, One is to grow regions by similar
attributes such as a range of gray levels or other similarities. The other is region splitting
which will split images into smaller areas using their finer differences.

One technique of region splitting is thresholding. The image is split into closed
areas of neighboring pixels by comparing them to a thresholding value or range. Any
pixel that falls below a threshold (or between a range of values) will belong to at:'eginn
and otherwise, to another. This will split the image into a series of regions or clustcrr;
of pixels that have common or similar attributes. Generally, although this is a very
simple technique, it is not very effective since choosing an appropriate threshold is
difficult. The results are also highly dependent on the threshold value and will change
accordingly when the thresholds change. Still, it is a useful technique under certain
conditions such as silhouettes and for images with relatively uniform regions.

In region growing, first nuclei pixels or regions are formed based on some specific
selection law. Nuclei regions are the small clusters of pixels formed at the beginning of
segmentation. They are usually small and act as a nucleus for subsequent’ growing and
merging, as in alloys. The result is a large number of little regions. Successively, these
regions are combined into larger regions based on some other attributes or rules. Although
these rules will merge many smaller regions to create a smoother set of regions, they n{ay
unnecessarily combine certain features that should not be merged such as h;}les, smaller but
distinct areas, or different distinct areas with similar intensities.

The following is a simple search technique for growing regions for a binary image (or
with the application of thresholding, for gray images as well) that uses a l)(;okkt:epiug
approach to find all pixels that belong to the same region.'" Figure 9.49 shows a binary
image. Each pixel is referred to by a pair of index numbers. Assume a pointer starts at the
top and searches for a nucleus to start a region. As soon as a nucleus is found (which does
not already belong to another region), the program assigns a region number to it. All
pixels connected to it receive the same region number and are placed in a stack. The
search continues with all the pixels in the stack until the stack is emptied. The pointer will
then continue searching for a new nucleus and a new region number,

[t is important to decide what form of connectivity is to be used in growing regions, as
this will change the final outcome. As discussed in section 9.1 1, +4-, X4-, H6-, V6-, and
8-connectivity can be used for region growing. In Figure 9.49, the first nucleus is found
at pixel 2d. Suppose we have chosen the +4-connectivity. The program will check the
fpur corresponding pixels around the nucleus to determine connectivity. If there is an
“on” pixel, its location index numbers will be placed in a stack, the cell is given the
region number (#), and the pointer is moved down in the stack to the next cell, 3d. At this
location, the connectivity of pixels around the cell is checked again, the “on” pixel index
numbers are placed in the search stack, the cell is given the region-n designation, and the
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® If the mean of a token area (or pixel) is closer to its cluster’s mean, keep it.
(SLEIOFS ® If the mean of a token area (or pixel) is closer to another cluster’s mean, reassign it to
abcdecfgh RouTd s S the other cluster.
1 — | \ A — §3 o ® Continue until no changes are made.
2 |
3 t Round 2 Stack : . . : . .
g 4 i e []-»2 S o miakin . Onge again, as you nOt.ICC, a bookkeerg and comparison rgutme is applied to the
g s = ] 3d ¥ Region-n image in order to segment it based on a desired characten;tgl 11? this case the mean of each
‘7" i 3 SN area. Other schemes can be found in other references.”
8 . _! +4-connectivity 4d
A l Round3 __Suck 9.18 Binary Morphology Operations
Ll — 24 > Region-n
= 1] 2 : ‘;:gz:: Morphology operations refer to a family of operations performed on the shape (therefore,
! Search Next 3e

| 4d
3b

L1l

Continue until stack is empty

Figure 9.49 Region growing based on a search technique. With +4-conectivity search,
region-# is as shown.

process is repeated for the next index number on the stack, 3c. The process continues
until the stack is empty. .

Notice that this is nothing more than a bookkeeping technlqu.e to makg sure the
computer program can find all connected pixels in the region without missing any.
Otherwise, it is a simple search technique.

Example 9.8

Using x4-, H6-, V6-, and 8-connectivity, determine the first region that results

from a search of Figure 9.49. .
Solution: The result is shown in Figure 9.50 for the x4-connectivity. Please follow

the routine for other connectivity rules.

Figure 9.50 The result of a search for x4-connectivity for Example 9.8. [ |

There are many other segmentation schemes that apply to different situations. For
example, in one technique, the following is done:

e Assign the image to k clusters.
e Calculate the mean of each cluster.

morphology) of subjects in an image. They include many different operations, both for
binary and gray images such as thickening, dilation, erosion, skeletonization, opening,
closing, and filling. These operations are performed on an image in order to aid in image
analysis as well as for reducing the “extra” information that may be present in the image.
For example, consider the binary image in Figure 9.51(a) and the stick figure representing
one of the bolts in (b). As we will see later, a moment equation may be used to calculate
the orientation of the bolts. However, the same moment calculation can also be
performed on the stick figure of the bolt, but with much less effort. As a result, it
would be desirable to convert the bolt to its stick figure or skeleton. In the following
sections, we will discuss a few of these operations.

Morphology operations are based on the set theory. For example, in Figure 9.52, the
union between the two lines creates the parallelogram (apply the first line to the second
line), while the union between the two smaller circles is the larger circle. In this case, the
radius of the first circle is added to the second one, enlarging it. This is called dilation,

\

A,

e
-».‘_(\

(a) (b)

Figure 9.51 The binary image of a bolt and its stick (skeleton) representation.

o/
o @Q:

Figure 9.52 The union between two geometries creates dilation.
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Figure 9.53 The subtraction of two geometries creates erosion.

shown with the symbol @, and as we will soon discuss, it can be as little as one pixel added
to the perimeter of a part in an image.

Similarly, in Figure 9.53, subtracting the second set from the first results in an eroded
shape, therefore erosion, shown with the symbol ©, which as will be discussed later, may
be as small as one pixel around the object. Similar combinations of dilation and erosion
create other effects as follows.

Example 9.9

Figure 9.54 shows the effect of a union operation between two shapes. As shown,
this union reduces the appearance of the peaks and valleys in the original shape. This
is used for smoothing the jagged edges of shapes such as a bolt or gear.

Figure 9.54 The result of the union of the two shapes reduces the appearance of the
peaks and valley. &

Example 9.10

Figure 9.55 shows the image of a plate with a small protrusion in it. In order to locate
the protrusion, we may subtract a circle from the plate with a diameter slightly larger
than the protrusion, add the circle to the result, and subtract the result from the
original image. The remaining object is only the protrusion. =

The following operations are all based on the previously mentioned operations.

9.18.1 Thickening Operation

A thickening operation fills the small holes and cracks on the boundary of an object and
can be used to smooth the boundary. In the example shown in Figure 9.56, the
thickening operation reduced the appearance of the threads of the bolts. This is a very
useful operation when we try to apply other operations such as skeletonization to the
object. The initial thickening will prevent the creation of whiskers caused by the threads,
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Oe

X

Flgur_e 9.55 The application of union and subtraction operations for locating the
protrusion.

Protrusion

Ix
Ix

Figure 9.56 The threads of the bolts are removed by a triple application of a thickening
operation, resulting in smooth edges.

as we will see later. Figure 9.56 shows the effect of three rounds of thickeni i
on the threads of the bolts. .

9.18.2 Dilation

In dilation, the background pixels that are 8-connected to the foreground (object) are
({l]ﬂllgtfd to foreground. As a result, effectively, a layer is added to the object every
time the process is implemented. Due to the fact that dilation is performed on pixels that
are 8-connected to the object, repeated dilations can change the shape of the object
Figure 9.57 (b) is the result of five dilation operations on the (;lajects in (a). As you can se{-:.
due‘m.this dilation, the four objects have bled into one piece. With ;u‘lditinnai
applications of dilation, the four objects, as well as the disappearing hole, can become
one solid piece, which can no longer be recognized.

9.18.3 Erosion

Iq this operati_on, for;ground pixels that are 8-connected to a background pixel are
eliminated. Thls effectively eats away a layer of the foreground (the object) each time it is
performed. Figure 9.58(b) shows the effect of 3 repetitions of the erosion operation on
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(a) (b)

Figure 9.57 Effect of dilation operations. Here, the objects in (a) were subjected to five
rounds of dilation (b).

(a) (b) (©)

Figure 9.58 Effect of erosion operation on objects with (b) 3 and (c) 7 repetitions.

the binary image in'(a). Since erosion removes one pixel from around the object, the
object becomes increasingly thinner with each pass. However, erosion disregards all
other requirements of shape representation. It will remove one pixel from the perimeter
(and holes) of the object even if the shape of the object is eventually lost, as in (c) with 7
repetitions, where one bolt is completely lost and the nut will soon disappear. Erosion can
eventually remove all objects. This means that if the reversing operation of dilation,
which will add one pixel to the perimeter of the object with each pass, is used, the dilated
object may not resemble the original object atall. In fact, if the object is totally eroded to
one pixel, dilation will result in a square or circle. As a result, erosion can irreparably
damage the image. However, it can also be successfully used to eliminate unwanted
objects in an image. For example, if we want to identify the largest object in an image,
successive erosions will eliminate all other smaller objects before the largest object is
eliminated. Therefore, the object of interest can be identified.

Skeletonization

A skeleton is a stick representative of an object where all thicknesses have been reduced to
one pixel at any location. Skeletonization is a variation of erosion. Whereas in erosion,
the thickness may go to zero and the object may be totally lost, in skeletonization, as soon
as the thickness of the object becomes one pixel, the operation at that location stops.
Although in erosion the number of repetitions are chosen by the user, in skeletonization
the process automatically continues until all thicknesses are 1 pixel (the program stops
when no new changes are made as a result of the operation). The final result of
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Figure 9.59 The effect of skeletonization on an i i i i
. an ima thout th
the bolts have resulted in whiskers. ge without thickening. The threads of
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(a) (b) h (©)

Flgur.e 9.60 The skeleton of the objects in (a) after the application of thickening operation
results in a clean skeleton (b). Part (c) is the dilated jmage of the skeletons.

skeletqnization is a stick figure (skeleton) of the object, which is a good representation of
the obJ.egt, sometimes much better than the edges. Figure 9.59(b) shows the skeleton of
the original objects in (a). The whiskers are created because the objects were not
smgothed by thickening. As a result, all threads are reduced to one pixel, creating the
WhlSk.el’S.. Figure 9.60 shows the same objects that are thickened to eliminat,e the threads
resulting in a clean skeleton. Figure 9.60(c) is the result of dilating the skeleton 7 times A;
can be seen, the dilated objects are not the same as the original objects. Notice how ‘the
smaller screw appears as big as the bigger bolts.

_Although dilation of a skeleton will also result in a shape different from the original
object, skel_etons are very useful in object recognition since they are generally a better
representation of an object than others. The stick representation of an object can be
compared to the available a priori knowledge of the object for matching.

9.18.5 Open Operation

Opening is an erosion operation followed by a dilation. This causes a limited smoothing

of convex. parts of the object and can be used as an intermediate operation before
skeletonization.

9.18.6 Close Operation

Closing is a dilation operation followed by an erosion. This causes a limited smoothing of

concave parts of the object and, like opening, can be used as an intermediate operation
before skeletonization.
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Figure 9.61 As a result of a fill operation, the hole in the nut is filled with foreground
pixels, thus eliminating the hole.

size, orientation, and other properties of objects in images, and extraction of depth
information. Some techniques may be used for multiple purposes, as we will see later. For
example, moment equations may be used for object recognition as well as calculation of
position and orientation of objects.

Generally, it is assumed that image processing routines have already been applied to
the image or that they are available for further use when needed to improve and prepare
the image for analysis. Image analysis routines and techniques may be used on both binary
and gray images. In the following sections, some of these techniques are discussed.

Ia

9.21 Object Recognition by Features

9.18.7 Fill Operation

Fill operation fills the holes in the foreground (object). In Figure 9.61, the hole in the nut
is filled with foreground pixels until it is eliminated.

Objects in an image may be recognized by their features. These features may include, but
are not limited to: gray level histograms; morphological features such as area, perimeter,

by ,
For information on other operations, refer to vision systems manufacturers’ references.
Different companies include other operations to make their software unique. These

operations can be used as available.

9.19 Gray Morphology Operations

9.19.1

Gray morphology operations are similar to binary .morphology operations, except that
they operate on a gray image. Usually, a3 X 3 mask is used to apply Fhe operations, where
each cell in the mask may be either 0 or 1. Imagine a gray image is a multilayer, three-
dimensional image, where the light areas are peaks and Fhe dark.areas are valleys. The
mask will be applied to the image by moving it from pixel to pixel. Where the mask
matches the gray values in the image, there are no changes. made. If the gray values .of the
pixels do not match the mask, they will be changed according to the selected operation, as

described in the following sections.

Erosion

In this case, each pixel will be replaced by the value of the darkesF pixel in its 3 X 3
neighborhood, known as a Min Operator, effectively eroding the obJect. Qf course, the
result is dependent on which cells in the mask are 0 or 1. It removes light bridges between

dark objects.

number of holes, and others; eccentricity; cord length; and moments. In many cases, the
information extracted is compared to a priori information about the object, which may be
in a look-up table. For example, suppose two objects are present in the image, one with
two holes and one with one hole. Using previously discussed routines, it is possible to
determine how many holes each part has and, by comparing the two parts (let’s say they
are assigned regions 1 and 2) to a look-up table, it is possible to determine what each of
the two parts are. In another example, assume a moment analysis is performed for a
known object and the moment, relative to an axis, is calculated at many angles and the
data is stored in a look-up table. Later, when the moment of the part in the image is
calculated relative to the same axis and is compared to the look-up table, the angle of the
part in the image can be estimated.

The following is a discussion of a few techniques and different features that may be
used for object recognition.

9.21.1 Basic Features Used for Object Identification

The following morphological features may be used for object recognition and
identification:

(a) Gray Levels: Average, maximum, or minimum gray levels may be used to identify
different parts or objects in an image. As an example, assume there are three parts in
an image, each one with a different color or texture. The colors and textures will
create different gray levels in the image. If the average, maximum, or minimum gray

9.19.2 Dilation levels of the objects are found (e.g., through histograms mapping), the objects can be
In this case, each pixel will be replaced by the value of the lightest pixel in its 3 X 3 1‘ecogni2§d by comparison of this information. In ot.her cases, even the presence of
neighborhood, known as a Max Operator, effectively dilating the object. chourse, the (;ncl particular graynlcvcl may be enoug‘h to recognize a part. .
result is dependent on which cells in the mask are O or 1. It removes dark bridges between (b) I erimeter, area, diameter, uumbgfr 0[" hc)l?:i. apd gti‘ncr sm"lni:u' n'mlpholog‘lcal
ligiohiees. characteristics may be usm.i for object 1dcnt!t1cat10n: The perimeter of an object

may be found by first applying an edge detection routine, and then, by counting the
. number of pixels on the perimeter. The Left-Right search technique of section 9.13
9.20 Image AnalYSIS can also be used to calculate the perimeter by counting the pixels that are on the path

Image analysis is a collection of operations and techniques used to extract mform.aFlon
from images. This includes object recognition, feature extraction, analysis of position,

in an accumulator. Area can be calculated by region growing techniques. Moment
equations can also be used, as will be discussed later. Diameter for noncircular objects
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Figure 9.62 (a) Aspect ratio of an object, (b) minimum aspect ratio.
is the maximum distance between any two points on any line that crosses the
identified area of the object. . ' o
(c) Aspect Ratio: Aspect ratio is the width to length ratio of an enclo.51.ng rectangle about
the object, as shown in Figure 9.62. All aspect ratios are sensitive to orientation,
except the minimum aspect ratio. Therefore, the minimum aspect ratio is usually
used to identify objects. . .
(d) Thinness is defined as one of the two following ratios:
vl
(perimeter)”
1. Thinness = b0 (9.21)
area
diameter
2. Thinness = ——— (9.22)
area
(e) Moments: Due to their importance, moments are discussed in the next section.
9.21.2 Moments

The moment of an object within an image is:
Moy =Y xYL, (9.23)
x’y

where M, , is the moment of the object with a and b iqdices, x and yare the cqordma@s
of each pilxel raised to the power of a and b, and L,y is the intensity of the p%xel, as in
Figure 9.63. If the image is binary, the intensities are either 1 (or on) for the obJecF and 0
(off) for the background, and therefore, only the pixels that are turned on are conmdere}ii.
In gray images, the intensities may vary greatly, and consequently, the value of the
moment may be exceedingly influenced by gray values. As a res.ullt, although it is
mathematically possible to apply moment equations to a gray image, it is not practical or
useful unless other rules are engaged, too. For binary images, L., is elhther.O or 1;
therefore, considering only the on-pixels in the image, Equation (9.23) simplifies to:

Mo =Y« (9.24)
Xy

To calculate the moments, first determine whether or not each pixe?l belongs to the
object (is turned on); if so, raise the coordinates of the location of the pixel to the given
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Figure 9.63 Calculation of the moment of an image. For each pixel that belongs to the
object, the coordinates of the pixel are raised to the powers indicated by the moment’s indices.
The summation of the values thus calculated will be the particular moment of the image.

values of a and b. The summation of this operation over the entire image is the particular
moment of the object with a and b indices.

Moy,o is the moment of the object with a = 0 and b = 0. This means the x and y
coordinate values of all on-pixels are raised to a power of 0. M, means all x values are
raised to the power of 0 and all y values are raised to the power of 2, and so on. All
combinations of values between 0 and 3 are common.

Distances x and y are measured either from a fictitious coordinate frame located at the
edge of the image (x,y) or are measured from a coordinate frame formed by the first row
and column of the image. Since the distances are measured by counting the number of
pixels, the use of the first row and column as the coordinate frame is more logical.
However, note that in this case, all distances should be measured to the centerline of the
pixel row or column. As an example, the first on-pixel on the second row is pixel (2,4).
The x distance of the pixel from the x;-y; coordinate frame will be 3, whereas the same
coordinate from the x-y coordinate is 4 (or more accurately, 3.5 pixels). As long as the
same distances are used consistently, the choice is not important,

Based on the above, since all numbers raised to the power of 0 are equal to 1, all x° and
yos are equal to 1. Therefore, the My o moment is the summation of all on-pixels, which
is the area of the object. This moment can be used to determine the nature of an object
and to distinguish it from others that have a different area. Obviously, the My moment
can also be used to calculate the area of an object within an image.

Similarly, Mo is) " x%' for all on-pixels, or the summation of 1 x y values, which is
the summation of the y-coordinates of all on-pixels from the x-axis. This is similar to the
first moment of the area relative to the x-axis. Therefore, the location of the center of the
area relative to the x-axis can be calculated by:

2y Moy
P == 9.25
y darea MO,O ( )

So, by simply dividing the two moments, you may calculate the y coordinate of the
center of the area of the object. Similarly, the location of the center of the area relative to
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the y-axis is:

%= 2 , (9.26)

This way, an object may be located within an image regardless of its orientation (the
orientation will not change the location of the center of an area). Of course, this
information can be used to locate an object, say, for grabbing by a robot.

Moz is > % and represents the second moment of the area relative to the x-axis.
Similarly, M3 g is the second moment of the area relative to the y-axis. As you can imagine,
the moment of inertia of an object such as the one in Figure 9.63 varies significantly as the
object rotates about its center. Suppose we calculate the moments of the area about an axis,
say, the x-axis, at different orientations. Since each orientation creates a unique value, a
look-up table that contains these values can later be used to identify the orientation of the
object. Therefore, if a look-up table is prepared containing the values of the moments of
inertia of the known object at different orientations, the subsequent orientation of the
object can be estimated by comparing its second moment to the values in the look-up table.
Of course, if the object translates within an image, its moments of inertia will also change,
rendering it impossible to determine the orientation except in known locations. However,
with a simple application of the parallel axes theorem, the second moments about the center
of the area can be calculated. Since this measure is independent of the location, it can be
used to determine the orientation of the object regardless of its location. Therefore, using
the moment equations, the object, its location, and its orientation can be identified. In
addition to identification of the part, the information can be used in conjunction with a
robot controller to direct the robot to pick up the part and/or operate on it.

Other moments can also be used similarly. For example, M ; represents the product of
inertia of the area and can also be used for object identification. Higher-order moments
such as M3, M3, M5, and so on can also be used to identify objects and their
orientation. Imagine two objects relatively similar in shape, as in Figure 9.64(a). It is
possible that the second moments, areas, perimeters, or other morphological character-
istics of the two objects may be similar or close to each other such that they may not be
useful in object identification. In this case, a small difference between the two objects
may be exaggerated through higher-order moments, making object identification
possible. The same is true for an object with a small asymmetry (Figure 9.64(b)).
The orientation of the object may be found by higher-order moments.

AWON
AT

Figure 9.64 Small differences between objects or small asymmetry in an object may be
detected using higher-order moments.
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A moment invariant is a measure of an object based on its differe
?ndep.endent of its location, orientation, and scale factor. Therefore, the moment
Invariants may be used for object recognition and parts identification without regard

to ilmera set-up, location, or orientation. There are seven different moment invariants
such as: o

nt moments, and is

MooM; o — M%,O + Mo oMy, — Mg,l

9.27
i, =t

Refer to Reference [2] for the other six moment invariants,

Mll .

Example 9.11

For the simple object in a low-resolution image of Figure 9.65, calculate the area

center of the area, and second moments of area of the object relative to the xy, ;-
axes. ’

12 3 45 6 7 8
11 - * x

O 0 N N U B W N

v

I

Y

Figure 9.65 Image used for Example 9.11.

Solution: Measuring the distances of each on-pixel from the x;, y;-axes and

subsltltuting the measurements into the moment equations will yield the following
results:

Moo = > a%° =12(1) = 12
Mig=3xy" =% x=2(1)+1(2) + 3(3) +3(4) + 1(5) + 2(6) = 42

Moy =322%' =3 y=1(1) +5(2) +5(3) + 1(4) = 30

My 42 :
=—_C_35 g g=Mu_30_

R

B Mo . E Moo o E o
Map =222 = 3202 = 2(1)" + 1(2)* + 3(3) + 3(4)* + 1(5)% + 2(6)° = 178
Moo = 32" = 3 9% = 1(1)> +5(2)* + 5(3)> + 1(4)? = 82

The.sa.me procedure may be used for an image with much higher resolution.
There will just be many more pixels to deal with. However, a computer program can
handle as many pixels as necessary without difficulty.
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Example 9.12

In a certain application, a vision system looks at an 8x8 binary image of rectangles
and squares. The squares are either 3x3-pixel solids, or 4x4 hollow, while
the rectangles are 3x 4 solids. Through guides, jigs, and brackets, we can be certain
the objects are always parallel to the reference axes, as shown in Figure 9.66, and that
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Figure 9.67 Image used for Example 9.13.
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Square with hole Solid square Wide rectangle Tall rectangle

bl

. the partisrotated in place, the location ofits center of area does not change. You also ¢
see that the moment invariantis constant and, from the moment of inergtiz.l informati N
abgut the centroid, the orientation can be estimated. This information can now be u 03
toidentify the objectorto directarobot controller to send the robot arm to the locatics)i

8 12345 6 7 8

Figure 9.66 Image used for Example 9.12.

the lower left corners of the objects are always at pixel 1,1. We want to only use the
moment equations to distinguish the parts from each other. Find one set of lowest
values a and b in the moment equation that would be able to do so, with
corresponding values for each part. For this example, use the absolute coordinates
of each pixel for distances from the corresponding axes.

Solution: Using the moment equations, we will calculate the different moments for
all four until we find one set that are all unique for each object.

Square with hole  Solid square ~ Wide rectangle  Tall rectangle

M(),o =12 M(),() =9 MO,O =12 M0,0 =gl2
M(),1 = 30 M071 =18 M0,1 =24 M0,1 =30
M170:30 M1’0:18 M170:30 M170:24
Ml.] — 75 M1,1 e 36 M171 — 60 M1’1 == 60
M()’2 =94 Mo,z =42 M()‘z = 56 Mo,z =90

As shown, the lowest set of moment indices that yields a unique solution for each
object is My . Of course, My would result in similar numbers. -]

Example 9.13

For the image of the screw in Figure 9.67, calculate the area, X,y, Moo, M0, M1,1

M;0@%, My,QY and the moment invariant.
™

Solution: A macro program called moments.macro was written for the Optimas
6.2 vision software to calculate the moments. In this program, distances used for
momments are all in terms of the number of pixels and not in units of length. The values
were calculated for five separate cases, horizontal, 30°, 45°, 60°, and vertical. Small
variations in the results are due to rotation operations. Every time a part of an image is
rotated, since every pointin the image mustbe converted withasine or cosine function,
it changes slightly. Otherwise, as you can see, the results are consistent. For example, as

with proper orientation, to pick up the part.

Horizontal 30° 45° 60° Vertical
Area 3713 3747 3772 3724 3713
x=bar 127 123 121 118 113
y-bar 102 105 106 106 104
My, 38.8 E6 43.6 E6 46.4 E6 47.6 E6 47.8 E6
M,, 67.6 E6 62.6 E6 59 E6 53.9E6 47.8 E6
M, 48.1 E6 51.8 E6 52 E6 49.75 E6 43.75 E6
Moment Invariant 7.48 7.5 7.4 7.3 7.48
M, @x 7.5 E6 5.7 E6 3.94 E6 2.07 E6 0.264 E6
M, @y 0.264 E6 2.09 E6 3.77 E6 5.7 E6 7.5 E6

|

iﬁ; _followiflg is the listing of Fhe moments.macro program, written for Optimas.
. ough thls program cannot directly be used with other software, it is listed here to
show how simply a program can be developed to do similar operations. The Excel part

of the program is nothing more than a sim i
- ple set of Excel equations that
coordinates of all pixels, and later, are summed up. AR = R

{;TOMENTS.MAC PROGRAM Ha_'"iltten by Saeed Niku, Copyright 1998
cooid@ac'm checks an active image within Optimas vision system. It records the
coord;!::::: 1_c:‘f’tar‘l'l E’lxe_ils atl)(ox;]e the given threshold. It subsequently writes the
i o an Excel worksheet, which determines the moments. Moments i
: r , : .macwill
then read back the data and display it. The DDE commands communicate the data betx;en

Excel and Optimas macro program. If i
X ) your number of coordinates i
pixels, you must change the command below. */ kb e e




——

404

Chapter 9. Image Processing and Analysis with Vision Systems

onvertCalibToPixels (ROI));
ea; Real Xbar; Real Ybar; |
20; Real Mymomentll; Real VariantM;

BinaryArray = GetPixelRect (C
INTEGER NewArray[,]; Real MyAr
Real Mymoment02; Real Mymoment
Real MyMXBar; Real MyMYBar;

For (Xcoordinate = 0; Xcoordinate<= (VectorLength(Bi naryArray[0,1)-1);

Xcoordinate ++)

For(Ycoordinate = 0; Ycoordinate <= (VectorlLength(Bi naryArray[,01)-1);

Ycoordinate ++)

If (BinaryArray [Ycoordinate, Xcoordinate] > 100)
{

} } } non "y .
hChanSheetl = DDEInitiate ("Excel","Sheetl )5

DDEPoke(hChanSheetl, "R1C1: R20000C2" ,NewArray);
DDETerminate (hChanSheetl);

NewArray : := Xcoordinate : Ycoordinate;

how("Please Enter to Show Values"); 3
:ChafiSheetl _ DDEInitiate ("Excel","Sheetl );
DDERequest (hChanSheetl, Y"R1C14" ,MyArea) ;
PDERequest (hChanSheetl, ”RZCld: JYbar);
DDERequeSt(hChanSheetl ,"R3C14" , Xbar); .
DDERequest(hChanSheetl, "R4C14" ,Mymoment02) ;
pDERequest(hChanSheetl, "R5C14'.'. ,Mymoment20) :
DDERequest(hChanSheetl, "REC1L4" , Mymomentll);
DDETerminate(hChanSheetl);

= bar
jantM=(M Area"MymomentZU‘*m{)OOO0.0 Kbar=x
K . {-Mynrea‘—'MymomentOZ*l(JDOOO0.0waar“'Ybar)
/(MyArea*MyArea*MyArea) e

® - bar*Xbar)/1000000.0;
MyMYBar=(Mymoment20 1000000.0-MyArea*X .
M:,/MXBar= (MimomentOZ*lOOOOOO N O—MyArea*Ybar*Ybar) /1000000.0;

"Area=",M Area,"\n","Xbar=",Xbar,"\n", n i
. "Ybar:H.Ybar."\n".“Moment02=",Mymomentoz, x10A6",

"\n","Moment20=",MymomentZO." xl()h.ﬁ" '.:'\.f‘” _ p
,"Moment11=" ,Mymoment1l," %10A6" , "\n", "Invariant 1=
,VariantM);

" _II " 10A6l| ll\nll ]
MacroMessage ("Moment20@Xbar= ,MyMXBar, x" AN
“Moment02@Ybar=",MyMYBar, x10A6") ;

9.21.3 Template Matching

ion 1 hi U line
ique for object recogni 5 ] or template matching. Ifasuitable
Another technique for object recogmtionis model or templ: Lol ?}’, g g
drawing of the scene is found, the topological or structural elements such as (: ol

] e . i i - > matche nodel. Coordinate
of lines (sides), vertices, and interconnections can be matched to a model. Coord

a5 rotation, translation, and scaling can be performed to eliminate

transformations such
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9.21.4

the differences between the model and the object resulted from position, orientation, or
depth differences between them. This technique is limited by the fact that a priori
knowledge of the object models is needed for matching. Therefore, if the object is
different from the models, they will not match and the object will not be recognized.
Another major limitation is that if one object is occluded by other objects, it will not
match a model.

Discrete Fourier Descriptors

Similar to a Fourier transform calculated for an analog signal, a Discrete Fourier Transform
(DFT) of a set of discrete points (such as pixels) can also be calculated. This means that if the
contour of an object within an image is found (such as in edge detection), the discrete pixels
of the contour can also be used for DFT calculations. The result of DFT calculation is a set
of frequencies and amplitudes in frequency domain that describe the spatial relationship of
the points in question.

To calculate the DFT of a set of points in a plane, assume the plane is a real-imaginary
plane, such that each point is described by an x + iy relationship. If the contour is
completely traced around, starting from any pixel, and the locations of the points are
measured, the information can be used to calculate the corresponding frequency spectrum
of the set. Matching these frequencies with the frequencies found for possible objects in a
look-up table may be used to determine the nature of the object. In one unpublished
experiment, matching 8 frequencies yielded enough information about the nature of the
object (an airplane). Matching 16 frequencies could determine the type of an airplane from
a large class of planes. An advantage of this technique is that the Fourier transform can very
simply be normalized for size, position, and orientation. A disadvantage of the technique is
that it requires a complete contour of the object. Of course, other techniques, such as the
Hough transform, can be used to complete broken contours of the object.

9.21.5 Computed Tomography (CT)

Tomography is a technique of determining the distribution of material density in the
examined part. In computed tomography (CT), a three-dimensional image of the
object’s density distribution is reconstructed from a large number of two-dimensional
images of the density taken by different scanning techniques such as X-rays or ultrasonics.
In computed tomography, it is assumed that the part consists of a sequence of overlaying
slices. Images of density distribution of each slice are taken repeatedly around the object.
Although partial coverage of the part has been used as well, a complete coverage of 360°
is preferred. The data is stored in a computer, and subsequently, is reduced to a three-
dimensional image of the part’s density distribution that is shown on a monitor.

Although this technique is completely different from the other techniques discussed
above, it is a viable technique for object recognition. In many situations, either alone or
in conjunction with other techniques, computed tomography may be the only way to
recognize an object or to differentiate it from other similar objects. Specifically, in
medical situations, CT scan can be used in conjunction with medical robots where the
three-dimensional mapping of the internal organs of the human body may be used to
direct the robot for surgical operations.
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Extracting depth information from a scene is performed using two basic techniques. One
is the use of range finders in conjunction with a vision system and image-processing
techniques. In this combination, the scene is analyzed in relation to the information
gathered by range finders about the distances of different portions of an environment or
the location of particular objects or sections of the object. Second is the use of binocular
or stereo vision similar to humans and animals. In this technique, either simultaneous
images from multiple cameras or multiple images from one camera that moves on a track
are used to extract depth information. As long as the scene does not change during this
operation, the results will be the same as the use of multiple cameras. Since the location of
the multiple (usually two) cameras in relation to any particular point in the scene is
slightly different, each camera develops a slightly different image. By analyzing and
measuring the differences between the two scenes, depth information can be extracted.

9.22.1 Scene Analysis versus Mapping

Scene analysis refers to the analysis of images developed by a camera or other similar
devices in which a complete scene is analyzed. In other words, the image is a complete
replica of the scene within the resolution limit of the device where all the details of the
scene are included in the image. In this case, more processing is generally required to
extract information from the image, but more information can be extracted. For instance,
in order to identify an object within a scene, the image may have to be filtered and
enhanced, segmented by edge detection or thresholding, the part isolated by region
growing, and then identified by extracting its features and comparing them to a template
or look-up table. On the other hand, mapping refers to drawing the surface topology of a
scene or object where the image consists of a set of discrete distance measurements,
usually at low resolutions. The final image is a collection of lines that relate to the relative
position of points on the object at discrete locations. Since the image is already sliced, less
processing is required in analysis of mapped images, but less information can be extracted
from the scene as well. Each technique has its own merits, benefits, and limitations and is
used for different purposes, including navigation.

9.22.2 Range Detection and Depth Analysis

Range nwﬂsurcn]fﬁt and depth analysis is performed using many different techniques such
as active ranging,” stereo imaging, scene analysis, or specialized lighting. Humans use a
combination of techniques to extractinformation about the depth and positional relationship
between different elements of an image. Even in a two-dimensional image, humans can
extractuseful information using details suchas the changingsize ofsimilarelements, vanishing
lines, shadows, and changing intensity of textures and shades. Since many artificial intelli-
gence techniques are based on, and studied for, understanding of the way humans do things, a
number of depth measurement techniques are designed after similar human operations.l

9.22.3 Stereo Imaging

An image is the projection of a scene into the image plane through an ideal lens.
Therefore, every point in the image will correspond to a certain point in the scene.

Howe\.rez'. thu:‘ depth information of the point is lost in this projection and ¢ simpl

be retrw_vc;i from a single image. If two images of the same sccné are ‘t-1k= antr}iOt b'llmp :
Flcpth of different points from the image plane can be extracted b co‘mtz" - E s
images; the differences represent the spatial relationship bemeenydiffergnimg't e ltg’vlg
?umaqs do t'he sam, I:f’u?rlomatically, by combining the two images and formilrjl(;l?ttsf'lree—
21?_3?;22211 ;Irgllgz;q e M"il;e srerc_‘o .image used for dppth measurement is considered a
oy y more 1mages are required to form a true three-dimen-

Depth measurement using stereo images requires two operations:

1. T . . . :
tho deterrmi}tltl'the. point-pairs in the two images that correspond to the same point in
d’ff‘:fscine. is 1s .called correspondence or disparity of the point-pair. This is a
s'l 1c121t operation since some points in one image may not be visible in another, or
mnce due to perspective distortion, sizes and i i i i ’
. , spatial relationships i
(e e A P ps may be different in

2. TQ deterrmne the depth or location of the point on the object or in the scene b
triangulation or other techniques. ’

Geneljally, if the two cameras (or the relative locations of a single camera used twice t
get two images of a nonmoving, static scene) are accurately calibrated, triangulati X
relatively simple as long as enough corresponding points have been fc;und e

Correspondence points can be determined by matching specific featu.res such
corners or small segments, from the two images. Depending on their l’oc ti .
co'rresPondenc.e points can create matching problems. Consider the two marks ilﬁloni:i
B in Figure 9.68. In each case, the two cameras will see the marks as shown in (a) : "Ialn
Although the locations of the two marks are different, the cameras \;fill see thcm‘si;llll!i"l' ('}1).
As a result, the marks may be located wrongly (unless additional in.fbrmutior.] 511(:}]1] :t;

vanishing lengths are also considered)
Canlera 2/
4 g = .

<

Camera 2
I

Camera 1

o
et \“
Camera 1  Camera 2 Camera 1 Camera 2
A B B A A B A B
(@) ()

Figure 9.68 Correspondence problem in stereo Imaging.
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The accuracy of depth measurement in stereo imaging is dependent on the angle
between the two images, and therefore, the disparity. However, larger disparities require
more searching over larger areas. To improve the accuracy and reduce computation time,
multiple images of the same scene can be used.’® A similar technique was used in the
Stanford Cart, where the navigation system would use a camera mounted on a shaft to
take multiple images of the scene in order to calculate distances and find obstacles.”

9.22.4 Scene Analysis with Shading and Sizes

Humans use the details contained in a scene to extract information about the locations of
objects, their sizes, and their orientations. One detail is the shading on different surfaces.
Although the smoothly changing intensity of shades on surfaces is a source of difficulty in
some other operations such as segmentation, it can be indirectly used in extracting
information about the depth and shape of objects. Shading is the relationship between the
orientation of the object and the reflected light. If this relationship is known, it can be
used to derive information about the object’s location and orientation. Depth measure-
ment using shades requires a priori knowledge of the reflectance properties of the object
and exact knowledge of the light source. As a result, its utility is limited.

Another source of information for depth analysis is the use of texture gradient, or the
changes caused in textures as a result of depth changes. These variations are due to changes
in the texture itself, which is assumed to be constant, or due to changes in the depth or
distance (scaling gradient), or due to changes in the orientation of the plane (called
foreshortening gradient). An example of this is the perceived change in the size of bricks on
a wall. By calculating the gradient of the brick sizes on the wall, depth can be estimated.

9.23 Specialized Lighting

Another possibility for depth measurement is utilizing special lighting techniques that
yield a specific result. The specialized result can be used for extracting depth information.
Most of these techniques are designed for industrial applications, where specialized
lighting is possible and the environment is controlled. The following is the theory behind
one technique.

If a strip (narrow plane) of light is projected over a flat surface, it will generate a straight
line in relation with the relative positions and orientations of the plane and light source.
However, if the plane is not flat and an observer looks at the light strip in a plane other
than the plane of light, a curved or broken line will be observed (Figure 9.69). By
analyzing the reflected light, we can extract information about the shape of the object, its
location, and orientation. In certain systems, two strips of light are used, such that in the
absence of any object on the table, the two strips intersect exactly on the surface. When
an object is present, the two strips of light develop two reflections. The reflections are
picked up by a camera and depth information is calculated and reported. A commercial
system based on this technique is called CONSIGHT™.

A disadvantage of this technique is that only information about the points that are lit
can be extracted. Therefore, in order to have information about the complete image, it is
necessary to scan the entire object or scene.
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Camera

Light source

The image as seen
by the camera

F{%ur(}i 969 Application of specialized lighting in depth measurement. A plane of light
strikes the object. The camera, located at a different angle than the plane of light, will see the

fon Of the hght plane on t]le ()b ect a cur Ved 1 ne I]le rvature ot the line usea to
IﬁﬂﬂL Q C Sa .
. 1 cu u f 1 1S us d

9.24 Image Data Compression

9.24.1

Electro.m.c Images contain large amounts of information, and therefore, require data
transmission lines with large bandwidth capacity. The requirements for spa t,i al 1'%*:0] ution
numbe? of images per second, and number of gray levels (or colors forlcolo‘l' iln“‘i es) ar’
Seectﬁilxpmed}:)y thg reguired qgality of the images. Recent data transmission ancli ftg)ragz
techy (:gu;s] erzltv}::e S;i?éfrfg:tly improved image transmission capability, inch/lding trans-

. The followmg are some techniques that accomplish this task. Although there are many
different techniques of data compression, only some of them directly relate to \riﬁ" 1y
systems. Thg subject of data transmission in general is beyond the scope of‘tins book.-i; 3
\Vl!l not be discussed here. Image data compression techniques are divided into intrafr i -
(within frame) and interframe (between frames) methods. o

Intraframe Spatial Domain Techniques

Pulse Cc.)de Modulation (PCM) is a popular technique of data transmission in which the
analog s;gl.ml is sampled, usually at the Nyquist rate (a rate that will prevent aliasin )
and qllfnmzcd. The quantizer will have N levels where N is a power of 2. If N i g8,
then 2 will .yicld a quantizer with 256 different gray levels (an 8-bit ima e' uanti;Se )’
Certain apph'cations (space and medical) use higher resolutions such as 210goqu12 '
Ina t'echmque called Pseudorandom Quantization Dithering,* random noise ié added
to the plxe.ls" gray values in order to maintain the same quality while reducing the number
of b1ts.. Th1s is done to prevent contouring, which happens when the number of bits of a
quantizer is reduced (see section 9.5 and Figure 9.8). These contours can be broken up b
a@dmg a smaﬂ_ amount of broadband pseudorandom, uniformly distributed noise caﬁleg
dlt.h.er to the s%gnal prior to sampling. The dither causes the pixel to oscillate about the
original quantization level, removing the contours. In other words, the contours are
forced to randomly make small oscillations about their average value. A, proper amount of

noise will enable the system to have the i i
o1s¢ > thy same apparent resolution while th
bits is reduced significantly. e e
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Another technique of data compressign is halftoning: In halftoning, af plxellls
effectively broken up into a number of pixels by.mcreasmg' th.e number 0 samf es
per pixel. Instead, every sample is quantized .by a simple 1-bit binary c_lualntlz}fr into a
black or white pixel. Since the human eye will average the groups of pixels, the image

il sti k gray and not binary. .
WIlfl’rs(:iuicltci)\(f)e C%oging refers to a crl};ss of techniques .Whid.l are ba§ed on the theory thalt gl
highly repetitive images, only the new informatlon (mnc_)vatlons) peed. Ee sarr}llp ed,
quantized, and transmitted. In these types of images, many pixels remain without ¢ ange
in multiple images (e.g., TV news sets). Therefore, the. daFa transmission ca.nt de
significantly reduced if only the changes between successive images arf btransmlt teh.
To do this, a predictor is used to predict an optimum Valqe for ea.ch pixel base 0T1 e
information obtained from the previous images. The inpovation 1s t}_16 dlffel?nce
between the actual value of the pixel and the predic'ted value. Th_ls value 1s_tr31}115m1tted
by the system to update the previous image'. Ifin an image many pixels remain the same,
the innovations are few and transmission is reduced.

Example 9.14

In a similar attempt to reduce the amount of data transmiss_ion. in space by the
Voyager 2 Spacecraft, its computers were_reprogrammed, while in space, to use a
differential coding technique. At the beginning of its space travel, the V.oyaigeri
system was designed to transmit information abou_t every pixel, at a 256 gray leve
scale. This took 5,120,000 bits to transmit one single image, not 1nclgdlpg error
detection and correction codes, which were about the same length. Beglnn.mg with
the Uranus fly-by, the system was reprogrammed.to only send tl}e difference
between successive pixels rather than the absolute brlghtness _of the pl)fels. F:ogse—
quently, if there were no differences between successive pixels, no }nfOlma.tlon
would be transmitted. In scenes such as in space, where the backgroupd is essentially
black, there are many pixels that are similar to their neighbors. This rgi}:u:cdl (,{."'m
transmission by about 60%.2> Other examples of fixed background mfornmtm.n
include theatrical sets and industrial images.

In Constant Area Quantization (CAQ),24’25 data transmission is reduced by trﬁps};
mitting fewer pulses at lower resolution in low contrast areas .compared to hig
contrast areas. This, in effect, is taking advantage of the' fact that h1gher contrast areas
have higher frequency content and require more information transmission than the lower

contrast areas.

9.24.2 Interframe Coding

These methods take advantage of the redundant inform.ation that exists bere;:n
successive images. The difference between these and the 1ntrafran1_e methgds is that
rather than using the information within one image, a gumber of different images are
used to reduce the amount of information to be transmitted. .

A simple technique to achieve this is to use a framc? memory at the receiver. "fljh.e frame
memory will hold an image and continually show it at the display. When information

9.25 C

9.24.3

olor Images i1

about any pixel is changed, the corresponding location in the frame memory is updated.
As a result, the rate of transmission is significantly reduced. The disadvantage of this
technique is that in the presence of rapidly moving elements, flickering may happen.

Compression Techniques

Two general methods are used for data compression. In one method (such as in zip
archives) called lossless compression, codes are assigned to repetitive words, phrases, or
values in order to reduce the size of the data file. As the name implies, in these methods
no data is lost, and consequently, the original file may be reconstructed without any
change or loss. However, the level of savings or compression in chromatic or achromatic
gray images is not large because in these images pixels rarely have repeating patterns.
These methods, however, are more useful in particular situations. For example, in a
binary file, large areas (blobs) have similar values. If the data is presented line by line (such
as in a facsimile file scanned line by line), the data may be compressed by coding the
length of on-off sets of pixels rather than the value of each individual pixel. Therefore,
many pixels with similar values can be represented by only specifying the starting point of
each section and its length.

The second category covers methods that compress image data by reducing the
information, and therefore, are called lossy compression, including the popular JPEG (Joint
Photographers Expert Group) compression. ' Although we will not discuss the elaborate
sequence of steps taken in order to compress the data, it should be mentioned that a lot of
information is lost during this process, although a much smaller file is generated when an
image is saved or converted to JPEG format. However, unless the original detailed data is
needed for other purposes or a picture must be zoomed in to extract information, the
human eye may not recognize the difference as much.

9.25 Color Images

White light can be decomposed into a rainbow of colors that span the range of 400 to
700 nm wavelengths. Although it is rather difficult to subscribe an exact value to any
particular hue, the primary colors of light are thought to be red, green, and blue (RGB).
Theoretically, all other hues and color intensities can be recreated by mixing varying levels
of the primary color lights, although in reality, the recreations are not truly accurate.
However, in images, most colors can be recreated using R GB.

To capture color images, filters are used to separate the light into these three subimages
and each one is captured, sampled, and quantized individually, therefore creating three
image files. To recreate color images, the screen is composed of three sets of pixels,
interlaced sequentially (RGBRGB . . . ). Each set of pixels is recreated individually, but
simultaneously. Due to the limited spatial resolution of our eyes, we tend to mix the three
images together and perceive color images. However, as far as image processing is
concerned, a color image is in fact a set of three images, each representing the intensities
of the three primary colors of the original image.

To convert a color (chromatic) image into a black and white (achromatic) image, the
intensities of the individual colored files must be converted into gray values. One method
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to do this is to take the average values of the three files for the same pixel location and to
use that as a substitute for the gray value. Therefore, the histogram of a gray image
shows the same exact values for all three channels of RGB. For more information about
the image processing of colored images please refer to other resources such as References

2 and 13.

9.26 Heuristics

Heuristics is a collection of rules of thumb developed for semi-intelligent systems in order
to enable them to select a predetermined decision from a list based on the current
situation. Heuristics is used in conjunction with mobile robots, but has applications in
many fields.

Consider a mobile robot that is supposed to navigate through a maze. Imagine the
robot starts at a point and is equipped with a sensor that alerts its controller that the robot
has reached an obstacle such as a wall. At this point, the controller has to decide what to
do next. Let’s say the first rule is that when encountering an obstacle, the robot should
turn left. As the robot continues, it may reach another wall, turn left again, and continue.
Suppose that after three left turns, the robot reaches the starting point. In this case, should
it continue to turn left? Obviously, this will result in a never-ending loop. The second
rule may be to turn right if the first point is encountered. Now imagine that after a left
turn, the robot gets to a dead end. Then what? A third rule may be to trace back the path
until an alternate route can be found. As you can see, there are many different situations
the robot may encounter. Each one of these situations must be considered by the
designer, and a decision must be provided. The collection of these rules is the heuristics
rule base for the controller to “‘intelligently” decide how to control the motions of the
robot. However, it is important to realize that this is not true intelligence since the
controller is not really making decisions but merely selecting from a set of decisions that
have already been made. If a new situation is en countered that is not in the rules base, the
controller will not know how to respond.”®

9.27 Applications of Vision Systems

Vision systems may be used for many different applications, including in conjunction
with robotic operations and robots. Vision systems are commonly used for operations
that require information from the work environment and include inspection, navigation,
part identification, assembly operations, surveillance, control, and communication.

Suppose that in an automatic manufacturing setting, a circuit board is to be
manufactured. One important part in this operation is the inspection of the board at
different states before and after certain operations. A common method is to set up a cell
where an image of the part is taken and subsequently modified, improved, and altered.
The processed image is compared to a look-up image. If there is a match, the part is
accepted. Otherwise, either the part is rejected or is repaired. These image-processing
and analysis operations are generally made up of the processes discussed earlier. Most
commercial vision systems have embedded routines that can be called from a macro
program, making it very easy to set up a system.
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\.fls](}!] systems Zl%a\re been used for many applications, for example, for locating
radlo;lcléluve pucks, rnndo.m bm‘ picking,” creating an automated brake inspection
system,” measuring robotic motions and external objects,™ food inspection such as
tcxturu_'}(z)f cookies and consistency of packaging,®' creating adaptive behavior for mobile
robots,’ ‘;malyzing the health of agricultural crops,® and many others.

In navigation, the scene is usually analyzed for finding acceptable pathways, obstacles
:and OI.'hC]I‘ elements that confront the robot.> In some operations, the vision syétcm sends it;
information to an operator, who controls the motions from a distance. This is very
common in telerobotics as well as in space applications.” In some medical applications, the
surgeon guides the device, whether a surgical robot or a small investigative, cxplm'a’rory
fievice such as an angiogram, through its operations.”® Autonomous navigation requires the
integration of depth measurement with the vision system, either by stereo vision analysis, or
by range finders. It also requires heuristic rules of behavior for the robotic device to navig’ate
around an environment.

In another application,””*® an inexpensive laser diode was mounted next to a camera
The projected laser light was captured by the camera and was used to both measure the;
depth ofa scene as well as to calibrate the camera. In both cases, due to the brightness of the
laser light and bleeding effects, the image contained a large, bright circular spot. To identify
the dot and separate it from the rest of the scene, a histogram and thresholding operation was
u.sed. Subsequently, the circle was identified and skeletonized until only the center of the
.c1rcle lfemained. The location of the pixel representing the center of the circle was then used
ina tmangglation method to calculate the depth of the image, or to calibrate the camera.

These simple examples are all related to what we have discussed. Although many other
routines are available, the fundamental knowledge about vision systems enables you to

p;foceed with an application and adapt to your application what vision systems have to
offer.

9.28 Design Project

There are many inexpensive digital cameras on the market that can be used to create a
simple vision system. They are simple, small, and lightweight and provide a simple image
that can be captured by computers and be used to develop a vision system. In fact, many
cameras come with the software to capture and digitize an image. Standard still and video
cameras can also be used for capturing images. In this case, although you can capture an
image for later analysis, due to the additional steps of downloading the image from the
camera to the computer, the image is not available for immediate use.

A.ddltionally, many simple programs such as Adobe’s Photoshop™™ have many
routines similar to what we have discussed in this chapter. Additional routines may
be developed using common computer languages such as C. Many other routines may be
downloaded from the public domain. The final product will be a simple vision system
that. can 'be used to perform vision tasks. This may be done independently, or in
conjunction with your 3-axis robot, and can include routines for parts identification and
pick up, .the development of mobile robots, and many other similar devices.

Most images shown in this chapter were captured and processed by standard digital
cameras and the vision systems in the Mechanical Engineering R obotics laboratory at Cal
Poly, including MVS909™" and Optimas™ 6.2 vision systems and Photoshop ™.
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You may also develop your own simple vision system using oth%{/1 progr:l?nu"}li_nwg
languages and systems that can handle an image file. This includes Excel ™, LabView ™,
and other development systems.
I'_.-' K

Summary e
In this chapter, we studied the fundamentals of image processing to modify, alter,
improve, or enhance an image as well as image ;umly;usv through which data can be
extracted from an image for subsequent applications. This 111&)1':11:@.011 may be used qu a
variety of applications, including manufacturing, surveillapce, navigation, and r9b0t1cs.
Vision systems are very powerful tools that can be used with ease. They are flexible and
inexpensive. . .

There are countless routines that can be used for a variety of different purposes. Most
of these types of routines are created for specific operations and ;1pplif:3ti0nS. However,
certain fundamental techniques such as convolution masks can be applied to many classes
of routines. We have mostly concentrated on these types of techniques, \ivhu.:h enable
you to adopt, develop, and use other routines and techniques fo?‘ _oth.cr ;1;_'{phcat|0ns. Th.e
advances in technology have also created tremendous opportunities in this area. There is
no doubt that this trend will continue in the future as well.
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Note: If you do not have access to an image, simulate the image by creating a file called I, , where m and n
are the row and column indices of the image. Then, using the following image matrix, create an image by
substituting numbers 0 and 1 or gray-level numbers in the file. In a binary image O represents off, dark or
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background pixel, while 1 represents on, light, or object pixels. In gray images, each pixel is represented by a
corresponding greyness level value. A computer routine can then be written to access this file for image data.
The result of each operation can be written to a new file such as R,, ,, where R represents result of the s s Wit s Il o 0
operation, and m and # are the row and column indices of the resulted file.

Alternately, you may use your own graphics system or any commercially available graphics language to
create, access, and represent an image. N IS i = T o o e

8 8 8 9 9 10

123 456 7 8 9101112131415
; Figure P.9.3
; 9.4. Repeat Problem 9.3, but substitute the absolute value of negative gray levels. What conclusion can
i you make from the result?
5
) 9.5. Repeat Problem 9.3, but apply the mask of Figure P.9.5 and compare your results with Problem 9.3
; Which one is better? '
8
9 -1 10 [-1
10
) 0f4]0 :
12 1 1=
13 J
14 :
. Figure P.9.5
Figure 9.70 A blank image geid. 9.6. Repeat Prob.lem 9.3, but apply the mask of Figure P.9.6 and compare your results with Problem 9.3.
Which one is better? !
01 0
9.1. Calculate the necessary memory requirement for a still color image from a camera with 10 megapixels at: I [
® 8-bits per pixel (256 levels) 0o1]|o0

® 16-bits per pixel (65,536 levels)
Figure P.9.6

9.2. Consider the pixels of an image, with values as shown in Figure P.9.2, as well as a convolution mask

it the givan, values, Caleuare ) heratirgaliiesiionlthato b ey 9.7. Repeat Problem 9.3, but apply the mask of Figure P.9.7 and compare your results with Problem 9.3
Which one is better? -

1 1 i
47018

1 |-8 1
3l2lele 1]o0]1

i 1 1
503123 1|1]1 |
g8l6|5]9 1]0]1 Figure P.9.7

Figure P.9.2 9.8. An image is represented by values shown below.

9.3. Consider the pixels of an image, with values as shown in Figure P.9.3, as well as a convolution mask
with the given values. Calculate the new values for the given pixels. Substitute O for negative gray
levels. What conclusion can you make from the result? (c) Find the values of pixels 2b and 3¢ when a 3 X 3 median filter is applied.

(a) Find the value of pixel 2c when mask 1 is applied.
(b) Find the value of pixel 3b when mask 2 is applied.

(d) Find the area of the major object that results when a threshold of 4.5 is applied based on a
“+4-connectivity (start at the first on-pixel).
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9.9.

9.10.

9.11.

9.12.

9.13.

9.14.

9.15.
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a b ¢ d e
L [419]6]2]6 11111 0|j1]0
2 | 4|13|7]4]|6 y B ek s 1 (4|1
3 |6]2|6]5]3 111 011169
s 1 lels]o| 2 Mask 1 Mask 2
5128|447

Figure P.9.8

An image is represented by values shown below.

(2) Find the value of pixel 3b when mask 1 is applied.

(b) Find the values of pixels 2b, 2¢, 2d when mask 2 is applied.

(c) Find the value of pixel 3c when a 5 X 5median filter is applied.
(

d) Find the area of the major object that results when a threshold of 4.5 is applied based on a
X 4-connectivity (start at the first on-pixel).

a b c d e

1 8|19|6[|2)]5 o|l1]0 1 (1|1t
2 | 4|6 2]|4]6 1141 -2|-2|-2
3 16|7|5]6]|5 of1f]o I I L
4 tl1ols5]9] 4 Mask 1 Mask 2

s |2(8[|4]3]2

Figure P.9.9

Write a computer program for the application of a 3X3 averaging convolution mask unto a 15x15
image. Refer to the note on page 415 for more information.

Write a computer program for the application of a 5X5 averaging convolution mask unto a 15x15
image. Refer to the note on page 415 for more information.

Write a computer program for the application of a 3x3 high-pass convolution mask unto a 15x15
image for edge detection. Refer to the note on page 415 for more information.

Write a computer program for the application of an nxXn convolution mask unto a kxk image. Refer
to the note on page 415 for more information. You should write the routine such that the user can
choose the size of the mask and the values of each mask cell individually.

Write a computer program that will perform the Left-Right search routine for a 15x 15 image. Refer
to the note on page 415 for more information.

Using the Left-Right search technique, find the outer edge of the object in Figure P.9.15:
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9.16.

9.17.

9.18.

9.19.

abcdefghijkl1lm

_ e e e
R~ V- R RN B NEY I N U S

Figure P.9.15

The x and y coordinates of 5 points are given as (2.5, 0), (4,2), (5,4), (7,6), and (8.5,8). Using the
Hough transform, determine which of these points form a line and find its slope and intercept.

Write a computer program that will perform a region growing operation based on +4 connectivity.
The routine should start at the 1,1 corner pixel, search for a nucleus, grow a region with a chosen
index number, and after finishing that region, must continue searching for another nuclei until all
object pixels have been checked. Refer to the note on page 415 for more information.

Write a computer program that will perform a region growing operation based on X4 connectivity.
The routine should start at the 1,1 corner pixel, search for a nucleus, grow a region with a chosen
index number, and after finishing that region, must continue searching for other nuclei until all object
pixels have been checked. Please refer to the note on page 415 for more information.

/

Using '+4 connectivity logic and starting from 1,a pixel, write the sequence of pixels in correct order
that will be detected by a region growing routine for the object in Figure P.9.19:
a bcde o gh

0 )
. t
W I i<—|:|—>3
!

- 3

b -

o - O T, I )

+4-connectivity

c W

Figure P.9.19

9.20. Using X4 connectivity logic and starting from 1,a pixel, write the sequence of pixels in correct order

that will be detected by a region growing routine for the object in Figure P.9.20:
a bcde fgh

l

o I S 4
[ N/

i | D

6 | 3/ Ng

7 1] ] - .
5 x4-connectivity
9

Figure P.9.20
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9.21. Find the union between the two objects in Figure P.9.21. 9.24. Apply an open operation to Figure P.9.24.
oJoJoJoJoJoJoJo[ofo]o]o]o oJoloJoJol]o ab|cld|e|f|“l"lil’kl“‘
1
olololololoflofofofo]o]ojo o mjofofof]o EE N EN
3 i i 3
olololololofofo]o]ofo]o]o olb|ofofolo ), ASmED
5 _ 0T [0
ololololoflofofo]o]lofofo]o o [ [ o . =1
% i AT i3
oloJoloJo|o]ofofo|o]o]o]o ololofofa]o : u
9 1 I
ololololo]oJoloJo[ofo]o]eo ojojojolafo M A
1
olololo il sfofololo]o ololofololfo i
13
ololololo|of]ofmjolofojo]o

Figure P.9.24
9.25. Apply a close operation to Figure P.9.24.

9.26. Apply a skeletonization operation to Figure P.9.26 .

a b cde fghijkl1m
ololoJo]ofolo|lo]Jofo]ojolo . _T i I_I|h____“_|_j_:
oJololololo]ofofololo]o]o z :.--:-_!" 3_ ' = =
4 }I S
Figure P.9.21 y e
7 Tl
8 g
9.22. Apply a single-pixel erosion based on 8-connectivity on the image of Figure P.9.22. i -
10
11
12
abcdefghijkl1lm .
1 =
’ Figure P.9.26
4| 9.27. Write a computer program in which different moments of an object in an image can be calculated.
'Z The program should ask you for moment indices. The results may be reported to you in a new file, or
7 may be stored in memory. Refer to the note on page 415 for more information.
z 3 9.28. Calculate the My, moment for the result of Problem 9.8(d) based on +4-connectivity.
:‘1’ 9.29. For the binary image of a key in Figure P.9.29, calculate the following:
ﬁ ® Perimeter, based on the Left-Right search technique.

® Thinness, based on P / P

Figul’e P.g.zz L ] Center Of gravity_

9.23. Apply a one-pixel dilation to the result of Problem 9.22 and compare your result to Figure P.9.22.

® Moment My ; about the origin (pixel 1,1) and about the lowest pixel of a rectangular box around
the key (2,2).
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Figure P.9.29

9.30. Using morment equations, calculate Moz and M2y about the centroidal axes of the part in Figure
| P.9.30.

{ 234 56 7 89 10

oI R R Y L
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l,

Figure P.9.30

9.31. Using moment equations, calculate Moo and M2y about the centroidal axes of the part in Figure
P.9.31.

] 234 56 7889 10

N Y L

—-
(=]

l,

Figure P.9.31

Fuzzy Logic Control

10.1 Introduction

“Tuesday, October 26, 1993 was supposed to be a very warm day in San Luis Obispo,
and in fact it turned out to be pretty hot. When the robotics lab was opened in the
morning, we found out that the steamn line had leaked into the room and much heat and
humidity had been released into the environment. When the hydraulic power unit for
the robots was turned on, it added even more heat to the lab, raising the temperature even
further. Eventually, it got so hot that we had to bring in large fans to cool down the lab a
bit to make it a little more comfortable for students.”

This true statement is a very good example of what fuzzy logic is about. Let’s look at
the statement again, noticing the underlined words:

“Tuesday, October 26, 1993 was supposed to be a very warm day in San Luis Obispo,
and in fact it turned out to be pretty hot. When the robotics lab was opened in the
morning, we found out that the steam line had leaked into the room and much heat and
humidity had been released into the environment. When the hydraulic power unit for
the robots was turned on, it added even more heat to the lab, raising the temperature even
further. Eventually, it got so hot that we had to bring in large fans to cool down the lab a
bit to make it a little more comfortable for students.”

As you can see, a number of ““descriptors” are used in this statement to describe certain
conditions that are not very clear. For example, when we state that the day was supposed
to be very warm, what do you think it was supposed to be? 85°F? Or maybe 100°F? If
you live in San Luis Obispo, even 80°F may be too warm. Then, as you can see, this
description of the temperature is, in fact, fuzzy. It is not very clear what the temperature
may have been. And the statement continues to be fuzzy. We also don’t know exactly
what is meant by so hot, or a bit, or large fans. How large? How much cooler did the
temperature get when we turned on the fans? Now, read the paragraph once again and
see how many other fuzzy descriptions are used in addition to the ones we are discussing.
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