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Kinematics of Robots:
Position Analysis
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2.1 Introduction

In this chapter, we will study forward and inverse kinematics of robots. With forward
kinematic equations, we can determine where the robot’s end (hand) will be if all joint
variables are known. Inverse kinematics enables us to calculate what each joint variable
must be in order to locate the hand at a particular point and a particular orientation. Using
matrices, we will first establish a method of describing objects, locations, orientations,
and movements. Then we will study the forward and inverse kinematics of different
robot configurations such as Cartesian, cylindrical, and spherical coordinates. Finally, we
will use the Denavit-Hartenberg representation to derive forward and inverse kinematic
equations of all possible configurations of robo ts—regardless of number of joints, order of
Joints, and presence (or lack) of offsets and twists,

Itis important to realize that in practice, manipulator-type robots are delivered with
no end effector. In most cases, there may be a gripper attached to the robot; however,
depending on the actual application, different end effectors are attached to the robot by
the user. Obviously, the end effector’s size and length determine where the end of the
robot will be. For a short end effector, the end will be at a different location compared
to a long end effector. In this chapter, we will assume that the end of the robot is a plate
to which the end effector can be attached, as necessary. We will call this the “hand” or
the “end plate” of the robot. If necessary, we can always add the length of the end
effector to the robot for determining the location and orientation of the end effector. It
should be mentioned here that a real robot manipulator, for which the length of the
end effector is not defined, will calculate its joint values based on the end plate location
and orientation, which may be different from the position and orientation perceived by
the user.
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2.2 Robots as Mechanisms

Manipulator-type robots are multi-degree-of-freedom (DOF), three-dimensional, open
loop, chain mechanisms, and are discussed in this section.

Multi-degree-of-freedom means that robots possess many joints, allowing them to
move freely within their envelope. In a 1-DOF system, when the variable is set to a
particular value, the mechanism is totally set and all its other variables are known. For
example, in the 1-DOF 4-bar mechanism of Figure 2.1, when the crank is set to 120°, the
angles of the coupler link and the rocker arm are also known, whereas in a multi-DOF
mechanism, all input variables must be individually defined in order to know the
remaining parameters. Robots are multi-DOF machines, where each joint variable must
be known in order to determine the location of the robot’s hand.

Robots are three-dimensional machines if they are to move in space. Although it is
possible to have a two-dimensional multi-DOF robot, they are not common (or useful).

Robots are open-loop mechanisms. Unlike mechanisms that are closed-loop (e.g., 4-
bar mechanisms), even if all joint variables are set to particular values, there is no
guarantee that the hand will be at the given location. This is because deflections in any
joint or link will change the location of all subsequent links without feedback. For
example, in the 4-bar mechanism of Figure 2.2, when link AB deflects as a result of load
F, link BO, will also move; therefore, the deflection can be detected. In an open-loop
system such as the robot, the deflections will move all succeeding members without any
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Figure 2.2 Closed-loop (a) versus open-loop (b) mechanisms.
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it 1s feedback. Therefore, in open-loop systems, either all joint and link parameters must
ful). continuously be measured, or the end of the system must be monitored; otherwise, the
L 4- kinematic position of the machine is not completely known. This difference can be
. no expressed by comparing the vector equations describing the relationship between
any different links of the two mechanisms as follows:

For

load For the 4-bar mechanism:  O1A4 + AB = O;0, + O,B (2.1)
oop

any For the robot: O01A+AB+ BC = O,C (2.2)

As you can see, if there is a deflection in link AB, link O,B will move accordingly.
However, the two sides of Equation (2.1) have changed corresponding to the changes in
the links. On the other hand, if link AB of the robot deflects, all subsequent links will
move too; however, unless O;C is measured by other means, the change will not be
known. To remedy this problem in open loop robots, either the position of the hand is
constantly measured with devices such as a camera, the robot is made into a closed loop
system with external means such as the use of secondary arms or laser beams, "> or as
standard practice, the robot links and joints are made excessively strong to eliminate all
deflections. This will render the robot very heavy, massive, and slow, and its specified
payload will be very low compared to what it can actually carry.

Alternatives, also called parallel manipulators, are based on closed-loop parallel archi-
tecture (Figure 2.3). The tradeoff is much-reduced range of motions and workspace.

2.3 Conventions

Throughout this book, we will use the following conventions for describing vectors,
frames, transformations, and so on:

Vectors i,j,k,x,y,2z,n,0,a,p

Vector components Hy Hyy Hay Gy dyy Az

Frames Foyzr Fron Xy2, 10a, Feypporg

Transformations T, To,"T, P, YTy (transformation of robot relative to the Universe,

where Universe is a fixed frame)
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2.4 Matrix Representation

Matrices can be used to represent points, vectors, frames, translations, rotations, trans-
formations, as well as objects and other kinematic elements. We will use this represent-
ation throughout the book.

2.4.1 Representation of a Point in Space

A point P in space (Figure 2.4} can be represented by its three coordinates relative to a
reference frame as:

P=ai+bj+ck (2.3)

where ay, b,, and c, are the three coordinates of the point represented in the reference
frame. Obviously, other coordinate representations can also be used to describe the
location of a point in space.

2.4.2 Representation of a Vector in Space

A vector can be represented by three coordinates of'its tail and its head. If the vector starts
at point A and ends at point B, then it can be represented by P4p = (B, — A,)i +
(B), - A),)j + (B. — A, )k. Specifically, if the vector starts at the origin (Figure 2.5),

Figure 2.4 Representation of a point in space.

Figure 2.5 Representation of a vector in space.
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then: )
P=ai+ bj+ .k (2.4)

where a,, b,, and c, are the three components of the vector in the reference frame. In
fact, point Pin the previous section is in reality represented by a vector connected to it at
point P and expressed by the three components of the vector.

The three components of the vector can also be written in matrix form, as in Equation
(2.5). This format will be used throughout this book to represent all kinematic elements:

P= b (2.5)

This representation can be slightly modified to also include a scale factor w such that it P,

Py, and P, are divided by w, they will yield a,, by, and c,. Therefore the vector can be
written as:

P,
P P,

P = P} where a, = ;l vby = F:' etc. (2:6)

w may be any number and, as it changes, it can change the overall size of the vector. This
is similar to the zooming function in computer graphics. As the value of w changes, the
size of the vector changes accordingly. If w is bigger than 1, all vector components
enlarge; if w is smaller than 1, all vector components become smaller.

When w is 1, the size of these components remains unchanged. However, if w = 0,
then a,, by, and ¢, will be infinity. In this case, P,, Py, and P, (as well as a,, by, and ¢,) will
represent a vector whose length is infinite but nonetheless is in the direction represented
by the vector. This means that a direction vector can be represented by a scale factor of
w = 0, where the length is not important, but the direction is represented by the
three components of the vector. This will be used throughout the book to represent
direction vectors.

In computer graphics applications, the addition of a scale factor allows the user to
zoom in or out simply by changing this value. Since the scale factor increases or decreases
all vector dimensions accordingly, the size of a vector (or drawing) can be easily changed
without the need to redraw it. However, our reason for this inclusion is different, and it
will become apparent shortly.

Example 2.1

A vector is described as P = 3i + 5j + 2k. Express the vector in matrix form:

(a) With a scale factor of 2.
(b) If it were to describe a direction as a unit vector.
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Solution: The vector can be expressed in matrix form with a scale factor of
2 as well as 0 for direction as:

6 3
10 5
P= 4 and P = 5
2 0

However, in order to make the vector into a unit vector, we normalize the length to
be equal to 1. To do this, each component of the vector is divided by the square root
of the sum of the squares of the three components:

A= [P+ P2+ P2=6.16and P, ="/ = 0.487, etc. Therefore,

0.487
0.811
Punic =1 0 304
0
Note that v/0.487% + 0.8112 + 0.324% = 1. [

Example 2.2

A vector p is 5 units long and is in the direction of a unit vector q described below.
Express the vector in matrix form.

0.371
0.557
q-

0

Solution: The unit vector’s length must be 1. Therefore,

0.371 1.855

0.557 2.785

Qi = 0.743 and P =9 X5= 3.715
0 1

2.4.3 Representation of a Frame at the Origin
of a Fixed Reference Frame

A frame is generally represented by three mutually orthogonal axes (such as x, y, and z).
Since we may have more than one frame at any given time, we will use axes x, y, and z to
represent the fixed Universe reference frame F, , . and a set of axes #, 0, and a to represent
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another (moving) frame F, , , relative to the reference frame. This way, there should be
no confusion about which frame is referenced.

— = —_———————

The letters n. o, and a are derived from the words nommal, orientation, and approach.
Referring to Figure 2.6, it should be clear that in order to avoid hitting the part while
trying to pick it up, the robot would have to approach it along the z-axis of the
gripper. In robotic nomenclature, this axis is called approach-axis and is referred to as
the g-axis. The orientation with which the gripper frame approaches the part is called
orientation-axis, and it is referred to as the ¢-axis. Since the x-axis is normal to both, it is
referred to as n-axis. Throughout this book, we will refer to a moving frame as F,
with nommnal, orientation, and approach axes.

ol

¥

Figure 2.6 The normal-, orientation-, and approach-axis of a moving frame.

Each direction of each axis of a frame F,, , , located at the origin of a reference frame Fy.yiz
(Figure 2.7) is represented by its three directional cosines relative to the reference frame as
in section 2.4.2. Consequently, the three axes of the frame can be represented by three
vectors in matrix form as:

Ny 0y dy

d}. {27)

Figure 2.7 Representation of a frame at the origin of the reference frame,
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z

x Y

Figure 2.8 Representation of a frame in a frame.

2.4.4 Representation of a Frame Relative to a Fixed Reference Frame

To fully describe a frame relative to another frame, both the location of its origin and the
directions of its axes must be specified. Ifa frame is not at the origin (or, in fact, even ifitis
at the origin) of the reference frame, its location relative to the reference frame is
described by a vector between the origin of the frame and the origin of the reference
frame (Figure 2.8). Similarly, this vector is expressed by its components relative to the
reference frame. Therefore, the frame can be expressed by three vectors describing its
directional unit vectors and a fourth vector describing its location as:

Ny Ox dx Py

F=|™ % % F (2.8)
fz 0z az Pz
0 0 0 1

As shown in Equation (2.8), the first three vectors are directional vectors with w = 0,
representing the directions of the three unit vectors of the frame F,,, ,, while the fourth
vector with w = 1 represents the location of the origin of the frame relative to the
reference frame. Unlike the unit vectors, the length of vector p is important. Conse-

quently, we use a scale factor of 1.
A frame may also be represented by a 3 X 4 matrix without the scale factors, but it is
not common. Adding the fourth row of scale factors to the matrix makesita 4 x 4 or

homogeneous matrix.

Example 2.3

The frame F shown in Figure 2.9 is located at 3,5,7 units, with its n-axis parallel to x,
its o-axis at 45° relative to the y-axis, and its a-axis at 45° relative to the z-axis. The
frame can be described by:

1 0 0 3
Fe— 0 0707 -0.707 5
0 0707 0707 7
0 0 0 1
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X

Figure 2.9 An example of representation of a frame.

2.4.5 Representation of a Rigid Body

An object can be represented in space by attaching a frame to it and representing the
frame. Since the object is permanently attached to this frame, its position and orientation
relative to the frame is always known. As a result, so long as the frame can be described in
space, the object’s location and orientation relative to the fixed frame will be known
(Figure 2.10). As before, a frame can be represented by a matrix, where the origin of the
frame and the three vectors representing its orientation relative to the reference frame are
expressed. Therefore,

Py Oy dx P,

ny, [ a
Fobject = f’l)z OZ ai ﬁy (29)
0O 0 0 1

As we discussed in Chapter 1, a point in space has only three degrees of freedom; it can
only move along the three reference axes. However, a rigid body in space has six degrees
of freedom, meaning that not only can it move along x-, y-, and z-axes, it can also rotate
about these three axes. Consequently, all that is needed to completely define an object in
space s six pieces of information describing the location of the origin of the object in the
reference frame and its orientation about the three axes. However, as can be seen in
Equation (2.9), twelve pieces of information are given: nine for orientation, and three for
position (this excludes the scale factors on the last row of the matrix because they do not
add to this information). Obviously, there must be some constraints present in this

x Y

Figure 2.10 Representation of an object in space.
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representation to limit the above to six. Therefore, we need 6 constraint equations to
reduce the above from twelve to six. The constraints come from the known character-
istics of a frame that have not been used yet, that:

o the three unit vectors n, o, a are mutually perpendicular, and
o cach unit vector’s length, represented by its directional cosines, must be equal to 1.

These constraints translate into the following six constraint equations:

n - o = 0 (the dot-product of n and o vectors must be zero)
n-a=0
a-0o=0 (2.10)
. || = 1 (the magnitude of the length of the vector must be 1) '
.ol =1

6. la| =1
As a result, the values representing a frame in a matrix must be such that the above equations

remain true. Otherwise, the frame will not be correct. Alternatively, the first three
equations in Equation (2.10) can be replaced by a cross product of the three vectors as:

nxo=a (2.11)

Since Bquation (2.11) includes the correct right-hand-rule relationship too, it is
recommended that this equation be used to determine the correct relationship between

the three vectors.

N S

Example 2.4

For the following frame, find the values of the missing elements and complete the

matrix representation of the frame:

2 0 75
0707 ? 7 3
F=1 "9 9 0 2
o 0 0 1

Solution: Obviously, the 5,3,2 values representing the position of the origin of the
frame do not affect the constraint equations. Please notice that only 3 values for
directional vectors are given. This is all that is needed. Using Equation (2.10), we

will get:

=

nyoy + nyo, + 1.0, =0 o0 n(0) +0.707 (oy) +n.(0.) =0
nydy + nyay +n.a. =0 or ny(ay) +0.707 (a),) +n.(0)=0
ax05 + ayo, + a0, =0 or a,(0) + a, (o),) +0(0,) =0
n2+nl4nl=1 or n2+0.707°+nl=1
oi+o§+o§:1 or 02—}—0)2,—{—0;7:

a_f_+a)2,+a§:1 or ai—i—af,—l—OQ:l
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Simplifying these equations yields:
0.707 0, + 1.0, = 0
neax +0.707 a, = 0

ay0, = 0

nf,—f—nﬁ:O.S
of—}—oﬁzl
a§+a)2,:1

Solving these six equations will yield n, = £0.707, n, = 0,0,=0, 0, =1,
ay = £0.707, and a, = —0.707. Notice that both #, and 4, must have the same
sign. The reason for multiple solutions is that with the given parameters, it is possible
to have two sets of mutually perpendicular vectors in opposite directions. The final
matrix will be:

0.707 0 0.707 5 -0.707 0 -0.707 5

F = 0.707 0 —=0.707 3 or F,— 0.707 0 -=0.707 3
0 1 0 2 0 1 0 2

0 0 0 1 0 0 0 1

As you can see, both matrices satisfy all the requirements set by the constraint
equations. It is important to realize that the values representing the three direction
vectors are not arbitrary but bound by these equations. Therefore, you may not
randomly use any desired values in the matrix.

The same problem may be solved using n X o = a, or:

i j k
ne 1y Hy| =ad+aj+ak
GF WOwE woB

or i(n0. — nzo,) —j(ne0, — n0,) + k(n.0, — ny0,) = a,i + aj+ak  (2.12)
Substituting the values into this equation yields:
i(0.707oZ — nzoy) —j{nw.) + k(nxoy) = ad + ajj + 0k
Solving the three simultaneous equations will result in:

0.707 0, — .0, = a,

—Hy0, = dy

ny0, =0

which replace the three equations for the dot products. Together with the three unit-
vector length constraint equations, there will be six equations. However, as you will
see, only one of the two solutions (F;) obtained in the first part will satisfy these
equations. This is because the dot-product equations are scalar, and therefore, are the
same whether the unit vectors are right-handed or left-handed frames, whereas the
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cross-product equations do indicate the correct right-handed frame configuration.
Consequently, it is reccommended that the cross-product equation be used. W

Example 2.5
Find the missing clements of the following frame representation:
?7 0 7

05 ?

0o ?
0

O 0 e
—_ =] O W

Solution:
Rtwiti=1 — nm+025=1 — n =03866
n-o=0 — (0.866)(0)+(05)(o;) +(0)(0) =0 — 0,=0
loj=1 — o.=1

nxo=a — i(0.5)—j(0.866)+k(0)=ad+aj+ak

a, = 0.5
a, = —0.866
a, =0 [ |

2.5 Homogeneous Transformation Matrices

For a variety of reasons, it is desirable to keep matrices in square form, either 3 X 3 or
4 % 4. First, as we will see later, it is much easier to calculate the inverse of square matrices
than rectangular matrices. Second, in order to multiply two matrices, their dimensions
must match, such that the number of columns of the first matrix must be the same as the
number of rows of the second matrix, as in (m x n) and (n X p), which results in a
matrix of (m X p) dimensions. If two matrices, A and B, are square with (m X m) and
(m X m) dimensions, we may multiply A by B, or B by A, both resulting in the same
(m x m) dimensions. However, if the two matrices are not square, with (m X n) and
(n % p) dimensions respectively, A can be multiplied by B, but B may not be multiplied
by A, and the result of AB has a dimension different from A and B. Since we will have to
multiply many matrices together, in different orders, to find the equations of motion of
the robots, we want to have square matrices.

In order to keep representation matrices square, if we represent both orientation and
position in the same matrix, we will add the scale factors to the matrix to make it 4 X 4.
If we represent the orientation alone, we may either drop the scale factors and use 3 X 3
matrices, or add a fourth column with zeros for position in order to keep the matrix
square. Matrices of this form are called homogeneous matrices, and we refer to them as:

Hy Oy dx Py

F=|" o % B (2.13)
Ny 0z dr P,
0 0 0 1
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nfiguration, 2.6 Representation of Transformations

used. W
A transformation is defined as making a movement in space. When a frame (a vector, an
object, or a moving frame) moves in space relative to a fixed reference frame, we
represent this motion in a form similar to a frame representation. This is because a
transformation is a change in the state of a frame (representing the change in its location
and orientation); therefore, it can be represented like a frame. A transformation may be in
one of the following forms:
® A pure translation
® A pure rotation about an axis
® A combination of translations and/or rotations

=90 In order to see how these can be represented, we will study each one separately.

2.6.1 Representation of a Pure Translation

Ifa frame (that may also be representing an object) moves in space without any change in
its orientation, the transformation is a pure translation. In this case, the directional unit
vectors remain in the same direction, and therefore, do not change. The only thing that
& changes is the location of the origin of the frame relative to the reference frame, as shown
in Figure 2.11. The new location of the frame relative to the fixed reference frame can be
found by adding the vector representing the translation to the vector representing the
original location of the origin of the frame. In matrix form, the new frame representation

3 X 3or may be found by pre-multiplying the frame with a matrix representing the transforma-
matrices tion. Since the directional vectors do not change in a pure translation, the transformation
1ensions T will simply be:
1€ as the
alts in a L0 ¢
m) and r=|% 104 (2.14)
1€ same 0 0 1 4,
n) and 0 0 0 1
Utiplied
have to where d,, d,, and d. are the three components of a pure translation vector d relative to the
tion of x-, y-, and z-axes of the reference frame. The first three columns represent no rotational
movement (equivalent of a 1), while the last column represents the translation. The new

on and

4 x 4.

3x3

matrix

em as:

2.13)

x

Figure 2.11 Representation of a pure translation in space.
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location of the frame will be:

1 0 0 d, fy O dy Dy Ny 0y ay Py s
01 0 d n, o, d, P n, o, a p,+d,
i —— Y ¥ ) Y Y| = ] ¥ ¥ ¥y ¥ 2.1
? 0 0 1 d, 7 n, 0, dy P, n, o0, a p,+d: (2.15)
0 0 0 1 0 0 0 1 0 0 0 1

This equation is also symbolically written as:
Fraw = Trans(dy, dy, d2) X Foig (2.16)

First, as you can see, pre-multiplying the frame matrix by the transformation matrix will
yield the new location of the frame. Second, notice that the directional vectors remain
the same after a pure translation, but the new location of the frame is at d+p. Third,
notice how homogeneous transformation matrices facilitate the multiplication of
matrices, resulting in the same dimensions as before.

Example 2.6

A frame F has been moved 10 units along the y-axis and 5 units along the z-axis of the
reference frame. Find the new location of the frame.

0.527 —0.574 0.628 5

| 0.369 0.819 0.439 3
3

1

—0.766 0 0.643
0 0 0

Solution: Using Equation (2.15) or (2.16), we get:
Foow = Trcms(dx, dy, dz) % Fy = Trans(0,10,5) X Foyq

and
1 0 0 0 0.527 —0.574 0.628 5
F. = 0 1 0 10 " 0.369 0.819 0.439 3
0 0 1 5 —0.766 0 0.643 8
\_O 0 0 1 0 0 0 1

0527 —0574 0.628 5
0369 0.819 0439 13
—0.766 0 0.643 13
L o 0 0o 1 m

2.6.2 Representation of a Pure Rotation about an Axis

To simplify the derivation of rotations about an axis, let’s first assume that the frame is at
the origin of the reference frame and is parallel to it. We will later expand the results to
other rotations as well as combinations of rotations.




lysis 2.6 Representation of Transformations 47

z

15)

16)

will

nain

1rd, Figure 2.12 Coordinates of a point in a rotating frame before and after rotation.
1 of

Before rotation After rotation

Let’s assume that a frame F,,,,, located at the origin of the reference frame F,,,., rotates
an angle of @ about the x-axis of the reference frame. Let’s also assume that attached to
the rotating frame F,,,, is a point p, with coordinates p,, py» and p, relative to the

f'the reference frame and p,,, p,, and p, relative to the moving frame. As the frame rotates about
the x-axis, point p attached to the frame will also rotate with it. Before rotation, the
coordinates of the point in both frames are the same (remember that the two frames are at
the same location and are parallel to each other). After rotation, the P Pos and p, co-
ordinates of the point remain the same in the rotating frame F,,, but P> Py and p, will be
different in the F,,. frame (Figure 2.12). We want to find the new coordinates of the
point relative to the fixed reference frame after the moving frame has rotated.

Now let’s look at the same coordinates in 2-D as if we were standing on the x-axis.
The coordinates of point p are shown before and after rotation in Figure 2.13. The
coordinates of point p relative to the reference frame are p,, Py and p.., while its coordinates
relative to the rotating frame (to which the point is attached) remain as Pw Por and p,.

o B

I’H ..
5 . L .
P
[4 Pa Pa (2]
[ >y
s,
l
; b2
s at v
lts to Figure 2.13 Coordinates of a point relative to the reference frame and rotating frame as
viewed from the x-axis.




48

Chapter 2. Kinematics of Robots: Position Analysis

From Figure 2.13, you can see that the value of p, does not change as the frame rotates
about the x-axis, but the values of p, and p. do change. Please verify that:

px :pn
p,=h — L =p,cos0 —p,sin6 (2.17)
p.=h+14=psin6+p, cosb

and in matrix form:

Py 1 0 0 Py
p,| = |0 cosf —sinf||p, (2.18)
p. 0 sinf cosf Pa

This means that the coordinates of the point p (or vector p) in the rotated frame must be
pre-multiplied by the rotation matrix, as shown, to get the coordinates in the reference
frame. This rotation matrix is only for a pure rotation about the x-axis of the reference

frame and is denoted as:
pxyz = ROt(x’ 9) X pnon (219)
Notice that the first column of the rotation matrix in Equation (2.18)—which expresses
the location relative to the x-axis—has 1,0,0 values, indicating that the coordinate along
the x-axis has not changed.
To simplify writing these matrices, it is customary to designate C6 to denote cos 0 and
SO to denote sin 6. Therefore, the rotation matrix may be also written as:

1 0 0
Rot(x,6) = |0 C6O —-S6 (2.20)
0 S Céo

You may want to do the same for the rotation of a frame about the y- and z-axes of the
reference frame. Please verify that the results will be:

ce 0 S¢6 ce —-S6 0
Rot(y, 0) = 0 1 0 and Rot(z,0)=| S8 C6 0 (2.21)
—-S¢ 0 Co 0 0 1

Equation (2.19) can also be written in a conventional form that assists in easily follow-
ing the relationship between different frames. Denoting the transformation as UTg
(and reading it as the transformation of frame R relative to frame U (for Universe)),
denoting p,.q as “p (p relative to frame R), and denoting p.. as Up (p relative to frame U),
Equation (2.19) simplifies to:

Up =UTg x Rp (2.22)

As you see, canceling the Rs will yield the coordinates of point p relative to U. The same
notation will be used throughout this book to relate to multiple transformations.
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‘otates Example 2.7

A point p(2,3,4)" is attached to a rotating frame. The frame rotates 90° about the
x-axis of the reference frame. Find the coordinates of the point relative to the
2.17) reference frame after the rotation, and verify the result graphically.
2.

49

Solution: Of course, since the point is attached to the rotating frame, the
coordinates of the point relative to the rotating frame remain the same after the
rotation. The coordinates of the point relative to the reference frame will be:

P, 1 0 0 P, 10 0 2 2
2.18) p),:OCG—SHXpO:OO—l><3:—4
o D 0 S8 cC6 P, 01 0 4 3
As shown in Figure 2.14, the coordinates of point p relative to the reference frame
ust be after rotation are 2, —4, 3, as obtained by the above transformation.
rence
rence
2.19)
resses
along
6 and
Figure 2.14 Rotation of a frame relative to the x-axis of the reference frame. |
2.20 . i .
) 2.6.3 Representation of Combined Transformations
Combined transformations consist of a number of successive translations and rotations
of the about the fixed reference frame axes or the moving current frame axes, Any transfor-
mation can be resolved into a set of translations and rotations in a particular order. For
example, we may rotate a frame about the x-axis, then translate about the x-, y-, and
z-axes, then rotate about the y-axis in order to accomplish the desired transformation. As
2.21) we will see later, this order is very important, such that if the order of two successive
transformations changes, the result may be completely different.

To see how combined transformations are handled, let’s assume that a frame F,oa
low- is subjected to the following three successive transformations relative to the reference
UTR frame B
rse)), : ,

e U) 1. Rotation of & degrees about the x-axis,
2. Followed by a translation of [l1,b,15] (relative to the x-, -, and z-axes respectively),
3. Followed by a rotation of A degrees about the y-axis.
2.22)
Also, let’s say that a point p, . is attached to the rotating frame at the oriein of the
] p Proa g g
same

reference frame. As the frame F\oq rotates or translates relative to the reference frame,
point p within the frame moves as well, and the coordinates of the point relative to the
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reference frame change. After the first transformation, as we saw in the previous section,
the coordinates of point p relative to the reference frame can be calculated by:

p1,,\'yz = RO[’(DC7 O!) X puon (223)

where p; ... is the coordinates of the point after the first transformation relative to the
ceference frame. The coordinates of the point relative to the reference frame at the

conclusion of the second transformation will be:

Poye = Trans(ly, I, 13) X py e = Trans(ly, b, 13) X Rot(x,0) X p,., (2.24)

Similarly, after the third transformation, the coordinates of the point relative to the

reference frame will be:

Prye = P3ppe = Rot(y, B) X pa e = Rot(y, B) x Trans(ly, 2, [3) % Rot(x,0) X po,

As you can see, the coordinates of the point relative to the reference frame at the
conclusion of cach transformation is found by pre-multiplying the coordinates of the
point by each transformation matrix. Of course, as shown in Appendix A, the order of
matrices cannot be changed, therefore this order is very important. You will also notice
that for each transformation relative to the reference frame, the matrix is pre-multiplied.
Consequently, the order of matrices written is the opposite of the order of transformations

performed.

Example 2.8

A point 10(7,3,1)T is attached to a frame F,,, and is subjected to the following
transformations. Find the coordinates of the point relative to the reference frame at
the conclusion of transformations.

1. Rotation of 90° about the z-axis,
2. Followed by a rotation of 90° about the y-axis,
3. Followed by a translation of [4,—3,7].

Solution: The matrix equation representing the transformation is:

Pyye = Trans(4, —3,7)Rot(y, 90)Rot(z,90)p,,,

10 0 47 [0 01 ow 0 -1 0 01 [7] T[5]
01 0 =3 O 1 0 0 1 0 00 3 4
= X X X =
00 1 7 1.0 0 0 0 0 1 0 1 10
lo oo 1] Lo oo 1] Lo o o0 1l h_ h_

As you can see, the first transformation of 90° about the z-axis rotates the F,,, frame
as shown in Figure 2.15, followed by the second rotation about the y-axis, followed
by the translation relative to the reference frame Fi,.. The point p in the frame can
then be found relative to the F,,, as shown. The final coordinates of the point can be
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23)
a 0
» the ] % 3
. the
“ s 2
” 2
:.24) x x
After the 1st transformation After the 2nd transformation After the 3rd transformation
 the
Figure 2.15 Effects of three successive transformations.
. traced on the x-, y-, z-axestobe 4 +1 =5, —3 47 = 4,and 7 4+ 3 = 10. Be sure
- the to follow this graphically. [ |
f the
f
iy Example 2.9
lied. In this case, assume the same pointp(7,3,1)T, attached to F,,,, is subjected to the same
tions transformations, but the transformations are performed in a different order, as shown.
Find the coordinates of the point relative to the reference frame at the conclusion of
transformations.
; 1. A rotation of 90° about the z-axis,
wm% 2. Followed by a translation of [4,—3,7],
nea 3. Followed by a rotation of 90° about the y-axis.
Solution: The matrix equation representing the transformation is:
Psye = Rot(y, 90) Trans(4,—3,7)Rot(z,90)p, .
60 0 1 0 10 0 4 0 -1 0 0O 7 8
0 1 0 0 01 0 -3 10 0 0 3 4
= X X X =
-1 0 0 0 o o1 7 0 0 1 o0 1 —al
5] 0 0 0 1 00 0 1 0 0 01 1 1
& As you can see, although the transformations are exactly the same as in Exam-
10 ple 2.8, since the order of transformations is changed, the final coordinates of the
point are completely different. This can clearly be demonstrated graphically as in
L1 Figure 2.16. In this case, you can see that although the first transformation creates
) exactly the same change in the frame, the second transformation’s result is very
e different because the translation relative to the reference frame axes will move the
5wed rotating frame F,,, outwardly. As a result of the third transformation, this frame will
e can rotate about the y-axis, therefore rotating downwardly. The location of point p,
an be attached to the frame is also shown. Please verify that the coordinates of this point
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J &

After the 3rd transformation

After the 2nd transformation

After the 1st transformation
Figure 2.16 Changing the order of transformations will change the final result.

! relative to the reference frame are 7+1=8, —3+7 =4, and —4+3= -1,
[ |

] . . 0
which is the same as the analytical result.

2.6.4 Transformations Relative to the Rotating Frame

All transformations we have discussed so far have been relative to the fixed reference
frame. This means that all translations, rotations, and distances (except for the location of
a point relative to the moving frame) have been measured relative to the reference frame
axes. However, it is possible to make transformations relative to the axes of a moving or
current frame. This means that, for example, a rotation 0f90° may be made relative to the
n-axis of the moving frame (also referred to as the current frame), and not the x-axis of
the reference frame. To calculate the changes in the coordinates of a point attached to the
current frame relative to the reference frame, the transformation matrix is post-multiplied
i instead. Note that since the position of a point or an object attached to a moving frame is
' always measured relative to that moving frame, the position matrix describing the point

or object is also always post-multiplied.

Example 2.10

Assume that the same point as in Example 2.9 is now subjected to the same
cransformations, but all relative to the current moving frame, as listed below.
Find the coordinates of the point relative to the reference frame after transformations

are completed.

2. Then a translation of [4,—3,7] along n-, o-, a-axes

]

i

|

f 1. A rotation of 90° about the a-axis,

’ 3. Followed by a rotation of 90° about the o-axis.

Solution: In this case, since the transformations are made relative to the current
frame, each transformation matrix is post-multiplied. As a result, the equation
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I ty a
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Y Y b4
X X X

After the 1st transformation After the 2nd transformation After the 3rd transformation

Figure 2.17 Transformations relative to the current frames.

representing the coordinates is:

Pxyz = Rot(a,90) Trans(4,—3,7)Rot(0,90)p, .

-1

0 0 0 1 0 0 4 0 0 1 0 7 0

1 0 0 01 0 -3 0 1 0 0 3 5
= X X X =

0 10 00 1 7 -1 0 0 O 1 0

0 0 0 1 0 0 0 1 0 0 0 1 | 1

As expected, the result is completely different from the other cases, both because the
transformations are made relative to the current frame, and because the order of
the matrices is now different. Figure 2.17 shows the results graphically. Notice how
the transformations are accomplished relative to the current frames.

Notice how the 7,3,1 coordinates of point p in the current frame will result in
0,5,0 coordinates relative to the reference frame. [

Example 2.11

A frame B was rotated about the x-axis 90°, then it was translated about the current
a-axis 3 inches before it was rotated about the z-axis 90°. Finally, it was translated
about current o—axis 5 inches.

(a) Write an equation that describes the motions.

(b) Find the final location of a point p(1,5,4) T attached to the frame relative to the
reference frame.

Solution: In this case, motions alternate relative to the reference frame and current
frame.

(a) Pre- or post-multiplying each motion’s matrix accordingly, we will get:

YTg = Rot(z,90)Rot(x,90) Trans(0,0, 3) Trans(0, 5, 0)
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| (b) Substituting the matrices and multiplying them, we will get:

Up:UTBXBp

| 0 -1 0 01Ft 0 0 O0J[L 0 0 0J[t 0 0 071 7

i B o ollo o -1 offo 1t o offo 1 0 5|f5] |1

"o 1 ollo 1 o ollo o1 3flo o1 off4] |10

’ 0 o 11lo o o 1llo o o 1Jlo o o t]L1 1

| =
]I Example 2.12

, A frame F was rotated about the y-axis 90°, followed by a rotation about the o-axis of
| 30°, followed by a translation of 5 units along the n-axis, and finally, a translation of 4
units along the x-axis. Find the total transformation matrix.

!, Solution: The following set of matrices, written in the proper order to represent
1 transformations relative to the reference frame or the current frame describes the total

‘ transformation:

T = Trans(4,0,0)Rot(y, 90)Rot(o0,30) T'rans(5, 0, 0)

J 10 0 4 0 0 1 07 [086 0 05 0 1005
a 010 0 0 100 o 1 0 of fo100
1o o1 ol =1 000 05 0 0866 0| |0 0 1 0
E [0 0 0 1 0 00 1 0 0 0 1 00 0 1
" 05 0 0866 15

; 0o 1 0 0

{ ~ | —0866 0 —05 —4.33

' ) 1

Please verify graphically that this is true.

2 .7 Inverse of Transformation Matrices

As mentioned earlier, there are many situations where the inverse of a matrix will be
needed in robotic analysis. One situation where transformation matrices may be involved
can be seen in the following example. Suppose the robot in Figure 2.18 is to be moved
toward part P in order to drill a hole in the part. The robot’s base position relative to the
reference frame U'is described by a frame R, the robot’s hand is described by frame H, and
the end effector (let’s say the end of the drill bit that will be used to drill the hole) is
described by frame E. The part’s position is also described by frame P. The location of the
point where the hole will be drilled can be related to the reference frame U through ,
two independent paths: one through the part, one through the robot. Therefore, the
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Figure 2.18 The Universe, robot, hand, part, and end effector frames.

following equation can be written:
UTe=YTe Ry T = VT P T (2.25)

The location of point E on the part can be achieved by moving from U'to Pand from P
to E, or it can alternately be achieved by a transformation from U to R, from R to H, and
from H to E.

In reality, the transformation of frame R relative to the Universe frame (YTy) is known
since the location of the robot’s base must be known in any set-up. For example, if a
robot is installed in a work cell, the location of the robot’s base will be known since it is
bolted to a table. Even if the robot is mobile or attached to a conveyor belt, its location at
any instant is known because a controller must be following the position of the robot’s
base at all times. The HTE, or the transformation of the end effector relative to the robot’s
hand, is also known since any tool used at the end effector is a known tool and its
dimensions and configuration is known. YT}, or the transformation of the part relative to
the universe, is also known since we must know where the part is located if we are to drill
a hole in it. This location is known by putting the part in aJig, through the use ofa camera
and vision system, through the use of a conveyor belt and sensors, or other similar
devices. "T}: is also known since we need to know where the hole is to be drilled on the
part. Consequently, the only unknown transformation is ® Ty, or the transformation of
the robot’s hand relative to the robot’s base. This means we need to find out what the
robot’s joint variables—the angle of the revolute joints and the length of the prismatic
Joints of the robot—must be in order to place the end effector at the hole for drilling. As
you can see, it is necessary to calculate this transformation, which will tell us what needs
to be accomplished. The transformation will later be used to actually solve for joint angles
and link lengths.

To calculate this matrix, unlike in an algebraic equation, we cannot simply divide the
right side by the left side of the equation. We need to pre- or post-multiply by inverses of
appropriate matrices to eliminate them. As a result, we will have:

(VTe) " (VTe *Tw " Te) (FT5) ™ = (V1) " (VT °Te) (F15) ™ (2.26)
or, since (“ TR) . (U’x'“k) = Iand (HTE) (HTE) = I, the left side of Equation (2.26)
simplifies to ®Ty; and we get:

RTH:UTI_zl UTPPTEHTE1 (227)




56 Chapter 2. Kinematics of Robots: Position Analysis

. . . —1.
We can check the accuracy of this equation by realizing that (HTg) ™ is the same as e,
Therefore, the equation can be rewritten as:

Ry =UTR VT, PT T =R Ty VTp P Te P T ="Tu (2.28)

It is now clear that we need to be able to calculate the inverse of transformation
matrices for kinematic analysis as well. In order to see what transpires, let’s calculate
the inverse of a simple rotation matrix about the x-axis. Please review the process
for calculation of square matrices in Appendix A. The rotation matrix about the

,l x-axis 1s:
|
{
i 1 0 0
Rot(x,0) =10 C6 -—S6 (2.29)
: 0 S6 C9o

Recall that the following steps must be taken to calculate the inverse of a matrix:

Calculate the determinant of the matrix.

Transpose the matrix.
Replace each element of the transposed matrix by its own minor (adjoint matrix).

Divide the converted matrix by the determinant.

Applying the process to the rotation matrix, we will get:

det[Rot(x,0)] = 1(C*0 + §%6) +0 =1

1 0 0
0 —-S6 C#8

Now calculate each minor. As an example, the minor for the 2,2 element will
be CO— 0= C#0, the minor for 1,1 element will be C2%0 + §20 =1, and so on.
> As you will notice, the minor for each element will be the same as the element itself.

|

|

|

|

i L

; Rot(x,0)" = [0 C6 S6
i

|

|

E Therefore:

Adj[Rot(x,0)] = Rot(x,0)",. = Rot(x,6)"

Since the determinant of the original rotation matrix is 1, dividing the Adj[Rot (x, 6)]
matrix by the determinant will yield the same result. Consequently, the inverse of a
rotation matrix about the x-axis is the same as its transpose, or:

Rot(x,0)"" = Rot(x,0)" (2.30)

Of course, you would get the same result with the second method mentioned in
Appendix A. A matrix with this characteristic s called a unitary matrix. It turns out that all
rotation matrices are unitary matrices. Therefore, all we need to do to calculate the
inverse of a rotation matrix is to transpose it. Please verify that rotation matrices about the

|
|
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y- and z-axes are also unitary in nature. Beware that only rotation matrices are unitary; if
a matrix is not a simple rotation matrix, it may not be unitary.

The preceding result is also true only for a simple 3 X 3 rotation matrix without
representation of a location. For a homogenous 4 X 4 transformation matrix, it can be
shown that the matrix inverse can be written by dividing the matrix into two portions;
the rotation portion of the matrix can be simply transposed, as it is still unitary. The
position portion of the homogeneous matrix is the negative of the dot product of
the p-vector with each of the n-, o-, and a-vectors, as follows:

Uy Ox Oy Py fy N, N —Pp-n

T=1|" % % P| ,d T71=]|% % 0 —Pp-o (2.31)
n. 0. a, p, ax a, a, —p-a
0 0 0 1 0 0 0 1

As shown, the rotation portion of the matrix is simply transposed, the position portion is
replaced by the negative of the dot products, and the last row (scale factors) is not affected.
This is very helpful, since we will need to calculate inverses of transformation matrices,
but direct calculation of 4 X 4 matrices is a lengthy process.

Example 2.13
Calculate the matrix representing Rot(x, 40°) .
Solution: The matrix representing a 40° rotation about the x-axis is:

1 0 0 0
0 0766 —0.643 0
0 0643 0.766 0
0 0 0 1

Rot(x,40°) =

The inverse of this matrix is:

1 0 0 0
on-1 |0 0.766 0.643 0
Rot(e,40°)" = 1o _0.643 0766 0
0 0 0 1
As you can see, since the position vector of the matrix is zero, its dot product
with the n-, o-, and a-vectors is also zero. [ |
Example 2.14

Calculate the inverse of the given transformation matrix:

05 0 0866 3
0866 0 —0.5 2
0 1 0 5
0 0 0 1

=
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Solution: Based on the above, the inverse of the transformation will be:

© 05 0866 0 —(3x0.542x0.866+5x%0)
_— 0 0 1 —(3x042x0+5x1)
0.866 —0.5 0 —(3x0.866+2x—05+5x0)
L O 0 0 1
05 0.866 0 —3.23
0 0 1 -5

~|oss6 —05 0 —1.598

L O 0 0 1
You may want to verify that TT~! will be an identity matrix. N
Example 2.15

In a robotic set-up, a camera is attached to the fifth link of a 6-DOF robot. It observes
an object and determines its frame relative to the camera’s frame. Using the following
information, determine the necessary motion the end eftector must make to get to

the object:
0o -1 3 0 -1 0 O
o -1 0 0 1 0 0
°T cam — > Ty =
-1 0 5 0 1 4
0 0 1 0 0 1
0 0 1 2 10 0 O
1 0 0 2 o= 01 0 0
cam Tgbj — TE —
01 0 4 0 0 1 3
0 0 0 1 0 0 0 1

Solution: Referring to Equation (2.25), we can write a similar equation that
relates the different transformations and frames together as:

R 5 H E _ R 5 cam
T5 X TH X TE X obj TS X Tm/u X Tabj

Since ®T5 appears on both sides of the equation, we can simply neglect it. All other
matrices, with the exception of “'1",,;,),-, are known. Then:

ETobj = HT‘E_1 X STI—?1 X 5Tmm X o oby . ETH X HTS X STmm X mmTobj
10 0 O o 1 0 O
0O 1 0 O -1 0 0 O
H—1 _ 5—1 _
where “T;" = 0 0 1 —3 17 = g 00 e
0 0 0 1 0O 0 0 1 '
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Substituting the matrices and the inverses in the above equation will result:

(1 0 0 0 0O 1 0 0 0O 0 -1 3110 0 1 2
ET'_OlOO—lOO() O -1t 0 of|1 0 0 2
“=loo 1 =3]|0 01 —4||-1 0o o0 s5||lo 1 0 4

[0 0 0 1 0 0 0 1 60 0 1f]0 0 0 1

or

[-1 0 0 -2

0o 1 0 1
E ;=
Ti=1{o o -1 -4 =

| 0 0 O 1

2.8 Forward and Inverse Kinematics of Robots

Suppose we have a robot whose configuration is known. This means that all the link
lengths and joint angles of the robot are known. Calculating the position and orientation

serves ) i : - .
N, of the hand of the robot is called forward kinematic analysis. In other words, if all robot
get to Jjoint variables are known, using forward kinematic equations, we can calculate where the

robot is at any instant. However, if we want to place the hand of the robot at a desired
location and orientation, we need to know how much each link length or joint angle of
the robot must be such that—at those values—the hand will be at the desired position and
orientation. This is called inverse kinematic analysis. This means that instead of
substituting the known robot variables in the forward kinematic equations of the robot,
we need to find the inverse of these equations to enable us to find the necessary joint
values to place the robot at the desired location and orientation. In reality, the inverse
kinematic equations are more important since the robot controller will calculate the joint
values using these equations and it will run the robot to the desired position and
orientation. We will first develop the forward kinematic equations of robots; then, using
these equations, we will calculate the inverse kinematic equations.

For forward kinematics, we will have to develop a set of equations that relate to the
particular configuration of a robot (the way it is put together) such that by substituting the
a that Joint and link variables in these equations, we may calculate the position and orientation
of the robot. These equations will then be used to derive the inverse kinematic equations.

You may recall from Chapter 1 that in order to position and orientate a rigid body in
space, we attach a frame to the body and then describe the position of the origin of
the frame and the orientation of its three axes. This requires a total of 6 DOF, or
alternately, six pieces of information, to completely define the position and orientation
of the body. Here too, if we want to define or find the position and orientation of the
Ty hapd of the robot in space, we will attach a frame to it and dgﬁne the position and
orientation of the hand frame of the robot. The means by which the robot accom-
plishes this determines the forward kinematic equations. In other words, depending on
the configuration of the links and joints of the robot, a particular set of equations will
relate the hand frame of the robot to the reference frame. Figure 2.19 shows a hand
frame, the reference frame, and their relative positions and orientations. The undefined
connection between the two frames is related to the configuration of the robot. Of

other
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o

| X

ll Figure 2.19 The hand frame of the robot relative to the reference frame.

course, there are many different possibilities for this configuration, and we will later see
how we can develop the equations relating the two frames, depending on the robot
configuration.

I In order to simplify the process, we will analyze the position and orientation issues
separately. First, we will develop the position equations, then we will do the same for
orientation. Later, we will combine the two for a complete set of equations. Finally, we
will see about the use of the Denavit-Hartenberg representation, which can model any

|

|

! .
| robot configuration.
|

)

i

F

|'

|

[

2.9 Forward and Inverse Kinematic Equations: Position

In this section, we will study the forward and inverse kinematic equations for position. As
was mentioned earlicr, the position of the origin of a frame attached to a rigid body has
three degrees of freedom, and therefore, can be completely defined by three pieces of
information. As a result, the position of the origin of the frame may be defined in any
customary coordinates. As an example, we may position a point in space based on
Cartesian coordinates, meaning there will be three linear movements relative to the x-,
y-, and z-axes. Alternately, it may be accomplished through spherical coordinates,
meaning there will be one linear motion and two rotary motions. The following

" possibilities will be discussed:

(a) Cartesian (gantry, rectangular) coordinates

; (b) Cylindrical coordinates

i (c) Spherical coordinates

| (d) Articulated (anthropomorphic or all-revolute) coordinates

! 2.9.1 Cartesian (Gantry, Rectangular) Coordinates

’ In this case, there will be three linear movements along the x-, y-, and z-axes. In this type

of robot, all actuators are linear (such as a hydraulic ram or a linear power screw), and the

[ positioning of the hand of the robot is accomplished by moving the three linear joints

', along the three axes (Figure 2.20). A gantry robot is basically a Cartesian coordinate
‘ robot, except that the robot is usually attached to a rectangular frame upside down.

Of course, since there are no rotations, the transformation matrix representing this

motion to point p is a simple translation matrix (shown next). Note that here we are only
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z

Figure 2.20 Cartesian coordinates.
er see
robot
issues concerned with the position of the origin of the frame—not its orientation. The
1e for transformation matrix representing the forward kinematic equation of the position of
y, we the hand of the robot in a Cartesian coordinate system will be:
2l any
1.0 0 p,
0 1 0
RTP == Tf“’f(px’py7pz) = 0 0 1 f;}’ (232)
0 0 0 1
m. As
ly has where RTP is the transformation between the reference frame and the origin of the hand
ces of p,and T (p,., py,pz) denotes Cartesian transformation matrix. For the inverse kinematic
LIy solution, simply set the desired position equal to p.
:d on
ne x-,
nates, Example 2.16
wing It is desired to position the origin of the hand frame of a Cartesian robot at pointp =
[3,4,7]7. Calculate the necessary Cartesian coordinate motions that need to be made.
Solution: Setting the forward kinematic equation, represented by the ® T, matrix of
Equation (2.32), equal to the desired position will yield the following result:
1 0 0 p, 1 0 0 3
01 0 p 01 0 4
R = y = ey e =
Tp O O 1 pz O O 1 7 or px 3’ py 47 pz 7
s type 00 0 1 0 0 0 1
1d the |
joints
i:;ate | 2.9.2 Cylindrical Coordinates
\g this | A cylindrical coordinate system includes two linear translations and one rotation. The
e only | sequence is a translation of r along the x-axis, a rotation of « about the z-axis, and a
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Figure 2.21 Cylindrical coordinates.

translation of [ along the z-axis, as shown in Figure 2.21. Since these transformations are
all relative to the Universe frame, the total transformation caused by these three

transformations is found by pre-multiplying by each matrix, as follows:

i
_|‘
|
z'i RT, = Tou(r,a,1) = Trans(0,0,[)Rot(z, &) Trans(r, 0, 0) (2.33)
|
1 100 0 Ca —Sa 0 0 10 0 7
| N 0100 Se Ca 0 0 01 00
} T,= X
; 00 1 1 o 0 10 00 10
i
| 00 0 1 o 0 01 00 0 1
{ (2.34)
§ Ca —Sa 0 rCa
i Se Ca 0 rSa
i Ry _ -
i Tp - Tcyl(rﬂa) l) . 0 0 1 I
o 0 o0 1

The first three columns represent the orientation of the frame after this series of
transformations. However, at this point, we are only interested in the position of the
| origin of the frame, or the last column. Obviously, in cylindrical coordinate movements,
| due to the rotation of & about the z-axis, the orientation of the moving frame will
change. This orientation change will be discussed later.
Y ou may restore the original orientation of the frame by rotating the n,0,a frame about
I the a-axis an angle of —a, which is equivalent of post-multiplying the cylindrical
,~ coordinate matrix by a rotation matrix of Rot(a, —c). As a result, the frame will be at the
" same location but will be parallel to the reference frame again, as follows:
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[’Ca —Sa 0 rCa Cl~a) =S(—a) 0 o
S Ca 0 rSa S(—o Cl—a) 0 0
Ty X Rot{a, -o) = X (=e) (=)
0 0 1 [ 0 0 10
L O 0 0 1 0 0 0 1
l- 10 0 rCa
01 0 rSa
oo 1 g
L0 0 0 1

As you can see, the location of the ori

gin of the moving frame has not changed, but it was

restored back to being parallel to the reference frame. Notice that the las rotation was
performed about the local g-axis in order to not cause any change in the location of the

frame, but only in its orientation.

Example 2.17

Suppose we desire to place the

origin of the hand frame of a cylindrical robot at

[3,4,7]". Calculate the Joint variables of the robot.

Solution: Setting the compone

the T
=7
rCa=3 and

rSa =4

nts of the location of the origin of the frame from

o matrix of Equation (2.34) to the desired values, we get:

and therefore, tan o = “/3and o = 53.1°

Substituting « into either equation will yield r = 5. The final answer is ¥ = 5 units,
& =53.1° and [ = 7 units. Note: As discussed in Appendix A, it is necessary to
ensure that the angles calculated in robot kinematics are in correct quadrants. In this
example, rC & and 1S « are both positive and the length r s always positive, therefore
Saand Ca are also both positive. Consequently, the angle @ is in quadrant 1 and is

correctly 53.1°.

Example 2.18

The position and restored orientation of a cylindrical robot are given. Find the
matrix representing the original position and orientatior of the robot before it was

restored.

Solution: Since 7 is always positive, it is clear that S and Co are positive and
» @ 1s in the second quadrant. From T, we get:

negative, respectively. Therefore

10 0 —2394
0 1 0 6578
0 0 1 9

0 0 0 1
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1=9
6.578 o )
— 2748 — a=180°—70°=110

tan(a) = w r Ty i

rsin(a) = 6.578 —r =7
Substituting these values into Equation (2.34), we will get the original orientation of

the robot:
Ca —-Sa 0 rCu —0.342 —0.9397 0 —2.394
Ry Se Ca 0 rSa| |09397 0342 0 6578
L ¢ o 1 1 | 0 0 1 9
0 0 0 1 0 0 0 1 |

2.9.3 Spherical Coordinates

A spherical coordinate system consists of one linear motion and two rotations. The
sequence is a translation of r along the z-axis, a rotation of B about the y-axis, and a
rotation of ¥ about the z-axis as shown in Figure 2.22. Since these transformations are all
relative to the Universe frame, the total transformation caused by these three transfor-

mations can be found by pre-multiplying by each matrix, as follows:

BT, = Tyu(r, B, v) = Rot(z, y)Rot(y, B) Trans(0,0,1) (235)
Cy —Sy 0 0 cCB 0 SB O 100 0
RT_SyCyOO)(OlOO)(OlOO
P10 0 10 -SB 0 CB O 00 1 v
0 0 0 1 0 0o 0 1 0 0 0 1
(2.36)
CBCy —Sy SBCy rSBCy
CBSy Cy SBSy rSBSy
RTP = Tsplr(r-.:B, V) = —S,B 0 Cﬂ fCﬂ
0 0 0 1
z

Figure 2.22 Spherical coordinates.
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The first three columns represent the orientation of the frame after this series of
transformations, while the last column is the position of the origin. We will discuss the
orientation part of the matrix later. Note that spherical coordinates may be defined in
other orders as well. Therefore, make sure correct equations are used.

Here, too, you may restore the original orientation of the final frame and make it
parallel to the reference frame. This exercise is left for you to find the correct sequence of
movements to get the right answer.

The inverse kinematic equations for spherical coordinates are more complicated than
the simple Cartesian or cylindrical coordinates because the two angles 8 and y are
coupled. Let’s see how this could be done through an example.

Example 2.19

Suppose we now want to place the origin of the hand of a spherical robot at [3,4,7] .
Calculate the joint variables of the robot.

Solution: Setting the components of the location of the origin of the frame from
T, matrix of Equation (2.36) to the desired values, we get:

rSBCy = 3
rSBSy = 4
rCB=7

From the third equation, we determine that the CB is positive, but there is no such
information about SB. Therefore, because we do not know the actual sign of SB,
there are two possible solutions. Later, we will have to check the final results to
ensure they are correct.

tany =% — y=531° or 233.1°
then Sy=0.8 or —0.8
and Cy =0.6 or —0.6
and rSB="%e=75 or —5
and since tCB=7, — =355 or -355°
and r=28.6

You may check both answers and verify that they both satisfy all position
equations. If you also follow these angles about the given axes in 3-D, you
will get to the same point physically. However, you must notice that only one set
of answers will also satisfy the orientation equations. In other words, the two
answers above will result in the same position, but at different orientations. Since
we are not concerned with the orientation of the hand frame at this point, both
position answers are correct. In fact, since we cannot specify any orientation for a
3-DOF robot anyway, we cannot determine which of the two answers relates to a
desired orientation. M
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Figure 2.23 Articulated coordinates.

rticulated Coordinates

Articulated coordinates consist of three rotations, as shown in Figure 2.23. We will
develop the matrix representation for this later, when we discuss the Denavit-Hartenberg

representation.

2.10 Forward and Inverse Kinematic Equations: Orientation

2.10.1

Suppose the moving frame attached to the hand of the robot has already moved to a
desired position—in Cartesian, cylindrical, spherical, or articulated coordinates—and is
either parallel to the reference frame or is in an orientation other than what is desired. The
next step will be to rotate the frame appropriately in order to achieve a desired orientation
without changing its position. This can only be accomplished by rotating about the
current frame axes; rotations about the reference frame axes will change the position.
The appropriate sequence of rotations depends on the design of the wrist of the robot and
the way the joints are assembled together. We will consider the following three common

configurations:

(a) Roll, Pitch, Yaw (RPY) angles
(b) Euler angles
(c) Articulated joints

Roll, Pitch, Yaw (RPY) Angles

This is a sequence of three rotations about current a-, o-, and n-axes respectively, which
will orientate the hand of the robot to a desired orientation. The assumption here is that
the current frame is parallel to the reference frame; therefore, its orientation is the same as
the reference frame before the application of RPY. If the current moving frame is not
parallel to the reference frame, then the final orientation of the robot’s hand will be a
combination of the previous orientation, post-multiplied by the RPY.

It is very important to realize that since we do not want to cause any change in the
position of the origin of the moving frame (we have already placed it at the desired
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Rotation ¢, Rotation ¢, Rotation ¢,

Figure 2.24 RPY rotations about the current axes.

location and only want to rotate it to the desired orientation), the movements relating to
RPY rotations are relative to the current moving axes. Otherwise, as we saw before, the
position of the frame will change. Therefore, all matrices related to the orientation
change due to RPY (as well as other rotations) will be post-multiplied. Referring to
Figure 2.24, the RPY sequence of rotations consists of:

Rotation of ¢, about the a-axis (z-axis of the moving frame) called Roll,
Rotation of ¢, about the o-axis (y-axis of the moving frame) called Pitch,
Rotation of ¢, about the n-axis (x-axis of the moving frame) called Yaw.

The matrix representing the RPY orientation change will be:

RPY(¢,, ¢,,4,) = Rot(a, ¢,)Rot(o, ¢,)Rot(n, ¢,)

[ C$,Co,  C¢,S¢,5¢, — S¢,Co, C¢,59,Ch, + Sp,S¢, 0]
$$.Ch, Sp,S¢,58, + Ch,Cd, S¢,S6,C, — C,SP, 0 (2.37)
T s, Ch,So, Ch,Co, 0
L0 0 0 1]

This matrix represents the orientation change caused by the RPY alone. The location
and the final orientation of the frame relative to the reference frame will be the product of
the two matrices representing the position change and the RPY. For example, suppose
that a robot is designed based on spherical coordinates and RPY. Then the robot may be

represented by:
RTH = Sp/l(rﬁ ﬂ) V) X RPY(¢H7¢;7?¢I1)

The inverse kinematic solution for the RPY is more complicated than the spherical
coordinates because here there are three coupled angles, where we need to have
information about the sines and the cosines of all three angles individually to solve for
the angles. To solve for these sines and cosines, we will have to de-couple these angles. To
do this, we will pre-multiply both sides of Equation (2.37) by the inverse of Rot(a, ¢,):

Rot(a,¢,) "' RPY(,,,,¢,) = Rot(0,$,)Rot(n, ¢,) (2.38)
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Assuming that the final desired orientation achieved by RPY is represented by the

(n,0,4) matrix, we will have:

ﬂx ox ax
Oy a,
" = Roto, ¢,)Roi(n, 8,) (2.39)

fy 0. d.

0 0 0

- O O O

| Multiplying the matrices, we will get:

| M0, Co, + n,S¢, 0:Ch,+ 0,88, a:Ch,+a,S¢p, 0

| 1, Cy — 150, 0,Ch, — 058, a,Cp, — axSb, O
0

| ﬂz Oz aZ
| i 0 0 0 1
i (2.40)
Co, S¢,5¢, S¢,Cé, O
0 C(]b,, - S¢n 0
i‘ - e S¢;_| Cd)o S¢u C¢o C¢n 0
|
| 0 0 0 1

Remember that the n,0,a components in Equation (2.39) represent the final desired
values normally given or known. The values of the RPY angles are the unknown
variables. Equating the different elements of the right-hand and left-hand sides of
Equation (2.40) will result in the following. Refer to Appendix A for an explanation

of ATANZ function.
From the 2,1 elements we get:

n,C — xS, = 0 — ¢ = ATAN2(ny, n,) and ¢, = ATAN2(—ny, —ny) (2.41)

Note that since we do not know the signs of sin(¢,) or cos(¢,), two complementary
solutions are possible. From the 3,1 and 1,1 elements we get:

o= (2.42)
Ch, = nyC, + n,S¢, — ¢, = ATAN2[~n., (n,Co, + n,S¢,)]

And finally, from the 2,2 and 2,3 elements we get:

i

Cd)” . oycd)n - oxSan
S¢, = —a,Co, + a.5p, — ¢, = ATAN2 [(—a,Co, + 4.5¢,), (0,Co, — 0:S$,)]
(2.43) '

l
|
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Example 2.20

The desired final position and orientation of the hand of a Cartesian-RPY robot is
given below. Find the necessary RPY angles and displacements.

He o0r ay P, 0.354  —0.674 0.649 4.33

Ry _ | Moo @ py| _ | 0505 0722 0475 250
P on a4 p | | -0788 0160 0595 8
0 0 0 1 0 0 0 1

Solution: From the above equations, we find two sets of answers:
¢, = ATAN2(ny, n.) = ATAN2(0.505,0.354) = 55° or 235°
¢, = ATAN2(—n., (n.C¢, + n,S¢,)) = ATAN2(0.788,0.616) = 52° or 128°
¢, = ATAN2((—a,C¢, + 0:5¢,), (0,Cd, — 0.5¢,))
= ATAN2(0.259,0.966) = 15° or 195°
py =433 p,=25 p, = 8units.

Example 2.21

For the same position and orientation as in Example 2.20, find all necessary joint
variables if the robot is cylindrical-RPY.

Solution: In this case, we will use:

0.354 —0.674 0.649 4.33

"y 0505 0722 0475 250| () X REY (@, 40, ,)
= = Ly, ar Pos Py
Pl —0.788  0.160 0595 8 Y
0 0 0 1

The right-hand side of this equation now involves four coupled angles; as before,
these must be de-coupled. However, since the rotation of & about the z-axis for the
cylindrical coordinates does not affect the a-axis, it remains parallel to the z-axis.
As a result, the rotation of ¢, about the g-axis for RPY will simply be added to «.
This means that the 55° angle we found for ¢, is the summation of ¢, + « (see
Figure 2.25). Using the position information given, the solution of Example 2.20,
and referring to Equation (2.34), we get:

rCa =433, 1S¢=2.5— a=230°
¢, + o = 55° — ¢, =25°
Sa = 0.5 —r=2>5

p,=8 —1=38
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Figure 2.25 Cylindrical and RPY coordinates of Example 2.21.

. As in Example 2.16:
| — ¢, =52°, ¢, =15°

' Of course, a similar solution may be found for the second set of answers. [ |

: 2.10.2 Euler Angles

Euler angles are very similar to RPY, except that the last rotation is also about the current a-
axis (Figure 2.26). We still need to make all rotations relative to the current axes to prevent
any change in the position of the robot. Therefore, the rotations representing the Euler

angles will be:

Rotation of ¢ about the g-axis (z-axis of the moving frame) followed by,
Rotation of @ about the o-axis (y-axis of the moving frame) followed by,
Rotation of ¥ about the a-axis (z-axis of the moving frame).

The matrix representing the Euler angles orientation change will be:
Euler(¢, 8, ) = Rot(a,$)Rot(0,6), Rot{a, )
CPpCOCY — SpSYy  —ChCOSY — SpCyr CpSH 0
SHCOCY + CpSyr  —SpCOSY + CHCyr SpSH 0

0

1

(2.44)

a —SHCY SOSY co
0 0 0

Rotation of ¢ about the g-axis Rotation of §about the o-axis Rotation of ¥ about the a-axis

e —

Figure 2.26 Euler rotations about the current axes.
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Once again, this matrix represents the orientation change caused by the Euler angles
alone. The location and the final orientation of the frame relative to the reference frame
will be the product of the two matrices representing the position change and the
Euler angles.

The inverse kinematic solution for the Euler angles can be found in a manner very
similar to RPY. We will pre-multiply the two sides of the Euler equation by Rot™!(a, ¢)
to eliminate ¢ from one side. By equating the elements of the two sides to each other, we
will find the following equations. Assuming the final desired orientation achieved by
Euler angles is represented by the (n,0,4) matrix:

ey 0y day O coCy —-ClSy S6 0
n, o, a, 0 S C 0 0
Rot /a0y x | 1 7 7 = sz v (2.45)
n, o0, a, 0 =8OCYy  SOSYyr C8 0
0 0 0 1 0 0 0 1
&
or,
ta- [ . Co+n,S¢p  0.Cp+0,S9 a,Ch+aSp 0
t
ﬁrelr —n,Sp+n,Cd —0,S¢p +0,Cd —a,S¢+a,Ch 0
”z oz az O
| 0 0 0 il
(2.46)
CoCy —COSy SO 0
/ Sy Cyr 0 0
| —secy  sesy co o
0 0 0 1
44)
Remember that the n,0,4 components in Equation (2.45) represent the final desired
values that are normally given or known. The values of the Euler angles are the unknown
¥ variables. Equating the different elements of the right-hand and left-hand sides of
Equation (2.46) will result in the following.
From the 2,3 elements we get:
— a.Sp + a,Cp =0 — ¢ = ATAN2(ay, a,) or ¢ = ATAN2(—a,, —a.)  (2.47)
With ¢ evaluated, all the elements of the left-hand side of Equation (2.46) are known.
From the 2,1 and 2,2 elements we get:
is Slﬁ . _nxS(»b + ”yC(p (2 48)
Cy = —0xSp + 0,Cp — = ATAN2[(—n,Sp + n,Co), (—0xS¢ + 0,C¢)]
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And finally, from the 1,3 and 3,3 elements we get:

S0 = a,C¢p + a,S¢ (2.49)
CO = a. — 0 = ATAN2[(0,C + 2,5¢), a) ] '

Example 2.22
The desired final orientation of the hand of a Cartesian-Euler robot is given. Find the

necessary Euler angles.

ne ox 4 Py 0.579 —0.548 —0.604 5

Ry _ | @ By 0.540 0.813 —0.220 7
B 0w, 0. a p, 0.611 —0.199 0.766 3
0 0 0 1 0 0 0o 1

Solution: From the above equations, we find:

¢ = ATAN2(ay, a,) = ATAN2(—0.220, —0.604) = 20° or 200°

Realizing that both the sines and cosines of 20° and 200° can be used for the

remainder,
Y= ATANZ(—nxS(b + n,C, —0,S¢p + oyC¢) = (0.31, 0.952) = 18° or 198°
6 = ATAN2 (axC(P + a,S¢, az) = ATAN2(—0.643, 0.766) = —40° or 40° ]

2.10.3 Articulated Joints

Articulated joints consist of three rotations other than the above. Similar to section 2.9.4.,
we will develop the matrix representing articulated joints later, when we discuss the

Denavit-Hartenberg representation.

2.11 Forward and Inverse Kinematic Equations:
Position and Orientation

The matrix representing the final location and orientation of the robot is a combination
of the above, depending on which coordinates are used. If a robot is made of a Cartesian
and an RPY set of joints, then the location and the final orientation of the frame relative
to the reference frame will be the product of the two matrices representing the Cartesian
position change and the RPY. The robot may be represented by:

RTH = Tfﬂ”(px)py’pz) X RPY(¢,, By, ) (2.50)

If the robot is designed based on spherical coordinates for positioning and Euler angles for
orientation, then the final answer will be the following equation, where the position is
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determined by the spherical coordinates, while the final orientation is affected by both
the angles in the spherical coordinates as well as the Euler angles:

2.49) BTy = Tyulr, B,y) x Euler(e, 0, ) (2.51)

The forward and inverse kinematic solutions for these cases are not developed here, since
many different combinations are possible. Instead, in complicated designs, the Denavit-
Hartenberg representation is recommended. We will discuss this next.

dthe 2.12 Denavit-Hartenberg Representation of Forward

Kinematic Equations of Robots

In 1955, Denavit and Hartenberg® published a paper in the ASME Journal of Applied
Mechanics that was later used to represent and model robots and to derive their equations of
motion. This technique has become the standard way of representing robots and modeling
their motions, and therefore, is essential to learn. The Denavit-Hartenberg (D-H) model of
representation is a very simple way of modeling robot links and joints that can be used for
any robot configuration, regardless of its sequence or complexity. It can also be used to
represent transformations in any coordinates we have already discussed, such as Cartesian,
cylindrical, spherical, Euler, and RPY. Additionally, it can be used for representation of all-
revolute articulated robots, SCARA robots, or any possible combinations of joints and
links. Although the direct modeling of robots with the previous techniques are faster and
more straightforward, the D-H representation has an added benefit; as we will see later,
98° analysis of differential motions and Jacobians, dynamic analysis, force analysis, and others
are based on the results obtained from D-H representation.””
] Robots may be made of a succession of joints and links in any order. The joints may be
either prismatic (linear) or revolute (rotational), move in different planes, and have offsets.
The links may also be of any length, including zero; may be twisted and bent; and may be in
any plane. Therefore, any general set of joints and links may create a robot. We need to be
94, able to model and analyze any robot, whether or not it follows any of the preceding
s the coordinates.

To do this, we assign a reference frame to each joint, and later define a general
procedure to transform from one joint to the next (one frame to the next). If we combine
all the transformations from the base to the first joint, from the first joint to the second
Joint, and so on, until we get to the last joint, we will have the robot’s total transformation
matrix. In the following sections, we will define the general procedure, based on the
D-H representation, to assign reference frames to each joint. Then we will define how a
transformation between any two successive frames may be accomplished. Finally, we will
lation write the total transformation matrix for the robot.
tesian Imagine that a robot may be made of a number of links and joints in any form.
lative Figure 2.27 represents three successive joints and two links. Although these joints and
tesian links are not necessarily similar to any real robot joint or link, they are very general and
can easily represent any joints in real robots. These joints may be revolute or prismatic, or

both. Although in real robots it is customary to only have 1-DOF joints, the joints in
2.50) Ei .
igure 2.27 represent 1- or 2-DOF joints.
es for Figure 2.27(a) shows three joints. Each joint may both rotate and/or translate. Let’s
ion is assign joint number # to the first joint, # + 1 to the second joint, and # + 2 to the third

r the
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Joint n+2

Joint n Joint n+1

Zu+l

Parallel to z,

Parallel to z,,_4

(a)

z,
> nt+l
z Zy+
(ital Zy n+1

|
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1
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!
(e) ) (g)

Figure 2.27 A Denavit-Hartenberg representation of a general purpose joint-link

combination.

joint shown. There may be other joints before or after these. Each link is also assigned a
link number as shown. Link n will be between joints # and n+ 1, and link n+ 11
between joints n+ 1 and n + 2.

To model the robot with the D-H representation, the first thing we need to do 1is
assign a local reference frame for each and every joint. Therefore, for each joint, we will
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have to assign a z-axis and an x-axis. We normally do not need to assign a y-axis, since we
always know that y-axes are mutually perpendicular to both x- and z-axes. In addition,
the D-H representation does not use the y-axis at all. The following is the procedure for
assigning a local reference frame to each joint,

¢ All joints, without exception, are represented by a z-axis. If the joint is revolute, the
z-axis 1s in the direction of rotation as followed by the right-hand rule for rotations. If
the joint is prismatic, the z-axis for the joint is along the direction of the linear
movement. In each case, the index number for the z-axis of joint # (as well as the local
reference frame for the joint) is n — 1. For example, the z-axis representing motions
about joint number n+ 1 is z,. These simple rules will allow us to quickly assign
z-axes to all joints. For revolute joints, the rotation about the z-axis (§) will be the
joint variable. For prismatic joints, the length of the link along the z-axis represented
by d will be the joint variable.

® As you can see in Figure 2.27(a), in general, joints may not necessarily be parallel or i
intersecting. As a result, the z-axes may be skew lines. There is always one line
mutually perpendicular to any two skew lines, called common normal, which is
the shortest distance between them. We always assign the x-axis of the local reference
frame in the direction of the common normal. Therefore, if a,, represents the common
normal between 2, and z,, the direction of x, will be along a,,. Similarly, if the
common normal between z,, and 2,41 is 4,11, the direction of x, 11 will be along 4,4 1.
The common normal lines between successive joints are not necessarily intersecting or
colinear. As a result, the origins of two successive frames may also not be at the same
location. Based on the above, we can assign coordinate frames to all joints, with the
following exceptions:

® Iftwo z-axes are parallel, there are an infinite number of common normals between
them. We will pick the common normal that is colinear with the common normal
of the previous joint. This will simplify the model.

® If the z-axes of two successive joints are intersecting, there is no common normal
between them (or it has a zero length). We will assign the x-axis along a line
perpendicular to the plane formed by the two axes. This means that the common
normal is a line perpendicular to the plane containing the two z-axes, which is the
equivalent of picking the direction of the cross-product of the two z-axes. This also
simplifies the model.

In Figure 2.27(a),  represents a rotation about the z-axis, d represents the distance on the
z-axis between two successive common normals (or joint offset), a represents the length
of each common normal (the length of a link), and « represents the angle between two
successive z-axes (also called joint twist angle). Commonly, only 6 and d are joint
variables.

The next step is to follow the necessary motions to transform from one reference frame
to the next. Assuming we are at the local reference frame x, — z,, we will do the

ed a following four standard motions to get to the next local reference frame Xptl — 2yt

11is
1. Rotate about the z,-axis an angle of 6,11 (Figure 2.27(a) and (b)). This will make x,,
and x,,+1 parallel to each other. This is true because a, and a,,.; are both perpendicular
to z,, and rotating z, an angle of 6,1 will make them parallel (and thus, coplanar).

do 1s
will
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2. Translate along the z,-axis a distance of d,4 to make x, and x,41 colinear
(Figure 2.27(c)). Since x, and x4+, were already parallel and normal to z,, moving

along z, will lay them over each other.

3. Translate along the (already rotated) x,-axis a distance of a1 to bring the origins of x,,
and x,4, together (Figure 2.27(d) and (e)). At this point, the origins of the two
reference frames will be at the same location.

4. Rotate z,-axis about x,4i-axis an angle of «,41 to align z,~axis with z,41-
axis (Figure 2.27(f)). At this point, frames n and n+ 1 will be exactly the same

(Figure 2.27(g)), and we have transformed from one to the next.

{

{ Continuing with exactly the same sequence of four movements between the
I n-+1 and n+2 frames will transform one to the next, and by repeating this as
‘ necessary, we can transform between successive frames. Starting with the robot’s

0 0 0 1

i reference frame, we can transform to the first joint, second joint and so on, until the
1 end effector. Note that the above sequence of movements remains the same between
| any two frames.

| The transformation " T, 1 (called A,41) between two successive frames representing
f the preceding four movements is the product of the four matrices representing them.
i‘ Since all transformations are relative to the current frame (they are measured and
| performed relative to the axes of the current local frame), all matrices are post-multiplied.
i The result 1s:

E

; "oyt = Ay = Rot(z,0,41) ¥ Trans(0,0,d,41) X Trans(a,+1,0,0) X Rot(x, 0,4 1)
|

i [CO1 —SO,0 0 O] [t 0O 0O O 1 0 0 a1

I

| S04t COipr 0O 01 0 O 01 0 O

] = X X

i 0 0 10 0 0 1 du 001 O

g . O 0 0 1] |0 0 0 1 0 0 0 1

i

10 0 0

|

{ 0 Can+1 _San—H 0

! X (2.52)
! 0 San+1 Ca/H—l 0

.i 0 0 o 1

[

|

} C9n+1 —Sen+1 COl,,_|_1 89114—1 SO{,,+1 Ap+1 C9u+1

! SG;H—l CGI1+1 Car1+1 . C0I1+l San+1 A1 SerH—l

. App1 = , (2.53)
] 0 San—i—l Can-{—l dn—H

i
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lear Table 2.1 D-H Parameters Table.
ng # 0 d a o
0-1
f x,, 1-2
two 2-3
34
1+17 4-5
ame 5-6

As an example, the transformation between joints 2 and 3 of a generic robot will

the simply be:

s as
yot's C@g, —893 CO!3 S@jSO[;; a3 C03

the 593 C93 CO[3 . C93 SO[3 as 893
reen Ty =43 = (2.54)

0 Sars Cas d3

iting 0 0 0 1 1
1CI1L.

and At the base of the robot, we can start with the first joint and transform to the second joint,
lied. then to the third, and so on, until the hand of the robot and eventually the end effector.

Calling each transformation an A, 41, we will have a number of A matrices that represent
the transformations. The total transformation between the base of the robot and the hand
Oypt) will be:

Ry =810 7T, = A1AyAs .. A, (2.55)

where # is the joint number. For a 6-DOF robot, there will be six A matrices.

To facilitate the calculation of the A matrices, we will form a table of joint and link
parameters, whereby the values representing each link and joint are determined from the
schematic drawing of the robot and are substituted into each A matrix. Table 2.1 can be
used for this purpose.

In the following examples, we will assign the necessary frames, fill out the parameters
tables, and substitute the values into the A matrices. We will start with a simple robot, but
will consider more difficult robots later.

Starting with a simple 2-axis robot and moving up to a robot with 6 axes, we will apply

2.52) the D-H representation in the following examples to derive the forward kinematic
equations for each one.

Example 2.23

For the simple 2-axis, planar robot of Figure 2.28, assign the necessary coordinate
systems based on the D-H representation, fill out the parameters table, and derive the
forward kinematic equations for the robot.

2.53)

Solution: First, note that both joints rotate in the x-y plane and that a frame
xg — 211 shows the end of the robot. We start by assigning the z-axes for the joints. 2
will be assigned to joint 1, and z; will be assigned to joint 2. Figure 2.28 shows both
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Figure 2.28 A simple 2-axis, articulated robot arm,

z-axes pointing out from the page (as are the zy- and z-axes). Notice that the
O-frame is fixed and does not move. The robot moves relative to it.

Next, we need to assign the x-axes for each frame. Since the first frame (frame 0)
is at the base of the robot, and therefore, there are no joints before it, the direction of
xo is arbitrary. For convenience (only), we may choose to assign it in the same
direction as the Universe x-axis. As we will see later, there is no problem if another
direction is chosen; all it means is that if we were to specify UTH instead of OTH,
we would have to include an additional fixed rotation to indicate that x¢- and xo-
axes are not parallel.

Since z, and z; are parallel, the common normal between them is in the
direction between the two, and therefore, the xj-axis is as shown.

Table 2.2 shows the parameters table for the robot. To identify the values, follow
the four necessary transformations required to go from one frame to the next,
according to the D-H convention:

1. Rotate about the zy-axis an angle of 6; to make x parallel to x;.

2. Since xo and x; are in the same plane, translation d along the zy-axis is zero.
3. Translate along the (already rotated) xp-axis a distance of ay.

4. Since z;and z;-axes are parallel, the necessary rotation o about the x;-axis is zero.

The same can be repeated for transforming between frames 1 and H.
Note that since there are two revolute joints, the two unknowns are also joint
angles ) and 6,. The forward kinematic equation of the robot can be found by

Table 2.2 D-H Parameters Table for Example 2.23.
# 0 d a o
01 0, 0 4 0 |
02 0 dy 0




lysis 2.12 Denavit-Hartenberg Representation of Fonward Kinematic Equations of Robots 79
substituting these parameters into the corresponding A matrices as follows:
C1 ‘Sl 0 aj C1 C2 —52 0 a2C2
S C 0 &S S Cy, 0 aS
a=|" 1 151 and A, = | 2 2 252
0 o 1 0 0 0 1 0
0 0 1 0 0 0 1

GG =518 —CiSH=81Cy 0 a(CiC~8S) +a1Cy
SIC+C1S; =SS +CiCy 0 a(SC, 4+ CS + a1 S
0Ty = A x Ay = | 1 1S2 152 1Ch 2(81C, 1S52) + a1 S
0 0 1 0
0

0 0 1

Using ful’lCtiODS C1 C2~Sl Sg == C(91 + 02) == C12 and Sl C2 + C1 Sz = 8(91 + 62)
= Si2, the transformation simplifies to:

C =S 0 aCp+aC

t th S C 0 @S+ aS
e OTH B 12 12 2012 191 (2.56)
0 0 1 0
ne 0)
on of 0 0 0 1
same

The forward kinematic solution allows us to find the location (and orientation) of the

8ther robot’s end if values for 6y, 6, a;, and a, are specified. We will find the inverse
Ty kinematic solution for this robot later. =
d X0~
Example 2.24
1 the
Assign the necessary frames to the robot of Figure 2.29 and derive the forward
>llow kinematic equation of the robot.
next, Solution: As you can see, this robot is very similar to the robot of Example 2.23,
except that another joint is added to it. The same assignment of frames 0 and 1 are
Yu
ero.
ﬂ'3
ZErO0. - o
joint
ad by 2y

Figure 2.29 The 3-DOF robot of Example 2.24.
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80
Table 2.3 D-H Parameters Table for Example 2.24.

# 0 d a o

0-1 6, 0 a 0

1-2 | 9046, 0 0 90

>H | 6 4 0 0
this robot, but we need to add another frame for the new joint.
Therefore, we will add a z,-axis perpendicular to the joint, as shown. Since z; and
perpendicular to both at the same

z, axes intersect at joint 2, xy-axis will be

location, as shown.
Table 2.3 shows the parameters for the robot. Please follow the four required

transformations between every two frames and make sure that you note the following:

e The direction of the H-frame is changed to represent the motions of the gripper.

e 9

® The physical length of link 2 is now a “d” and not an “a .

® Joint 3 is shown as a revolute joint. In this case, ds is fixed. However, the joint
could have been a prismatic joint (in which case, d3 would be a variable but 65
would be fixed), or both (in which case both 63 and ds would be variables).

e Remember that the rotations are measured with the right-hand rule. The curled
fingers of your right hand, rotating in the direction of rotation, determine the
direction of the axis of rotation along the thumb.

e Note that the rotation about z; is shown to be 90° + 6, and not 8,. This is because
even when 6, is zero, there is a 90° angle between x; and x, (see Figure 2.30). This
is an extremely important factor in real life, when the reset position of the robot

) applicable to
|
|
|
|
i
[

must be defined.
Noting that sin(90 + 6) = cos(#) and cos(90 + 6) = —sin(6), the matrices repre-
senting each joint transformation and the total transformation of the robot are:

22

20 1

c; =5 0 oCy =S 0 G 0 Chy -S3 0 O
S Ci 0 &S C, 0 S 0 S €y 0 0
7 = 1 1 191 Ay = 2 2 Ay = 3 3

! § 0 o 1 0 o 1 0 0 0 0 1 d;
i o 0 o0 1 0o 0 0 1 0 0 0 1
, 0Ty = A1AzAs
]
f (—C1S; — $1C2)Cs —(~C18$ —~ $C)S; CiC— 8515, (C1Cy — $182)ds + a1 G
I | (GG - $18)C;  —(Ci1Ca— 818)Ss CiSa + 851G (C185+ S1C)ds + i Sy
1 S3 Cs 0 0
' 0 0 0 1
i
i X2 X,
' 6, 1‘ 0, 9
Il *®
f x4 —P=Zy
|

Figure 2.30 Robot of Example 2.24 in reset position.
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Simplifying the matrix with C:— 88 =Cp and §C, + C1Sy = Sy,
we get:

—S12C3 SS; Cip Ciads + a1 C
Ci2Cs —C38;3 S S12d3 + a1 S
0Ty = AjAyd; = 1203 1293 Si2 1243 + 41 5
S3 Cs 0 0

joint.

1 and 0 0 0 1

—_ |-O 0 1 d3 -+ a

ired =0 100 0
uire B p N
wing: For 6, =0, Ty = 0 ) , and

93 =0

pper. | 0 0 1

: -1 0 0 0
joint 6 =90 5 0 1 dig
at 63 0 3T a

for 0 = O s T =

:s)-l : 02 . 1o 10 o

urle 3=

e the L0 00 1
Please verify that these values represent the robot correctly. i

cause

. This

robot Example 2.25

For the simple 6-DOF robot of Figure 2.31, assign the necessary coordinate frames

‘epre- based on the D-H representation, fill out the accompanying parameters table, and

re: derive the forward kinematic equation of the robot.

) Solution: As you will notice, when the number of Jjoints increases, in this case to

)

six, the analysis of the forward kinematics becomes more complicated. However, all

A principles apply the same as before. You will also notice that this 6-DOF robot is still
simplified with no joint offsets or twist angles. In this example, for simplicity, we are
assuming that joints 2, 3, and 4 are in the same plane, which will render their d, values
zero; otherwise, the presence of offsets will make the equations slightly more

ayCy

a8

2y

x{;

Figure 2.31 A simple 6-DOF articulate robot.




o

82 Chapter 2. Kinematics of Robots: Position Analysis (

Figure 2.32 Reference frames for the simple 6-DOF articulate robot.

involved. Generally, offsets will change the position terms, but not orientation terms.
To assign coordinate frames to the robot, we will first look for the joints (as shown).
First, we will assign z-axes to each joint, followed by x-axes. Please follow the
coordinates as shown in Figures 2.32 and 2.33. Figure 2.33 isa line drawing of'the robot
in Figure 2.31 for simplicity. Notice where the origin of each frame is, and why.
Start at joint 1. 2o represents motions about the first joint. xq is chosen to be
parallel to the reference frame x-axis. This is done only for convenience. X is a fixed
axis, representing the base of the robot, and does not move. The movement of the
first joint occurs around the 2o -—xo axes. Next, z; is assigned at joint 2. X will be normal
to zp and z; because these two axes are intersecting. x, will be in the direction of the
common normal between z; and 2z,. x3 is in the direction of the common normal
between z; and z3. Similarly, x4 is in the direction of the common normal between
23 and z,. Finally, 25 and z¢ are as shown, because they are parallel and colinear. z5
represents the motions about joint 6, while 24 represents the motions of the end
effector. Although we normally do not include the end effector in the equations of
motion, it is necessary to include the end effector frame because it will allow us to
transform out of frame s —xs. Also important to notice is the location of the origins

20

X5

2 A ' x3 4 25\’;
/ : . ? 6 |

2.33  Line drawing of the reference frames for the simple 6-DOF articulate robot.

|
|
|
| sl
|
J
|

Figure
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of the first and the last frames. This will determine the total transformation equation
of the robot. You may be able to assign other (or different) intermediate coordinate
frames between the first and the last, but as long as the first and the last frames are not
changed, the total transformation of the robot will be the same. Notice that the origin
of the first joint is not at the physical location of the joint. You can verify that this is
correct, because physically, whether the actual joint is a little higher or lower will not
make any difference in the robot’s movements. Therefore, the origin can be as
shown without regard to the physical location of the joint on the base. Note that we
could have chosen to place the O-frame at the base of the robot. In that case, the total
transformation between the base and the end effector of the robot would have °
included the height of the robot too, whereas the way we have assigned the base
frame, our measurements are relative to the present O-frame. We can simply add the
height to our equation later.

Next, we will follow the assigned coordinate frames to fill out the parameters of
Table 2.4, Starting with 2, — xg, there will be a rotation of 01 to bring xg to x4, a
translation of zero along 2, and zero along x; to align the x’s together, and a rotation
of iy = 4907 to bring z, to z;. Remember that the rotations are measured with the
right-hand rule. The curled fingers of your right hand, rotating in the direction of
rotation, determine the direction of the axis of rotation along the thumb. At this
point, we will be at z; — x;. Continue with the next Jjoints the same way to fill out
the table.

You must realize that like any other machine, robots do not stay in one confi-
guration as shown in a drawing. You need to visualize the motions, even though the
schematic is in 2-D. This means you must realize that the different links and joints of
the robot move, as do the frames attached to them. If in this instant, due to the
configuration in which the robot is drawn, the axes are shown to be in a particular
position and orientation, they will be at other points and orientations as the robot
moves. For example, x3 is always in the direction of a3 along the line between joints 3
and 4. As the lower arm of the robot rotates about joint 3, x; moves as well, but not
x;. However, x; will move as the upper arm rotates about joint 2. This must be kept
in mind as we determine the parameters.

¢ represents the joint variable for a revolute joint and d represents joint
variable for a prismatic joint. Since this is an all-revolute robot, all joint variables
are angles.

The transformations between each two successive joints can be written
by simply substituting the parameters from the parameters table into the A-matrix.

Table 2.4 Parameters for the Robot of Example 2.25.

# 0 d a o
0-1 6 0 0 90
12 6, 0 a0 0
2-3 93 0 da 0
3—4 0, 0 dy —90
4-5 05 0 0 90
5—6 Oc 0 0

[
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We get:
i C1 0 Sl 0 C2 —SQ 0 Czaz C3 —83 0 C3a3
Rl S1 0 —C1 0 Sz C2 0 Szag 83 C3 0 83a3
J| A = Ay = 3=
0 1 0 0 0 1 0 0 0 1 0
L0 O 0 1 0 1 0 0 0 1
[ Cs 0 =S4 Cyuy Cs O Ss 0 Ce —Se¢ 0 O
|
S 0 C Sia S 0 —-Cs O S C 0 0
1__ Ay = 4 4 404 As = 5 5 As 6 6
:l -1 0 0 1 0 0 0 0 1 0
:; Lo o 0 1 0o o0 1 0o 0 0 1
| (2.57)

Once again, to simplify the final solutions, we will use the following trigonometric

functions:

891(363 + C91892 e 3(9| + 92) - 812 (2 58)
C@q(:{?g - 591892 = C(f’h -+ 92) = C12 '

The total transformation between the base of the robot (where the O-frame is) and

the hand will be:

R = A1As Ay AsAsAg

[ C1(Cp34C5Ce — $33485)  Ci(—Ca34CsCo — $234Cs)  C1(C234S5) + S1Cs C1(Coasas + Cozaz + Com) |

| —5185Cs +5155Ss
g B $1(C234Cs5C — S234S6) S1(—C234C5Co — $234Co) $1(Ca34S5) — C1Cs  Si{Cazaay + Coas + Coa)
. | rcissce —C185Ss
{ S234Cs5Cs + C23456 —8234C5Cs + C234Cs S234 S5 Saasay + Spzaz + Saaz
| 0 0 0 1 |

|

E

| (2.59)
| g
Note the following important insights:

i

|

l

|

’ 1. In assigning the x- and z-axes, you may choose either direction along the chosen line

+ of action. Ultimately, the result of the total transformation will be the same.

i However, your individual matrices and parameters are similarly affected. '
f 2. ltis acceptable to use additional frames to make things easier to follow. However, you

Z may not have any fewer or more unknown variables than you have joints.

|

3. The D-H representation does not use a transformation along the y-axis. Therefore, if
ansform from one frame to

you find that you need to move along the y-axis to tr
t another, you either have made a mistake, or you need an additiona
‘. 4. In reality, there may be small angles between parallel z-axes due to mar
errors or tolerances. To represent these errors between seemingly parallel z-axes, it

1 frame in between.
wifacturing
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o

i

=

will be necessary to make transformations along the y-axis. Therefore, the D-H
methodology cannot represent these errors.

- Note that frame x,, — z, represents link n before itself. It is attached to link 7 and moves

with it relative to frame n—1. Motions about joint # are relative to frame n—1.
Obviously, you may use other representations to develop the kinematic equations of a
robot. However, in order to be able to use subsequent derivations that will be used for
differential motions, dynamic analysis, and so on—which are all based on the D-H
representation—you may benefit from following this methodology.

So far, in all of our examples in this section, we derived the transformation between
the base of the robot and the end effector (°Ty). It is also possible to desire the
transformation between the Universe frame and the end effector (! ".*'}.,). In that
case, we will need to pre-multiply °Ty; by the transformation between the base
and the Universe frames, or UTH = UTO XOTH. Since the location of the base of
the robot is always known, this will not add to the number of unknowns (or
complexity of the problem). The transformation YT} usually involves simple
translations and rotations about the Universe frame to get to the base frame.
This process is not based on the D-H representation; it is a simple set of rotations
and translations.

As you have probably noticed, the D-H representation can be used for any
configuration of joints and links, whether or not they follow known coordinates
such as rectangular, spherical, Euler, and so on. Additionally, you cannot use those
representations if any twist angles or joint offsets are present. In reality, twist angles
and joint offsets are very common. The derivation of kinematic equations based on
rectangular, cylindrical, spherical, RPY, and Euler was presented only for teaching
purposes. Therefore, you should normally use the D-H for analysis.

Example 2.26

The Stanford Arm: Assign coordinate frames to the Stanford Arm (Figure 2.34)
and fill out the parameters table. The Stanford Arm is a spherical coordinate arm:
the first two joints are revolute, the third is prismatic, and the last three wrist joints
are revolute joints.

Solution: To allow you to work on this before you see the solution, the answer to
this problem is included at the end of this chapter. It is recommended that before
you look at the assignment of the frames and the solution of the Arm, you try to do
this on your own,

The final forward kinematic solution of the Arm® is the product of the six
matrices representing the transformation between successive joints, as follows:

Hy O0x dy p,
ny 0 4y p,
Ny 0z dy P z
0 0 0 1

R 0 _
THSlmgﬁml . T6 -
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Figure 2.34 Schematic drawing of the Stanford Arm.

where

1, = C1[Ca(CaCsCo — S4S6) — $285Ce] — S1(84C5 Cs + CaSe)

n, = $1[Ca(C4CsCo — S4S6) — 8285 Ce] + C1(S4CsCs + C4Ss)

n, = —S,(C4C5Cs — S456) — C285Cs

0, = C1[=Ca(CyCsSs + S4Cs) + S285Sc] — S1(—84CsSs + C4Co)
0, = S1[—Ca(C4CsS6 + S4Ce) + S25586] + C1(=54Cs 56 + C4Ce)

0, = S3(C4CsS6 + S4Cs) + C25556 (2.60)
4y = C3(C2C4Ss + $2Cs) — S18485

4, = S1(C2CsSs + $2Cs) + C154Ss

a, = —S$,C4Ss + C2Cs

p. = C1S:d — S1ds

p, = $15d5 + C1dz

p. = Cads El
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Figure 2.35 4-axis robot of Example 2.27.

Example 2.27

Assign required frames to the 4-axis robot of Figure 2.35 and write an equation

describing YTy,

Solution: This example shows a robot with a twist angle, a joint offset, and a
double-action joint represented by the same z-axis. Applying the standard proce-
dure, we assign the frames. The parameters table is shown in Table 2.5.

The total transformation is:

U U 0
Ty="T, X Hi o —

s
S O =, O

S = O O

h
X A1A2AH

1

Table 2.5  Parameters for the Robot of Example 2.27.

# 6 d a o
0-1 6, 0 Iy 90
1-2 0, —1 0 90
2-H 01 Is + Iy 0 0

2.13 The Inverse Kinematic Solution of Robots

As we mentioned earlier, we are actually interested in the inverse kinematic solutions.
With inverse kinematic solutions, we will be able to determine the value of cach joint in
order to place the robot at a desired position and orientation. We have already seen the
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inverse kinematic solutions of specific coordinate systems. In this section, we will learn a

general procedure for solving the kinematic equations.

As you have noticed by now, the forward kinematic equations have a multitude of
coupled angles such as Ca34. This makes it impossible to find enough elements in the
matrix to solve for individual sines and cosines to calculate the angles. To de-couple some
of the angles, we may multiply the R matrix with individual A" matrices. This will
yield one side of the equation free of an individual angle, allowing us to find elements
that yield sines and cosines of the angle, and subsequently,

the angle itself. We will
demonstrate the procedure in the following section.

| Example 2.28
Find a symbolic expression for the joint variables of the robot of Example

n for the robot is shown as Equation
n—and

2.23.

I Solution: The forward kinematic equatio
(2.56), repeated here. Assume that we desire to place the robot at a positio

consequently, an orientation—given as n, o, a, p vectors:

f

I Ciz —S12 0 @Cp+aCi fy Oy dx Py

‘f S C 0 aSip+a1S n, 0, a

% OTH — A X Ay = 12 12 2012 191 - y y y Py

i 0 0 1 0 (P 0z daz Pz

i o 0 0 1 0 0 0 1
(2.56)

Since this robot has only two degrees of freedom, its solution is relatively simple. We
can solve for the angles either algebraically, or by de-coupling the unknowns. We will
do both for comparison. Remember that whenever possible, we should look for values
of both the sine and cosine of an angle in order to correctly identify the quadrant in

which the angle falls.
I. Algebraic solution: Equating elements (2,1), (1,1), (1,4), and (2,4) of the two

matrices, we get:

S12 = Ny and C12 = Ny — 912 = ATAN?2 (I’ly, ﬂx)

P — axhy
a2C12 +(11C1 =p, O azﬂx+ a1C1 = Py — C1 = =
iy
‘t}r s ﬂgﬂr
a;S12 + 4151 =p, or diy + a1 =p, = S =—
ay

a

e e e e

”_ﬂz”' — oty
6, = ATAN2($:,C1) = ATAN2 (h__* !___L)
a 1

Since 6; and 6, are known, 65 can also be calculated.

|
|
|
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II. Alternative solution: In this case, we will post-multiply both sides of Equation
(2.56) by A5 to de-couple 6; from 6,. We get:

Ny O0x Ay P, fx Oy dx P,
n, o0, a n, o, a
Arx Ay xayt= " Pl o a2 [ B
ny o0 a, p, ne 0 a, p,
0 0 0 1 0O 0 0 1
FC1 —S1 0 A C1 ] Hf’lx Oy  dy Py Cz —SQ 0 —dadp
Sl C1 0 a Sl 1y 0), a), py Sz C2 0 0
= X
1 0 n, o0, a. p, 0 0 1
| 0 0 0 1 L0 0 0 1 0 0 O
[Ci, —S1 0 a1 CT [ Cony — Sz00 Sone + Cro,  a, Dy — oty
St Ci 0 a8 _ Cgf’ly — 820}, Szﬂy + Czoy ay p, — an
1 0 Cony, — S0, Son. + Cro,  as p, — dan,
| 0 0 0 1 | 0 0 0 1

From elements 1,4 and 2,4 we get 4;C; = p, — ane and a1 Sy = p, — an, which is
exactly what we got from the other method. Knowing S; and C;, we can find
expressions for S, and C,. =

2.13.1 General Solution for Articulated Robot Arms

In this section, a summary of a technique is presented that may generally be used for in-
verse kinematic analysis of manipulators.” The process is applied to the simple manipu-
lator arm of Example 2.25. Although this solution is for this particular robot with the
given configuration, it may similarly be repeated for other robots. As we saw in Example
2.25, the final equation representing the robot, repeated here, is:

Ry = A1 Ay A3 AsAs Ag

~81855Cq +8185586
$1(C234CsCs — $23485)  S1(=C234Cs5C6 — S234Cs)  $1(C234Ss) — C1Cs  Sy(Cassas + Cozas + Coa)
+C1S5C; —C18556
85234 C5C + C234S6 —8234CsCs + C234Cs 823485 S234a4 + Spaaz + Saap
0 0 0 1

We will denote the above matrix as [RHS] (Right-Hand Side) for simplicity in
writing. Let’s, once again, express the desired location and orientation of the robot
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with:
Ny Ox dx Py

n, o, a p,
n, 0, dz P,

I To solve for the angles, we will pre-multiply these two matrices with selected A"

' matrices, first with A1'1:

|
| fly Ox dx Py

‘: n 0 a
| Atx | Pril = A7V RHS) = ArAsAsAsAs (2.62)
ny 0z az Pz
‘_l 0 0 0 1
| -Cl S1 0 0 Ny Ox dx P,
:
{ 0 0 1 0 n, 0, a
| | Pl 2 4,4,4,4546
! S —-C 0 0 n, 0, d: P,
' Lo o0 o0 1 0o 0 0 1
: [n.C1+n,S1 0,Ci+ 0,81 a,Cy + a,$¢ 2. C1 —|—pyS1
nx Oz az P
ﬂxsl - nYC1 OxS1 - OYC1 axS1 - ayC1 pxS1 —pYC1
0 0 0 1

L

Cp34CsCe — S234Ss  — C234C5C6 — S234C6 C234Ss Co3qas + Craz + Coaz

$y34CsCe + C234Ss  — $234C5C6 + C23aCs 523455 So34a4 + Saaas + Saaz

- —8;C¢ S5S6 Cs 0
0 0 0 1
(2.63)
From the 3,4 elements of Equation (2.63):
P —pyC1 =0 — 6, = tan ! <§1) and91 =0, + 180° (264)
From the 1,4 and 2,4 elements, we will get:
2, C1+p,S1 = Cosgas + Cozas + Caap (2.65)

p, = Saasaq + Sazaz + Saap

|
|
|
|
|
|
|
+
|
|
1
|
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We will rearrange the two expressions in Equation (2.65) and square and add them
to get:

(p.Ci +p,81 — C234a4)2 = (Ca3a3 + C2a2)2

(p, — 8234a4)2 = (Sp3a3 + 5242)2
(p.Ci +p,S1 — C234a4)2 +(p, — 8234a4)2 =} + & + 2aa5(S2 23 + C,Cy3)

Referring to the trigonometric functions of Equation (2.58):

82823 + C2Cp3 = Cos[(6, + 63) — 6] = Cosbs
Therefore:

(p,Cy + PSSt — Caseas)” + (p, — 8334:14]3 — a5 — a

Cy = (2.66)
2(!2:’13.

In this equation, everything is known except for Sy34 and Css4, which we will find
next. Knowing that S; = /1 — C3, we can then say that:

S3
03 = tan~' — 2.67
3 an Cs ( )

Since joints 2, 3, and 4 are parallel, additional pre-multiplications by Ayt and A7 will

not yield useful results. The next step is to pre-multiply by the inverses of 4, through Ay,
which results in:

My Ox Ay P,
n 0. a
ajlagagial s | Y ﬁy — 474 AT ATV RHS] = AsA, (2.68)

0 0 0 1

which yields:

C234(C1 e + 81 ”y) Ca34(Croy + S1Oy) Ca34(Cray + Slay) Coa4 (CIP,\- + S1py)+
+S8234n, +Sa340, +S2340, Sazap, — Cagay — Chaz — a4
Ciny — Syny Cio, ~ Sy, Cray — Sqay 0
_5234(C1”x + Smy) —5234(C1 0 + 510y) _8234(C1ax + S1ay) — 834 (Clpx + S.p,.)-ﬁ-
+Cosyn, +Ca340; +Caga. Coaup, + Ssadz + Syas
| 0 0 0 1 |

CsCs —CsS¢ S5 0
S5Cs =858 —Cs 0

- S¢ Ce 0 0
0 0 0 1

(2.69)
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From the 3,3 elements of the matrices in Equation (2.69):

az

— Sy4(Cra, + S Cosadr = 0 — O34 = tan~' | ———— | and 6234 = 0 180°
234(Crae + 14y) + Cazad — B34 = tan (C1ax+51ay) and 0234 = 6234 +

(2.70)

and we can calculate Sy34 and Cpss, which are used to calculate 63, as previously

discussed.
Now, referring again to Equation (2.65), repeated here, we can calculate the sine and

cosine of 85 as follows:
p.C1 4 p,S1 = Cosaas + Co3as + Coaz
p, = Soasaq + Sxaaz + Saaz

Since C12 = C1C2 — 5182 and 812 . 81C2 + Clsz, we get:

(2.71)

pxC1 +pyS1 - C234a4 = (C2C3 . SgS3)d3 + C2a2
p. — Sozaas = ($2C3 + C183)a3 + S2a2

Treating this as a set of two equations and two unknowns and solving for C» and S5,

we get:
B (Caaz + a2)(p. — Sosaas) — S3as(p,C1 +p,S1 — Co344)
2 (Csas + a)* + S22 272)
(Caas + @) (p,C1 + p,St — Cazaas) + Ssas(p, — S23sda)
. (Czaz + a)* + Sid

Although this is a large equation, all its elements are known and it can be evaluated.

Then:

_(Csas + @) (p. — Spasas) — S3a3(p,C1 + p,S1 — Cazaa) (2.73)
(Csas + a2) (p, C1 +p,S1 — Cazaas) + Ssas(p, — Sazada) '

92 = tan

Now that 8, and 83 are known:
0y = 6234 — 02 — 03 (2.74)

Remember that since there are two solutions for 6234 (Equation (2.70)), there will be
two solutions for 8, as well. From 1,3 and 2,3 elements of Equation (2.69), we get:

Ss = C234(C1ax + S1ay) + S2344: (2.75)
Cs = —Clay + Sia, .
[ Cia, + Siay) + Sazqa
and 65 = tan" 2(Cre 1ty) + Soat (2.76)

S1ax . C1ay
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As you have probably noticed, there is no de-coupled equation for 6. As a ||
result, we have to pre-multiply Equation (2.69) by the inverse of As to de-couple

180° it. We get:
70) [ Cs [C234(C1 e + Sl”y) + Szawz] Cs [C234(C10x + 510)’) + 523402] 0 |
sly -85 (51 ne — Cy ny) —Ss (Slox — Cloy)
and —5234(C1ﬂx +$4 ﬂy) + Cozan, —5234(C10x + S1Oy) + Casq0. 0 0
0 0 1 0
i 0 0 0 1
[Cs —Ss 0 0] |
S Cg 0 O : |
- 0 0 1 0
1) L0 0 0 1]
(2.77)
1S,, From 2,1 and 2,2 elements of Equation (2.77) we get:
8 — tan~! —Soay (({1 By + .S:. n}.) + Caygni- (2.78)
—Sa34 ((419.\' + -\lt?,-) + Casq0:
72)

Therefore, we have found six equations that collectively yield the values needed to place
and orientate the robot at any desired location. Although this solution is only good for the
given robot, a similar approach may be taken for any other robot.

ated. Itis important to notice that this solution is only possible because the last three joints of
the robot are intersecting at a common point. Otherwise, it will not be possible to solve
for this kind of solution, and as a result, we would have to solve the matrices directly or by

2.73) calculating the inverse of the matrix and solving for the unknowns. Most industrial robots
have intersecting wrist joints.

2.74)

ill be 2.14 Inverse Kinematic Programming of Robots

get:

The equations we found for solving the inverse kinematic problem of robots can
2.75) directly be used to drive the robot toa desired position. In fact, no robot would actually
use the forward kinematic equations in order to solve for these results. The only
equations that are used are the set of six (or less, depending on the number of joints)
equations that calculate the joint values. In other words, the robot designer must
2.76) calculate the inverse solution and derive these equations and, in turn, use them to drive
the robot to position. This is necessary for the practical reason that it takes a long time
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Figure 2.36 Small sections of movement for straight line motions.

for a computer to calculate the inverse of the forward kinematic equations or to
substitute values into them and calculate the unknowns (joint variables) by methods
such as Gaussian elimination.

For a robot to move in a predictable path, say a straight line, it is necessary to
recalculate joint variables many times a second. Imagine that a robot needs to move in a
straight line between a starting point A and a destination point B. If no other action is
taken and the robot moves from point A to point B, the path is unpredictable. The robot
moves all its joints until they are at the final value, which will place the robot at the
destination point B. However, depending on the rate of change in each joint, the hand
will follow an unknown path in between the two points. To make the robot follow a
straight line, it is necessary to break the line into many small sections (Figure 2.36) and
make the robot follow those very small sections sequentially between the two points.
This means that a new solution must be calculated for each small section. Typically, the
location may be recalculated between 50 to 200 times a second. This means that if
calculating a solution takes more than 5 to 20 ms, the robot will lose accuracy or will not
follow the specified path.'” The shorter the time it takes to calculate a new solution, the
more accurate the robot. As a result, it is vital to eliminate as many unnecessary
computations as possible to allow the computer controller to calculate more solutions.
This is why the designer must do all mathematical manipulations beforehand and only
program the robot controller to calculate the final solutions. This will be discussed in

more detail in Chapter 5.
For the 6-axis robot discussed earlier, given the final desired location and orientation

as:

My Ox dx Py

R

H pesired -
ny 0z 4z P,
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all the controller needs to use to calculate the unknown angles is the set of inverse
solutions as summarized below:

01 = tan! (?) and 6y =6+ 180°

X

a
Op34 =tan 1 ———= and B34 = B34 + 180°
234 (CMx T Smy) 234 234
2 2
B (p.C1 +p,51 — Coasas)” + (p, — Sazaas)” — a% o 4%
A= 2612613
S =%4/1-C5
S-
03 = tan~! == (2.79)
Cs
) 1 (Caas + @) (p, — Sasaas) — Sza3(p, C1 + p, St — Cazaay)
2 =B
r to (Caas + a2)(p,C1 +p,S1 — Casaay) + Szas(p,, — Szzsas)
¥
hods Oy = O34 — 0, — 05
Cs ;.-;((f:“T_\. -+ S]d ) + 82'54(?2
05 = tan~ ! —= : ‘
,Y to > an Sta, — (.:'uf_].
rin a
on is 0, = tan-! —8234(Ciny + Siny) + Cosan,
obot 6 —5234(C10x + S1OJ,) + Crz40,
t the
hand s L ) .
oW a Although this is not trivial, it is much quicker to use these equations and calculate the
) and angles than it is to invert the matrices or do Gaussian elimination. Notice that all
Sints operations in this computation are simple arithmetic or trigonometric operations,
7, the
hat if
Il not :
| the 2.15 Degeneracy and Dexterity
=ssary
tions. 2.15.1 Degeneracy
nl
‘e(()i iZl Degeneracy occurs when the robot loses a degree of freedom, and therefore, cannot
' perform as desired.”! This occurs under two conditions: (1) when the robot’s joints reach
. their physical limits and as a result, cannot move any further; (2) a robot may become
tation pay; Y Y

degenerate in the middle of its workspace if the z-axes of two similar joints become
colinear. This means that, at this instant, whichever joint moves, the same motion will
result, and consequently, the controller does not know which joint to move. Since in
either case the total number of degrees of freedom available is less than six, there is no
solution for the robot. In the case of colinear joints, the determinant of the position
matrix is zero as well. Figure 2.37 shows a simple robot in a vertical configuration, where
Joints 1 and 6 are colinear. As you can see, whether joint 1 or joint 6 rotate, the end
effector will rotate the same amount. In practice, it is important to direct the controller to
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i
| Figure 2.37 An example of a robot in a degenerate position.

take an emergency action; otherwise the robot will stop. Please note that this condition
occurs if the two joints are similar. Otherwise, if one joint is prismatic and one is revolute
(as in joints 3 and 4 of the Stanford arm), although the z-axes are colinear, the robot will
not be in degenerate condition. Paul'! has shown that if sin oy, sin &5 or sin 95 are zero,
the robot will be degenerate (this occurs if joints 4 and 5, or 5 and 6 are parallel, and
therefore, result in similar motions). Obviously, 4 and @5 can be designed to prevent the
degeneracy of the robot. However, anytime 65 approaches zero or 180°, the robot will

become degenerate.

2.15.2 Dexterity
We should be able to position and orientate a 6-DOF robot at any desired location within
its work envelope by specifying the position and the orientation of the hand. However, as
the robot gets increasingly closer to the limits of its workspace, it will get to a point
where, although it is possible to locate it at a desired point, it will be impossible to
orientate it at desired orientations. The volume of points where we can position the robot
as desired but not orientate it is called nondexterous volume.

2.16 The Fundamental Problem with the
Denavit-Hartenberg Representation

Although Denavit-Hartenberg representation has been extensively used in modeling and
analysis of robot motions, and although it has become a standard method for doing so,
there is a fundamental flaw with this technique, which many researchers have tried to
solve by modifying the process.12 The fundamental problem is that since all motions are
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about the x- and z-axes, the method cannot represent any motion about the y-axis.
Therefore, if there is any motion about the y-axis, the method will fail. This occurs in a
number of circumstances. For example, suppose two joint axes that are supposed to be
parallel are assembled with a slight deviation. The small angle between the two axes will
require a motion about the y-axis. Since all real industrial robots have some degree of
inaccuracy in their manufacture, their inaccuracy cannot be modeled with the D-H
representation.

Example 2.26 (Continued)

Reference Frames for the Stanford Arm: Figure 2.38 is the solution for the
Stanford Arm in Example 2.26 (Figure 2.34). It is simplified for improved

visibility. Table 2.6 shows the corresponding parameters.
For the derivation of the inverse kinematic solution of Stanford Arm, refer to
References 5 and 13 at the end of the chapter. The following is a summary of the
inverse kinematic solution for the Stanford Arm:
6; = tan ! <&> — tan™"! % where r = 4 /p + p; (2.80)
lition Px /7 — d;
olute
t will
zZero,
, and 526
1t the
t will
=
vithin
7er, as
point x
Kle to
robot
1g and
ng so,
ied to
s are Figure 2.38 The frames of the Stanford Arm.
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Table 2.6 The Parameters Table for the Stanford Arm.
# 0 d a o
0-1 0 0 0 —90
1-2 0, dy 0 90
2-3 0 ds 0 0
3—4 B4 0 0 —90
4-5 05 0 0 90
5-6 O 0 0 0
| Cip, + Sip,
! 6, = tan~ ! bl (2.81)
1 P

‘ ' dy = S2(Cip, + Sipy) + Cop, (2.82)
" —Syay + Ciay

| 1 .
! . (':Q(CN_\- == S[(I‘_,.) - Sgu’; . ) at 105 (2 83)

1 C4[C2(C1ax + S1a),) - Sgaz] + S4[—S1ax + C1a),] (2 84)
Sz(cldx + S]d),) + Czaz '

O = tan

1 S6
f¢ = tan =2 where
6

Se = —Cs{ Ca[Ca(Crox + S10,) — $20:] + Sa[—S10: + Cro)]} (2.85)
+ 85{S5(Ciox + Stoy) + Coo. } |
C6 == —84[C2(C10x + Slo},) - Szoz] -+ C4[—Slox + C10),]

S

Example 2.29

Application of the Denavit-Hartenberg methodology in the design of a
finger-spelling hand: A finger-spelling hand'" was designed at Cal Poly, San Luis
Obispo, in order to enable ordinary users to communicate with individuals who
are blind and deaf. The hand, with its 17 degrees of freedom, can form all the
finger-spelling letters and numbers (Figure 2.39). Each finger-wrist combination
was assigned a set of frames based on the D-H representation in order to derive the
forward and inverse kinematic equations of the hand. These equations may be used
to drive the fingers to position. This application shows that in addition to modeling
the motions of a robot, the D-H technique may be used to represent transforma-
, tions, rotations, and movements between different kinematic elements, regardless
i of whether or not a robot is involved. You may also find other applications for this

representation.
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Figure 2.39 cal Poly ﬁngeﬁspelling hand. (Supported by the Smith-Ketdewell Eye Research

Institute, San Francisco.)

2.17 Design Projects

Starting with this chapter and continuing with the rest of the book, we will apply the
current information in each chapter to the design of simple robots. This will help you to
apply the current material to the design of a robot of your own. Common 6-DOF robots
are too complicated to be considered simple; therefore, we will use 3-DOF robots. The
Intention is to design a simple robot that can possibly be built by you from readily
available parts from hobby shops, hardware stores, and surplus dealers.

In this section, you may consider the preliminary design of the robot and its con-
figuration, keeping in mind the possible types of actuators you may want to consider
later. Although we will study this subject later, it is a good idea to consider the types of
actuators now. You should also consider the types of links and joints you may want to
use, possible lengths, types of joints, and material (for example, wood dowels, hollow
aluminum or brass tubes available in hardware stores, and so on).

2.17.1 A 3-DOF Robot

For this project, you may want to design your own preferred robot with your own
preferred configuration. Creativity is always encouraged. However, we will discuss a
simple robot as a guideline for you to design and build. After the configuration of the
robot is finalized, you should proceed with the derivation of forward and inverse
kinematic equations. The final result of this part of the design project will be a set of
inverse kinematic equations for the simple 3-DOF robot that can later be used to drive
the robot to desired positions. You must realize that the price we pay for this simplicity is
that we may only specify the position of the robot, but not its orientation.
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Figure 2.40 Two simple designs for a joint.

One of the important considerations in the design of the robot is its joints. Figure 2.40 (a)
shows a simple design that has no joint offset d. This would apparently simplify the
analysis of the robot, since the A matrix related to the joint would be simpler. However,
manufacturing such a joint is not as simple as the design in Figure 2.40(b). The latter
allows a larger range of motion too. On the other hand, although we apparently have to
deal with a joint offset d with the joint design in Figure 2.40(b), you must remember that
in most cases, there will be a second joint with the same joint offset in the opposite
direction, which cancels the former in the robot’s overall equation. As a result, we will
assume that the joints of our robot can be built as in Figure 2.40(b) without having to
worry about joint offset d.

We will discuss actuators in Chapter 7. However, for this design project, you should
probably consider the use of a servomotor or a stepper motor. While you are designing
your robot, consider what type of actuators you will use and how you will connect the
actuators to the links and joints. Remember that at this point, you are only designing the
robot configuration; you can always change your actuators and adapt the new design to
your robot.

When the preliminary sketch of the robot is finished, assign coordinate frames to
each joint, fill out the parameters table for the frames, develop the matrices for each
frame transformation, and calculate the final YTy Then, using the methods learned
in this chapter, develop the inverse kinematic equations of the robot. This means that
using these equations, if you actually build the robot, you will be able to run it and
control its position (since the robot is 3-DOF, you will not be able to control its
orientation).

Figure 2.41 shows a simple design for a 3-DOF robot you may use as a guide for your
design. In one student design, the lengths were 8, 2, 9, 2, and 9 inches respectively. The
links were made of hollow aluminum bars, actuated by three DC gear-motors with
encoder feedback and connected to the joint through worm gears.

Figure 2.41 also shows one possible set of frames assigned to the joints. The end
of the robot has its own frame. Frame 3 is needed in order to transform from frame 2
to the hand frame. To be able to correctly develop forward and inverse kinematic
equations of the robot, it is crucial to define the reset position of the robot, where
all joint angles are zero. In this example, the reset position is defined as the robot
pointing up and xq parallel to xy. At this point, there is a 90° angle between x4 and
x,. Therefore, the actual angle for this joint should be —90 + ;. The same is true
for xy and x;, where a 90° angle exists between the two when 8, is zero; therefore,
the angle between the two is 90 + 6;. Also notice the permanent angles between

other frames.

n
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2.17.2 A 3-DOF Mobile Robot

Another project you may consider is a mobile robot. These robots are very common and
are used in autonomous navigation and developing artificial intelligence for robots. In
general, you may assume the robot is capable of moving in a plane that may be
represented by translations along the x- and y-axes or a translation and rotation in a
polar form (r, ). Additionally, the orientation of the robot may be changed by rotating it
about the z-axis (&). Therefore, the kinematic equations of the motion of the robot can
be developed and used to control its motions. A schematic representation of the robot is
shown in Figure 2.42. (Seec Chapter 7 for a design project involving a single-axis robot
tween that may also be used for this project).

In the next chapters, we will continue with the design of your robots.
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Figure 2.42 Schematic representation of a 3-DOF mobile robot.

ool o

- In this chapter, we discussed methods for representation of points, vectors, frames, and

i transformations by matrices. Using matrices, we discussed forward and inverse kinematic

equations for specific types of robots such as Cartesian, cylindrical, and spherical robots as

well as Euler and RPY orientation angles. However, the main thrust of this chapter was

to learn how to represent the motions of a multi-DOF robot in space and how to derive

the forward and inverse kinematic equations of the robot using the Denavit-Hartenberg |
(D-H) representation technique. This method can be used to represent any type of robot

{ type of joints or joint and link offsets or twists.

configuration, regardless of the number anc
In the next chapter, we will continue with the differential motions of robots, which in

effect is the equivalent of velocity analysis of robots.
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The isometric grid (Figure 2.43) is provided to you for use with the problems in this chapter. It is meant
to be used as a tracing grid for drawing 3-D shapes and objects such as robots, frames, and
transformations. Please make copies of the grid for each problem that requires graphical representation
of the results. The grid is also available commercially.
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Figure 2.43

Isometric grid.
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2.1. Write a unit vector in matrix form that describes the direction of the cross product of p = 5i + 3k and
q=3i+4j+ 5k
2.2. A vector p is 8 units long and is perpendicular to vectors q and r described below. Express the vector

in matrix form.

0.3 Iy
9y 0.5
o= o4 | ™7 |0
0 0

2.3. Will the three vectors p, q, and t in Problem 2.2 form a traditional frame? If not, find the necessary
unit vector s to form a frame between p, q, and s.

2.4. Suppose that instead of a frame, a point P = (3,5,7)T in space was translated a distance of
d=(2,3, 4)T. Find the new location of the point relative to the reference frame.

2.5. The following frame B was moved a distance of 4 = (5,2, 6)T. Find the new location of the frame

relative to the reference frame.

-1
0

o O - O
oS O O -
— N B~

2.6. For frame F, find the values of the missing elements and complete the matrix representation of the

frame.
7 0 -1 5
7 0 0 3
F =
7T -1 0 2
0 0 0 1

2.7. Find the values of the missing elements of frame B and complete the matrix representation of the frame.

0.707 K 0 2

? 0 1 4
B ==

? —-0.707 0 5

0 0 0 1

2.8. Derive the matrix that represents a pure rotation about the y-axis of the reference frame.
2.9. Derive the matrix that represents a pure rotation about the z-axis of the reference frame.

2.10. Verify that the rotation matrices about the reference frame axes follow the required constraint
equations set by orthogonality and length requirements of directional unit vectors.

2.11. Find the coordinates of point P(2,3,4)” relative to the reference frame after a rotation of 45° about

the x-axis.
2.12. Find the coordinates of point P(3, 5, 7)7 relative to the reference frame after a rotation of 30° about

the z-axis.
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2.13.

2.14.

2.15.

2.16.

2.17.

2.18.
2.19.

2.20.

Find the new location of point P(1, 2, 3) T relative to the reference frame after a rotation of 30° about
the z-axis followed by a rotation of 60° about the y-axis.

A point Pin space is defined as P = (5, 3, 4)T relative to frame B which is attached to the origin of
the reference frame A and is parallel to it. Apply the following transformations to frame B and find P,
Using the 3-D grid, plot the transformations and the result and verify it. Also verify graphically that
you would not get the same results if you apply the transformations relative to the current frame:
® Rotate 90° about x-axis; then

® Translate 3 units about y-axis, 6 units about z-axis, and 5 units about x-axis; then,

® Rotate 90° about z-axis.

A point Pin space is defined as 8P = (2, 3, S)T relative to frame B which is attached to the origin of
the reference frame A and is parallel to it. Apply the following transformations to frame B and find “P.
Using the 3-D grid, plot the transformations and the result and verify it:

® Rotate 90° about x-axis, then

® Rotate 90° about local a-axis, then

® Translate 3 units about y-, 6 units about z-, and 5 units about x-axes.

A frame B is rotated 90° about the z-axis, then translated 3 and 5 units relative to the n- and o-axes
respectively, then rotated another 90° about the n-axis, and finally, 90° about the y-axis. Find the new
location and orientation of the frame.

-1
0

S O = O
S O O -
_ s

The frame B of Problem 2.16 is rotated 90° about the g-axis, 90° about the y-axis, then translated 2
and 4 units relative to the x- and y-axes respectively, then rotated another 90° about the n-axis. Find
the new location and orientation of the frame.

-1
0

(= e =)
(=
_ =

Show that rotation matrices about the y- and the z-axes are unitary.

Calculate the inverse of the following transformation matrices:

0.527 —0.574 0.628 2 092 0 039 5
0.369 0.819 0.439 5 0 1 0 6
1 = and T2 =
—0.766 0 0.643 3 =039 0 092 2
0 0 0 1 0 0 0 1

Calculate the inverse of the matrix B of Problem 2.17.




106 Chapter 2. Kinematics of Robots: Position Analysis

2.21. Write the correct sequence of movements that must be made in order to restore the original
orientation of the spherical coordinates and make it parallel to the reference frame. About what axes

are these rotations supposed to be?
A spherical coordinate system is used to position the hand of a robot. In a certain situation, the hand

2.22.
orientation of the frame is later restored in order to be parallel to the reference frame, and the matrix

representing it is described as:

1 0 0 3.1375

0 1 0 219
Tsph =

0 0 1 3214

0 0 0 1

e Find the necessary values of r, B, ¥ to achieve this location.
e Find the components of the original matrix n, o, a vectors for the hand before the orientation was

restored.

2.23. Suppose that a robot is made of a Cartesian and RPY combination of joints. Find the necessary RPY

angles to achieve the following:

0.527 —0.574 0.628 4
0.369 0.819 0.439 o
—0.766 0 0.643 9

0 0 0 1

2.24. Suppose that a robot is made of a Cartesian and Euler combination of joints. Find the necessary Euler

angles to achieve the following:

0.527 —0.574 0.628 4
0.369 0.819 0.439 6
—0.766 0 0.643 9

0 0 0 1

2.25. Assume that the three Euler angles used with a robot are 30°, 40°, 50° respectively. Determine what
angles should be used to achieve the same result if RPY is used instead.

2.26. A frame UB was moved along its own o-axis a distance of 6 units, then rotated about its n-axis an angle
of 60°, then translated about the z-axis for 3 units, followed by a rotation of 60° about the z-axis, and

finally rotated about x-axis for 45°.
® Calculate the total transformation performed.

® What angles and movements would we have to make if we were to create the same location and

orientation using Cartesian and Euler configurations?

2.27. A frame UF was moved along its own n-axis a distance of 5 units, then rotated about its o-axis an angle
of 60°, followed by a rotation of 60° about the z-axis, then translated about its a-axis for 3 units, and

finally rotated 45° about the x-axis.
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® Calculate the total transformation performed.

® What angles and movements would we have to make if we were to create the same location and
orientation using Cartesian and RPY configurations?

2.28. Frames describing the base of a robot and an object are given relative to the Universe frame.

® Find a transformation T}, of the robot configuration if the hand of the robot is to be placed on the
object.

® By inspection, show whether this robot can be a 3-axis spherical robot, and if so, find «, B, r.

® Assuming that the robot is a 6-axis robot with Cartesian and Euler coordinates, find

PPy 02 9,60, 9.
10 0 1 0 -1 0 2
00 —1 4 1 0 -1
UTo': UT —
"o 1 0 1o 10
0 0 1 0 0 1

2.29. A 3-DOF robot arm has been designed for applying paint on flat walls, as shown.

® Assign coordinate frames as necessary based on the D-H representation.
® Fill out the parameters table.

¢ Find the YTy matrix.

Figure P.2.29

2.30. In the 2-DOF robot shown, the transformation matrix ° Ty is given in symbolic form, as well as in
numerical form for a specific location. The length of each link /; and L is 1 ft. Calculate the values of 6
and 6, for the given location.

Cp =S 0 LCp+4LC —0.2924 —0.9563 0 0.6978
op _|S2 Crz 0 bLSpthS 0.9563 —0.2924 0 0.8172
H=0 9 0o 1 0 B 0 0 1 0

0 0 0 1 0 0 0 1
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Figure P.2.30

2.31. For the following SCAR A-type robot:
e Assign the coordinate frames based on the D-H representation.
e Fill out the parameters table.

e Write all the A matrices.

® Write the YTy matrix in terms of the A matrices.

Figure P.2.31

2.32. A special 3-DOF spraying robot has been designed as shown:
e Assign the coordinate frames based on the D-H representation.

e Fill out the parameters table.
e Write all the A matrices.
|

® Write the YTy matrix in terms of the A matrices.
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Yur

Figure P.2.32

2.33. For the Unimation Puma 562, 6-axis robot shown,

WAIST
JOINT 1

@ ? SHOULDER d
+ - +

WRIST FLANGE
JOINT 6

WRIST BEND WRIST ROTATION

JOINT 4

JOINT 5

# 6 d a o
0-1
1-2
2-3
34
45
5-6

Figure P.2.33 Puma 562. (Reprinted with permission from Staubli Robotics.)

® Assign the coordinate frames based on the D-H representation.

® Fill out the parameters table.

® Write all the A matrices.
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® Find the Ty matrix for the following values:

Base height = 27 in.,d> = 61in.,ay = 15in.,a3 = 1in, d4y = 181n.
91 - OO, 92 = 450, 93 == Oo, 94 == 00, 95 - —450, 96 - 00

2.34. For the given 4-DOF robot:

e Assign appropriate frames for the Denavit-Hartenberg representation.

e Fill out the parameters table.
e Write an equation in terms of A matrices that shows how YTy can be calculated.

Figure P.2.34

2.35. For the given 4-DOF robot designed for a specific operation:
® Assign appropriate frames for the Denavit-Hartenberg representation.

e Till out the parameters table.
® Write an equation in terms of A matrices that shows how YTy can be calculated.

n
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Figure P.2.35

2.36. For the given specialty designed 4-DOF robot:

A8

Figure P.2.36

111
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® Assign appropriate frames for the Denavit-Hartenberg representation.

e Fill out the parameters table.
e Write an equation in terms of A matrices that shows how YTy can be calculated.

2.37. For the given 3-DOF robot:

® Assign appropriate frames for the Denavit-Hartenberg representation.

|' .
o Fill out the parameters table.
® Write an equation in terms of A4 matrices that shows how YTy can be calculated.
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2.38. For the given 4-DOF robot:

® Assign appropriate frames for the Denavit-Hartenberg representation.
® Fill out the parameters table.

® Write an equation in terms of A matrices that shows how YTy can be calculated.

Z

Figure P.2.38

2.39. Derive the inverse kinematic equations for the robot of Problem 2.36.

2.40. Derive the inverse kinematic equations for the robot of Problem 2.37.




