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Abstract—This paper addresses real-time implementation of the
simultaneous localization and map-building (SLAM) algorithm. It
presents optimal algorithms that consider the special form of the
matrices and a new compressed filter that can significantly reduce
the computation requirements when working in local areas or with
high frequency external sensors. It is shown that by extending the
standard Kalman filter models the information gained in a local
area can be maintained with a cost ( 2), where is the
number of landmarks in the local area, and then transferred to the
overall map in only one iteration at full SLAM computational cost.
Additional simplifications are also presented that are very close to
optimal when an appropriate map representation is used. Finally
the algorithms are validated with experimental results obtained
with a standard vehicle running in a completely unstructured out-
door environment.

Index Terms—Autonomous vehicles, Kalman filter, map
building, navigation.

I. INTRODUCTION

RELIABLE localization is an essential component of any
autonomous vehicle system. The basic navigation loop is

based on dead reckoning sensors that predict high-frequency
vehicle manoeuvres and low-frequency absolute sensors that
bound positioning errors [1]. The problem of localization given
a map of the environment or estimating the map knowing the
vehicle position has been addressed and solved using a number
of different approaches [2]–[5]. A related problem is when both
the map and the vehicle position are not known. In this case, ve-
hicle and map estimates are highly correlated and cannot be ob-
tained independently of one another [6]. This problem is usually
known as simultaneous localization and map building (SLAM)
and was originally introduced in [7], [8]. During the past three
years, significant progress has been made toward the solution
of the SLAM problem. A number of different approaches have
been presented to address this problem. In [9] and [10] a proba-
bilistic approach is presented to solve the localization problem
or the map-building problem when the map or position of the ve-
hicle, respectively, is known. This approach is based on the ap-
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proximation of the probability density functions with samples,
also called particles. This idea was originally introduced in [11]
as a bootstrap filter but has been more commonly known as the
particle filter. In this case, no assumption needs to be made on
the particular model and sensor distributions. The algorithm is
suitable for handling multimodal distribution. This makes pos-
sible to start the robot in a completely unknown position. At the
same time it allows for the solution of the “kidnapped robot”
problem, a robot that has been suddenly moved to another po-
sition without being told. This approach has been applied very
successfully to a number of indoor navigation applications, in
particular in [12]. Due to the high computation requirements
this method has not been used for real-time SLAM at present,
although work is in progress to overcome this limitation.

One of the most appealing approaches to solving the real-time
localization problem is by modeling the environment and sen-
sors and assuming that errors have a Gaussian distribution. Then
very efficient algorithms, such as Kalman filters, can be used
to solve this problem in a compact and elegant manner [13].
These algorithms require the mobile robot to always be localized
within certain bounds, meaning that it is not possible to address
the initialization or the “kidnapped robot” problem. This is not
an issue for many industrial applications, [14]–[16], where large
machines weighing many tonnes operate autonomously. In fact,
in these applications the navigation system has to be designed
with enough integrity in order to avoid, or at least recognize
such faults and provide for appropriate safety procedures, [1].
For these applications the Kalman filter with Gaussian assump-
tions is the preferred approach to achieve the degree of integrity
required in such environments.

Kalman filter methods can also be extended to perform
SLAM. There have been several applications of this technology
in a number of different environments, such as indoors [17],
[18], underwater [19], [20], and outdoors [21], [22]. One of
the main problems with the SLAM algorithm has been the
computational requirements. It is well known that the com-
plexity of the SLAM algorithm can be reduced to
[8], being the number of landmarks in the map. For long
duration missions, the number of landmarks will increase and,
eventually, computer resources will not be sufficient to update
the map in real-time. This scaling problem arises because each
landmark is correlated to all other landmarks. The correlation
appears since the observation of a new landmark is obtained
with a sensor mounted on the mobile robot and thus the
landmark location error will be correlated with the error in
the vehicle location and the errors in other landmarks of the
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map. This correlation is of fundamental importance for the
long-term convergence of the algorithm [6], and needs to be
maintained for the full duration of the mission. Leonardet al.
[19], addressed the computational issues by splitting the global
map into a number of submaps, each with their own vehicle
track. They present an approximation technique to address
the update of the covariance in the transition between maps.
Although they present impressive experimental results there is
no proof of the consistency of the approach or estimation of the
conservatism of the covariance over-bounding strategy.

This paper addresses real-time implementation of SLAM
with a set of optimal algorithms that significantly reduce the
computational requirement without introducing any penalties
in the accuracy of the results. A compressed algorithm is
presented to store and maintain all the information gathered
in a local area with a cost proportional to the square of the
number of landmarks in the area. This information can then
be transferred to the rest of the global map with a cost that is
similar to full SLAM but in only one iteration. These results
are demonstrated theoretically and with experimental results.
Finally, suboptimal simplifications are presented to update the
covariance matrix of the states. With this approach the total
computational cost of the algorithm can be made proportional
to . It is also shown that by using a relative map representation
the algorithm become very close to optimal. The convergence
and accuracy of the algorithms are tested in large outdoor
environments with more than 500 states.

The paper is organized as follows. Section II presents the
basic modeling background required to introduce the algo-
rithms. Section III presents the optimization of SLAM in the
prediction and update stages. In particular the compression al-
gorithm is presented with further details given in the Appendix.
Section IV introduces the SLAM simplification and proofs of
the consistency of the algorithm. It also presents the relative
map representation used to make the algorithm proposed very
close to optimal. Experimental results in unstructured outdoor
environments are presented in Section V. Finally Section VI
presents the conclusions with proposed future research areas.

II. SLAM

When absolute position information is not available it is still
possible to navigate with small errors for long periods of time.
The SLAM algorithm use dead reckoning and relative obser-
vation to estimate the position of the vehicle and to build and
maintain a navigation map. The mobile robot is equipped with
dead reckoning capabilities and an external sensor capable of
measuring relative distance of the vehicle to the environment
as shown in Fig. 1. The steering control, and the speed
are used with the kinematic model to predict the position of the
vehicle. In this case, the external sensor returns the range and
bearing information to the different features . This
information is obtained with respect to the vehicle coordinates

, that is , where is the distance from the
beacon to the range sensor andis the sensor bearing measured
with respect to the vehicle coordinate frame.

Fig. 1. Vehicle coordinate system.

Considering that the vehicle is controlled through a de-
manded velocity and steering angle the process model that
predicts the trajectory of the center of the back axle is given by

(1)

where is the distance between wheel axles andis noise as
defined in (53). The observation equation relating the vehicle
states to the observations is

atan
(2)

where
observation vector;
coordinates of the landmarks;

, and vehicle states defined at the external sensor
location; and
noise as defined in (53).

In the case where multiple observation are obtained the ob-
servation vector will have the form

... (3)

The extended Kalman filter (EKF) equations to solve this es-
timation problem are presented in Appendix A. In this section,
we present the extension of the models to address the SLAM
problem.

Under this framework the vehicle starts at an unknown po-
sition with given uncertainty and obtains measurements of the
environment relative to its location. This information is used to
incrementally build and maintain a navigation map and to lo-
calize the vehicle with respect to this map. The system will de-
tect new features at the beginning of the mission and when the
vehicle explores new areas. Once these features become reliable
and stable they are incorporated into the map becoming part of
the state vector.
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The state vector is now given by

(4)

where and are the states of the vehicle and fea-
tures incorporated into the map, respectively. Since this environ-
ment is considered to be static, the dynamic model that includes
the new states becomes

(5)

It is important to remark that the landmarks are assumed to
be static. If this is so, then the Jacobian matrix for the extended
system is

(6)

The observations and are obtained from a range and
bearing sensor relative to the vehicle position and orientation.
The observation equation given in (2) is a function of the states
of the vehicle and the states representing the position of the land-
mark. The Jacobian matrix of the vectorwith respect to the
variables , , , , can be evaluated using:

(7)

This Jacobian will always have a large number of null ele-
ments since only a few landmarks will be observed and validated
at a given time. For example, when only one feature is observed
the Jacobian has the following form:

(8)

where

These models can then be used with a standard EKF algo-
rithm to build and maintain a navigation map of the environment
and to track the position of the vehicle.

III. OPTIMIZATION OF SLAM

Under the SLAM framework the size of the state vector is
equal to the number of vehicle states plus twice the number of

landmarks, that is . This is valid when working
with point landmarks in 2-D environments. In most SLAM ap-
plications the number of vehicle states will be insignificant with
respect to the number of landmarks. The number of landmarks
will grow with the area of operation making the standard filter
computation impracticable for on-line applications.

In this paper, we present a series of optimizations in the
prediction and update stages that reduce the complexity of
the SLAM algorithm from to . Then a
compressed filter is presented to reduce the real-time computa-
tion requirement to , with being the number of
landmarks detected in the local area. This will also make the
SLAM algorithm extremely efficient while the vehicle remains
navigating in this area since the computation complexity
becomes independent of the size of the global map. These
algorithms do not make any approximations and the results are
identical to a full SLAM implementation.

A. Standard Algorithm Optimization

1) Prediction Stage:Considering the zeros in the Jacobian
matrix of (6) the prediction (55) can be written

(9)

Performing the matrix operations explicitly the following re-
sult is obtained:

(10)

It can be proved that the evaluation of this matrix requires
approximately only 9 M multiplications. In general, more than
one prediction step is executed between two update steps. This
is due to the fact that the prediction stage is usually driven by
high frequency sensor information that acts as input to the dy-
namic model of the vehicle which needs to be evaluated in order
to control the vehicle. The low frequency external sensors report
the observation used in the estimation stage of the EKF. This in-
formation is processed at a much lower frequency. For example,
the steering angle and wheel speed can be sampled every 20 ms,
but the laser frames can be obtained with a sample time of 200
ms. In this case we have a ratio of approximately 10 prediction
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steps to one update step. The compact form for two prediction
steps can be obtained using the results given in (10):

(11)

By considering the special form of the matrix involved in
SLAM the prediction equation can be rewritten

(12)

Finally, the prediction equation for two steps becomes

(13)

where

(14)

From the previous considerations, in the case ofprediction
steps without an update, the modified covariance matrix is

(15)

where

(16)
For this vehicle model, the evaluation of requires prod-

ucts of matrices of dimension . Considering that the major
computational cost of the evaluation of this matrix is the calcula-
tion of (or ), this simplification can substantially reduce
the computation requirement in the prediction stage. Forpre-
diction steps the complexity will be approximately ,
that is smaller than the direct calculation. In this caseis the
number of landmarks plus the number of vehicle states.

(17)

Fig. 2. Local and global areas.

In (15) needs to be evaluated for every prediction step
since the quality of the estimated position is required all the
time. remains constant between updates. The calculation of

(or ) is evaluated only before the estimation procedure
using (15).

2) Update Stage:Since only a few features associated with
the state vector are observed at a given time, the matrixwill
have a large number of zeros. When only one feature is incor-
porated into the observation vector we have

null matrices (18)

At a give time the Kalman gain matrix requires the eval-
uation of

(19)
It can be proved that the evaluation will require 10 M multi-

plications. Using the previous result, the matrixand can
be evaluated with a cost of approximately 20 M

(20)

The cost of the state update operation is proportional to.
The main computational requirement is in the evaluation of the
covariance update where complexity is .

B. Compressed Filter

In this section we demonstrate that it is not necessary to per-
form a full SLAM update when working in a local area. This is a
fundamental contribution because it reduces the computational
requirement of the SLAM algorithm to the order of the number
of features in the vicinity of the vehicle; independent of the size
of the global map. A common scenario is to have a mobile robot
moving in an area and observing features within this area. This
situation is shown in Fig. 2 where the vehicle is operating in a
local area A. The rest of the map is part of the global area B.

This approach will present significant advantages when the
vehicle navigates for long periods of time in a local area or
when the external information is available at high rate. Although
high frequency external sensors are desirable to reduce position
error growth, they also introduce a high computational cost in
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the SLAM algorithm. For example a laser sensor can return 2-D
information at frequencies of 4–30 Hz. To incorporate this in-
formation the full SLAM algorithm will require to update
states at 30 Hz. In this work we show that, while working in a
local area and observing local landmarks, we can preserve all
the information processing a SLAM algorithm of the order of
the number of landmarks in the local area. When the vehicle
departs from this area, the information acquired can be propa-
gated to the global landmarks without loss of information. This
will also allow incorporating high frequency external informa-
tion with very low computational costs. Another important im-
plication is that the global map will not be required to update
sequentially at the same rate as the local map.

1) Update Step:Consider the states divided in two groups.

The states can be initially selected as all the states repre-
senting landmarks in an area of a certain size surrounding the ve-
hicle. The states representing the vehicle pose are also included
in . Assume that for a period of time the observations ob-
tained are only related to the states and do not involve states
of , that is

(21)

Then at a given time

(22)

Considering the zeros of the matrixthe Kalman gain matrix
is evaluated as follows:

(23)

From these equations, the following is possible.

• The Jacobian matrix has no dependence on the states
.

• The innovation covariance matrixand Kalman gain
are functions of and . They do not have any depen-
dencies on , , and .

The update term of the covariance matrix can then be
evaluated

with

and (24)

In the previous demonstration the time subindexes were ne-
glected for clarity of the presentation. These indexes are now
incorporated to present the recursive update equations. The co-
variance matrix after one update is

(25)

And the covariance variation afterconsecutive updates

(26)

with

(27)

The evaluation of the matrices , can be done recur-
sively according to

with (28)

During long-term navigation missions, the number of states
in will be, in general much smaller than the total number of
states in the global map, that is . The matrices

and are sparse and the calculation of and has
complexity .

It is noteworthy that , , and are not needed
when the vehicle is navigating in a local region “looking” only
at the state . It is only required when the vehicle enters a
new region. The evaluation of , , and can then be
done in one iteration with full SLAM computational cost using
the compressed expressions.

The estimates can be updated afterupdate steps using

with

(29)

the number of observations, in this case range and bearing,

and
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Similarly, since is a sparse matrix, the evaluation cost
of the matrix is proportional to . The derivation of these
equations is presented in Appendix B.

2) Mixed Update and Prediction Steps Sequences:Similar
results are obtained for sequences of interlaced prediction and
update steps:

(30)

3) Extended Kalman Filter Formulation for the Compressed
Filter: In order to maintain the information gathered in a local
area it is necessary to extend the EKF formulation presented in
(55)–(56). The following equations must be added in the pre-
diction and update stage of the filter to be able to propagate the
information to the global map once a full update is required:

Prediction step

Update step

(31)

When a full update is required the global covariance matrix
and state is updated with (26) and (29), respectively.
4) Computational Cost:The computational cost for each

“compressed” update is evaluated for the case where three
states are used to represent the pose of the vehicle and one
landmark is observed.

cost

cost

cost

cost

Further details for more efficient implementation of this ap-
proach are given in Appendix C.

Fig. 3. Map Administration for the compressed algorithm.

The cost of the complete covariance error matrix evaluation
(26) is approximately according to

(32)

Provided that the vehicle remains for a period of time in a
given area, the computational saving will be considerable. This
has important implications since in many applications it will
allow the exact implementation of SLAM in very large areas.
This will be possible with the appropriate selection of local
areas. The system evaluates the location of the vehicle and the
landmark of the local map continuously at the cost of a local
SLAM. Although a full update is required when the vehicle
leaves the region, this update can be implemented as a parallel
task. The only states that need to be fully updated are the new
states in the new local area. A selective update can then be done
only to those states while the full update for the rest of the map
runs as a background task with lower priority. These results are
important since it demonstrates that even in very large areas the
computational limitation of SLAM can be overcame with the
compression algorithm and appropriate selection of local areas.

C. Map Management

It has been demonstrated that while the vehicle operates in a
local area all the information gathered can be maintained with
a cost complexity proportional to the number of landmarks in
this area. The next problem to address is the selection of local
areas. One convenient approach consists of dividing the global
map into rectangular regions with size at least equal to the range
of the external sensor.

The proposed method is presented in Fig. 3. When the ve-
hicle navigates in the regionthe compressed filter includes in
the group the vehicle states and all the states related to land-
marks that belong to regionand its eight neighboring regions.
This implies that the local states belong to nine regions, each of
size of the range of the external sensor. The vehicle will be able
to navigate inside this region using the compressed filter. A full
update will only be required when the vehicle leaves the central
region .
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Every time the vehicle moves to a new region, the active state
group changes to those states that belong to the new region

and its adjacent regions. The active group always includes the
vehicle states. In addition to the swapping of the states, a
global update is also required at full SLAM algorithm cost.

Each region has a list of landmarks that are known to be
within its boundaries. Each time a new landmark is detected the
region that owns it appends an index of the landmark definition
to the list of owned landmarks. It is not critical if the landmark
belongs to this region or a closely adjacent region. In case of
strong updates, where the estimated position of the landmarks
changes significantly, the owners of those landmarks can also
be changed.

Hysteresis region is included bounding the local areato
avoid multiple map switching when the vehicle navigates in
areas close to the boundaries between the regionand sur-
rounding areas.

If the side lengths of the regions are smaller than the range
of the external sensor, or if the hysteresis region is made too
large, there is a chance of observing landmarks outside the de-
fined local area. This observation will be discarded since they
cannot be associated with any local landmarks. In such case the
resulting filter will not be optimal since this information is not
incorporated into the estimates. Although these marginal land-
marks will not incorporate significant information since they are
far from the vehicle, this situation can be easily avoided with ap-
propriate selection of the size of the regions and hysteresis band.

Fig. 3 presents an example of the application of this approach.
The vehicle is navigating in the central regionand if it never
leaves this region the filter will maintain its position and the
local map with a cost of a SLAM of the number of features in
the local area formed by the nine neighboring regions.

IV. SUBOPTIMAL SLAM

A. Algorithm Description

In this section we present a series of simplifications that can
further reduce the computationally complexity of SLAM. This
suboptimal approach reduces the computational requirements
by considering a subset of navigation landmarks present in the
global map. It is demonstrated that this approach is conservative
and consistent, and can generate close to optimal results when
combined with the appropriate relative map representation.

Most of the computational requirements of the EKF are
needed during the update process of the error covariance
matrix. Once an observation is being validated and associated
to a given landmark, the covariance error matrix of the states is
updated according to

(33)

The time subindexes are neglected when possible to simplify
the equations. The state vector can be divided in two groups, the
Preserved “ ” and the Discarded “ ” states

(34)

With this partition it is possible to generate conservative esti-
mates by updating the states but not updating the covariance
and cross-covariance matrices corresponding to this subvector.
The covariance matrix can then be written in the following form:

(35)

Conservative updates are obtained if the nominal update ma-
trix is replaced by the suboptimal

(36)

It can be shown that the simplification proposed generates
consistent error covariance estimates.

Demonstration: The covariance error matrix can
be rewritten as follows:

(37)

where

(38)

The matrices and are positive semidefinite since

and

(39)

As given in (37), the total update is formed by the optimal
update plus an additional positive semidefinite noise matrix.
the matrix will increase the covariance uncertainty

(40)

then the suboptimal update of becomes more conservative
than the full update

(41)

Finally, the submatrices that need to be evaluated are,
, and . The significance of this result is that is

not evaluated. In general, this matrix will be of high order since
it includes most of the landmarks.

The fundamental problem becomes the selection of the parti-
tion and of the state vector. The diagonal of matrix can
be evaluated on-line with low computational cost. By inspecting
the diagonal elements of we can see that many terms are
very small compared to the corresponding previous covariance
value in the matrix . This indicates that the new observation
does not provide a significant information contribution to this



GUIVANT AND NEBOT: OPTIMIZATION OF THE SLAM ALGORITHM 249

Fig. 4. Full covariance matrix divided into the covariance blocks
corresponding to the Vehicle and Preserved landmarks states(X ) and
Discarded landmarks states(X ). The cross-correlation covariance between
the Preserved and Discarded states are fully updated as shown in grey. Finally,
the cross correlation between the elements of the states corresponding to the
“Discarded landmarks” are not updated as shown in white.

particular state. This is an indication to select a particular state
as belonging to the subset.

The other criterion used is based on the value of the actual
covariance of the state. If it is below a given threshold, it can be
a candidate for the subvector.

In many practical situations a large number of landmarks can
usually be associated to the subvector. This will introduce
significant computational savings since can potentially be-
come larger than . The cross correlation and are
still maintained but are in general of lower order as can be ap-
preciated in Fig. 4.

Finally, the selection criteria to obtain the partition of the state
vector can be given with the union of the followingsets:

(42)

Then is evaluated as follows:

and

or (43)

The error covariance matrix is updated with the simplified
matrix

(44)

The practical meaning of the set, is that with the appro-
priate selection of negligible small updates of covariances can
be ignored. As mentioned before, the selection ofrequires the
evaluation of the diagonal elements of the matrix . The eval-
uation of the elements requires a number of operations
proportional to the number of states instead of the quadratic re-
lation required for the evaluation of the complete matrix .

The second subset defined byis related to the states whose
covariances are small enough to be considered practically zero.
In the case of natural landmarks they become almost equivalent
to beacons at known positions. The number of elements in the
set will increase with time and can eventually make the com-
putational requirements of SLAM algorithms comparable to the
standard beacon localization algorithms.

Finally, the magnitude of the computation saving factor de-
pends on the size of the set. With appropriate exploration po-

Fig. 5. Local reference frame. The reference frame is formed with two
landmarks. The observations are then obtained relative to this frame.

lices and real-time mission planning, the computation require-
ments can be maintained within the bounds of the on-board re-
sources.

B. Relative Map Representation

The suboptimal approach presented becomes less conserva-
tive when the cross correlation between the non relevant land-
marks becomes small. This is very unlikely if an absolute ref-
erence frame is used, that is when the vehicle, landmarks and
observation are represented with respect to a single reference
frame. The cross correlations between landmarks of different
regions can be substantially reduced by using a number of dif-
ferent bases and making the observation relative to those bases.
With this representation, the map becomes grouped into five
constellations. Each constellation has an associated frame based
on two landmarks that belong to this constellation. The land-
marks forming the bases are selected as a function of the range
of the external sensor. The objective of the base manager is to
create a new base when the old base is no longer within range
of the sensor. The ’base’ landmarks that define the associated
frame are represented in a global frame. All the other landmarks
that belong to this constellation are defined in the local frame.
For a particular constellation, the local frame is based on two
base landmarks:

(45)

As shown in Fig. 5, it is possible to define two unitary vectors
that describe the orientation of the base frame:

(46)
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The rest of the landmarks in this particular constellation are
represented using a local frame with origin atand axes par-
allel to the vectors and

(47)

with

(48)

The following expression can be used to obtain the absolute
coordinates from the relative coordinate representation

(49)

Assuming that the external sensor returns range and bearing,
the observation functions are

object angle w.r.t. laser frame

object range w.r.t. laser

vehicle states. (50)

Finally

(51)

With this representation the landmark defining the bases
will become the natural “Preserved” landmarks. Provided
that the landmarks representing the basis are visible in a
sufficient number of observations, the entire observation set
may be regarded as being contaminated by white noise. The
Gaussian characteristics of the observations cause the relative
elements of the constellation to be uncorrelated with the other
constellation relative elements. The only landmarks that will
maintain strong correlation will be the ones defining the bases
that are represented in absolute form.

V. EXPERIMENTAL RESULTS

The navigation algorithms presented were tested in the out-
door environment shown in Fig. 6. A standard utility vehicle
was fitted with dead reckoning sensors and a laser range sensor
as shown in Fig. 7.

The landmarks detection and extraction process is essential
for SLAM. In this particular application, the most common rel-
evant feature in the environment were trees. The profiles of trees
were extracted from the laser, as shown in Fig. 8, and the most
likely center of the trunk was estimated. A Kalman filter was
implemented to reduce the errors due to the different profiles
obtained when observing the trunk of the trees from different
locations.

The vehicle was started at a location with known uncertainty
and driven in this area for approximately 20 min. Fig. 9 presents
the vehicle trajectory and navigation landmarks incorporated
into the relative map. This run includes all the features in the
environment and the optimization presented in Section III. The
system built a navigation map of the environment and localized

Fig. 6. Outdoor environment used for this experiment. This is a large area with
different type of surfaces and different levels.

Fig. 7. The utility car used for the experiments is equipped with a Sick laser
range and bearing sensor, linear variable differential transformer sensor for the
steering and back wheel velocity encoders.

Fig. 8. Tree profile and trunk approximation. The dots indicate the laser range
and bearing returns. The filter estimates the radius of the circumference that
approximates the trunk of the tree and center position.

itself. The accuracy of this map is determined by the initial ve-
hicle position uncertainty and the quality of the combination of
dead reckoning and external sensors. In this experimental run an
initial uncertainty in coordinates x and y was assumed. Fig. 10
presents the estimated error of the vehicle position and selected
landmarks. Although the vehicle was equipped with a kinematic
GPS to evaluate the ground truth it was not accurate enough
due to poor satellite availability. This is a common problem in
this type of environment. Nevertheless the information gathered
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Fig. 9. Vehicle trajectory and landmarks. The ‘o’, “ �,” and “+” show the
estimated position of objects that qualified as landmarks for the navigation
system. The “o” are the landmarks more frequently detected. The dots are laser
returns that are not stable enough to qualify as landmarks. The solid line shows
the 20–min vehicle trajectory estimation using full SLAM.

Fig. 10. History of selected state’s estimated errors. The vehicle states show
oscillatory behavior with error magnitude that is decreasing with time due to
the learning of the environment. The landmarks always present an exponential
decreasing estimated error with a lower limit bounded by the initial uncertainty
of the vehicle position.

was used to verify that actual errors were consistent with the
filter-estimated errors. The states corresponding to the vehicle
present oscillatory behavior displaying the maximum deviation
farther from the initial position. This result is expected since
there is no absolute information incorporated into the process.
The only way this uncertainty can be reduced is by incorpo-
rating additional information not correlated to the vehicle posi-
tion, such as GPS position information or recognizing a beacon
located at a known position. It is also appreciated that the co-
variances of all the landmarks are decreasing with time. This
means that the map is learned with more accuracy while the ve-
hicle navigates. The theoretical limit uncertainty in the case of
no additional absolute information will be the original uncer-
tainty vehicle location. Fig. 11 presents the final estimation of
the landmarks in the map. It can be seen that after 20 min the
estimated error of all the landmarks are below 60 cm.

Fig. 11. Final estimated error of all states. The maximum error is
approximately 60 cm.

Fig. 12. Vehicle and local areas. This plot presents the estimated trajectory and
navigation landmark estimated position. It also shows the local region “r” with
its surrounding regions. The local statesX are the ones included in the nine
regions shown enclosed by a rectangle in the left side of the plot.

The compressed algorithm was implemented using local re-
gions of meters square. These regions are appropriate
for the laser range sensor used in this experiment. Fig. 12 shows
part of the trajectory of the vehicle with the local area composed
of 9 squares surrounding the vehicle. To verify the fact that the
algorithm proposed maintains and propagates all the informa-
tion obtained, the history of the covariances of the landmarks
were compared with the ones obtained with the full SLAM al-
gorithm. Fig. 13 shows a time evolution of standard deviation of
few landmarks. The dotted line corresponds to the compressed
filter and the solid line to the full SLAM. It can be seen that the
estimated error of some landmarks are not continuously updated
with the compressed filter. These landmarks are not in the local
area. Once the vehicle makes a transition, the system updates all
the landmarks performing a full SLAM update. At this time, the
landmarks outside the local area are updated in one iteration and
its estimated error become exactly equal to the full SLAM. This
is clearly shown in Fig. 14 where at the full update time stamps
both estimated covariances become identical. Fig. 15 shows the
difference between full SLAM and compressed filter estimated
landmarks covariance. It can be seen that at the full update time
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Fig. 13. Landmark estimated position error for full SLAM and compressed
filter. The solid line shows the estimated error evaluated with the full SLAM
algorithm. This algorithm updates all the landmarks with each observation. The
dotted line shows the estimated error evaluated with the compressed filter. The
landmark that are not in the local area are only updated when the vehicle leaves
the local area. At this time a full update is performed and the estimated error
becomes exactly equal to full SLAM.

Fig. 14. Landmark estimated position error for full SLAM and compressed
filter (enhanced). This plot presents a clear view the instant when the
compressed algorithm performed a full update. At this time (165) the full SLA
M (solid line) and the compressed algorithm (solid lines with dotes) report
same estimated error as predicted.

stamps the difference between the estimation using both algo-
rithms becomes zero as demonstrated in this paper. This demon-
strates that while working in a local area it is possible to main-
tain all the information gathered with a computational cost pro-
portional to the number of landmarks in the local area. This in-
formation can then be propagated to the rest of the landmarks in
the map without any loss of information.

The next set of plots present a comparison of the performance
of the suboptimal algorithm proposed in Section IV using the
relative map representation with full SLAM. Figs. 16 and 17
present two runs, one using most of the states and the other with
only 100 states. The plots show that the total number of states
used by the system grows with time as the vehicle explores new
areas. It is also shown the number of states used by the system
in grey and the number of states not updated with stars “.” In
the first run, very conservative values for the constantand

were selected so most of the states were updated with each
observation. The second run corresponds to a less conservative
selection plus a limitation in the maximum number of states.

Fig. 15. Estimated error differences between full SLAM and compressed filter.
The estimated error difference between both algorithms becomes identically
zero when the full update is performed by the compressed algorithm.

Fig. 16. Total number of states and states used and not updated. The figure
presents the total number of states with a solid black line. This number is
increasing because the vehicle is exploring new areas and incorporating new
landmarks. The states used by the system are represented in grey. The number
of states not used is represented with “�.” In this run, the system used most of
the states available.

Fig. 17. Total number of states and states used and not updated. In this run a
maximum number of states was fixed as constraint for the suboptimal SLAM
algorithm. This is appreciated in the gray plot where the maximum number
of states remains below a given threshold. The number of states not updated
increases with time.
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Fig. 18. Final estimation errors of relative and absolute states using most of
the states.

Fig. 19. Final estimated error of relative and absolute states using a reduced
number of states. These results are similar to the ones using most of the states.
This result shows that the proposed algorithm is not only consistent but close to
optimal when used with the appropriate map representation.

Fig. 17 shows that a large number of states were not updated at
every time step resulting in a significant reduction in the com-
putational cost of the algorithm. From Figs. 18 and 19 it can
be seen that the accuracy of the SLAM algorithm has not been
degraded by this simplification. These figures present the final
estimated error of all the states for both runs. It is noteworthy
that only the bases are represented in absolute form. The other
states are represented in relative form and its standard deviation
becomes much smaller. This can also be appreciated in Figs. 20
and 21 that present the estimated error history of the states se-
lected as bases. The constellation map and vehicle trajectory of
part of the run are shown in Fig. 22. The systems build five con-
stellations in this area. The intersection of each group of bases
is represented with a “” and the landmark used as bases with a
“ .” All the other relative landmarks are represented with “.”

There is one important remark regarding the advantage of
the relative representation with respect to the simplification pro-
posed: Since the bases are in absolute form they will maintain
a strong correlation with the other bases and the vehicle states.
They will be more likely to be chosen as “preserved” landmarks
since the observations will have more contribution to them than
the relative states belonging to distant bases. In fact the states
that will be chosen will most likely be the bases and the states
associated with the landmarks in the local constellation.

Fig. 20. Estimated error history of the bases using most of the states.

Fig. 21. Estimated error history of the bases with reduced number of states.

Fig. 22. Constellation map and vehicle trajectory. Five constellations were
created by the algorithm. The intersection of the bases are presented with a
“+,” and the other side of the segment with a “o.” The relative landmarks are
represented with “�” and its association with a base is represented with a line
joining the landmark with the origin of the relative coordinate system.

It is also important to remark that with this representation the
simplification becomes less conservative than when using the
absolute representation. This can clearly be seen by looking at
the correlation coefficients for all the states in each case. This
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Fig. 23. Correlation coefficients for the relative representation. Each block
represents the cross-correlation coefficient of the elements of the different
constellations. The block in the right corner contains the states corresponding
to the vehicle and the bases. It can be seen that the cross correlation
between different constellations is very small. It is also clear the nonzero
cross correlation between the bases and the different constellations. These
correlations are updated by the suboptimal filter.

Fig. 24. Correlation coefficients for the absolute representation. In this case
the map appears completely correlated and the suboptimal algorithm will
generate consistent but more conservative results.

is shown in Figs. 23 and 24 where the correlation of the rela-
tive and absolute map, respectively, is presented. In Fig. 23 each
block of the diagonal corresponds to a particular constellation
and the last block has the vehicle states and the bases. The dif-
ferent constellations becomes decorrelated from each other and
only correlated to the first block whose cross correlation are
updated by the suboptimal algorithm presented. These results
imply that with the relative representation the cross correlation
between constellations becomes zero and the suboptimal algo-
rithm presented becomes close to optimal. This is not the case
for the absolute representation as shown in Fig. 24 where all the
states maintained strong cross correlations.

Finally, Fig. 25 presents the results of a 4–km trajectory using
the compressed algorithm in a large area. In this case there are
approximately 500 states in the global map and their final esti-
mated errors are shown in Fig. 27. The system creates 18 dif-
ferent constellations to implement the relative map. The cross-
correlation coefficients between the different constellations be-
come very small as shown in Fig. 26. This run is useful to
demonstrate the advantages of the compressed algorithm since

Fig. 25. Long trajectory using the Compressed SLAM algorithm. This plot
presents a run in a very large area where 18 constellations were created.

Fig. 26. Cross correlation coefficients. The plot shows 18 constellation and a
block in the right hand corner containing the correlation coefficient for the bases
and the vehicle states. It can be appreciated that the cross correlation between
the relative states of the different bases is very small.

Fig. 27. Final estimated error of the 500 states. It can be seen that the
maximum estimated error is smaller than 0.7 m.

the local areas are significantly smaller than the global map.
When compared with the full SLAM implementation the algo-
rithm generated identical results (states and covariance) with the
advantage of having very low computational requirements. For



GUIVANT AND NEBOT: OPTIMIZATION OF THE SLAM ALGORITHM 255

larger areas the algorithm becomes more efficient since the cost
is basically function of the number of local landmarks. These re-
sults are important since it demonstrates even in very large areas
( landmarks) the computational limitation of SLAM
can be overcome with the compressed algorithm and appropriate
selection of local areas.

VI. CONCLUSION

The paper presented efficient algorithms for real-time imple-
mentation of SLAM. In particular a compressed algorithm was
introduced that is very attractive in applications where high fre-
quency external sensor information is available or when the ve-
hicle navigates for long periods of time in a local area. It is
shown that the information gathered in a local area can be in-
corporated into the vehicle states and the local map with a com-
putational cost similar to a standard local SLAM algorithm and
can then be transferred to an arbitrarily large global map with
the implementation of full SLAM algorithm in only one itera-
tion without loss of information.

A simplification to the SLAM algorithm has also been pro-
posed with theoretical proofs of the consistency of the approach.
Furthermore, it has also been shown with experimental results
that, by using a relative map representation, the algorithm be-
comes very close to optimal. With this approach the user can al-
locate a maximum number of landmarks, according to the com-
putational resources available, and the system will optimally se-
lect the ones that provide the maximum information.

Future work will address the extension of the compression
filter results in decentralized SLAM where different platforms
can update their own map with a particular sensor and then
transfer all the information gained to the rest of the system.

The incorporation of high frequency information increases
the exploration range of the SLAM algorithm. This is also an-
other important area of research. If no absolute position data is
made available, the system will not be able to navigate for ex-
tended periods of time in new areas without returning to known
areas. Although standard sensors allow SLAM to perform in sig-
nificantly large areas, in order to extend this range there are two
important problem to be solved: The reregistration (association)
of a known revisited area and the back-propagation of the cor-
rections once a large loop is traversed. The first problem looks
solvable working with the geometry of the environment [25], or
using more complex data association methods [23]. The other
problem is not solved yet and subject of current research.

APPENDIX A

A. Modeling

Under the general EKF framework we can have nonlinear
models for the process and observations in the form:

(52)

where are the states of the system, in this case position
and orientation . is a non linear function that propagates
the states based on the inputsand the state’s previous value.

The nonlinear observation equation maps the states to the
observation vector.

The effect of the input signal noise is approximated by a linear
representation

(53)

The matrix noise characteristics are assumed zero mean and
white

(54)

An EKF observer based on the process and output models
can be formulated in two stages: Prediction and Update stages.
The Prediction stage is required to obtain the predicted value of
the states and its error covariance at time based on the
information available up to time ,

(55)

The update stage is function of the observation model and the
covariances

(56)

where

(57)

are the Jacobian matrices of the vector functions and
with respect to the state and is the covariance matrix

characterizing the noise in the observations.
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APPENDIX B

The general form of the update for the states belonging to the
global area will have the following form:

(58)

In this section we present the evaluation of to update the
vector after local updates were performed. For , that
is, when the vector is updated after one observation, we have

(59)

Since the Kalman gain matrix can be partitioned in two main
components:

(60)

Then the state update can be simplified as shown

(61)

Finally, the update afterlocal updates are performed using

(62)

the expression can be simplified as follows:

(63)

with

(64)

APPENDIX C

Taking advantage of the sparseness in the local area.
As demonstrated, the maintenance of the auxiliary matrices

in the compression algorithm involves products of matrices with
dimensions not higher than , . In addition most of
these matrices are sparse. This fact can be exploited to improve
the efficiency of the algorithm. This is important since the local
updates are done at the rate of the external sensor.

To facilitate the representation of nonnull matrices a subma-
trix can be defined according to , where

and are integer arrays that define subsets of indexes. With
this convention the submatrix can be expressed as function
of the original matrix as follows:

(65)

The subset of all the valid indexes in a row or column will be
indicated with ’:’. The first stage requires the evaluation of the
matrices and

(66)

Most of the elements of the Jacobian matrix of the observation
function are zero. Assuming that only one landmark is being
observed, we can define as index subsets that correspond
to the vehicle states and the observed landmark states. Then the
matrix will have the following null-matrices:

(67)

Considering that

or

then evaluation of only requires the computation of

(68)

Similar simplification can be done for

(69)

The evaluation of the matrices given in (31) can also be sim-
plified by using a different representation for:

(70)

then

(71)

The new subset involves all the states that were used in
previous observations or predictions. Then the following sim-
plifications are possible:

(72)

Defining the two auxiliary variables and :

(73)
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Finally can be updated using

(74)

The array index takes into account the increase in the pop-
ulation of observed landmarks. It includes all the observed states
since the last full update. This implies that the computational of
the full update will have a computational cost proportional to

, being the number of elements in .
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