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Abstract (2000). The incremental construction algorithm is applied to
the Opportunistic Path Planner (OPP) (Canny and Lin 1993;
This paper prescribes an incremental procedure to constru@®imon and Canny 1994) in Choset (1998).
roadmaps of unknown environments. Recall that a roadmap is a ge- To map an unknown environment, the robot must system-
ometric structure that a robot uses to plan a path between two poinggically move about and sense the environment because most
in an environment. If the robot knows the roadmap, then it knowsnvironments do not contain one vantage point from which a
the environment. Likewise, if the robot constructs the roadmap, theobot can “see” the entire world. In other words, the robot
it has effectively explored the environment. This paper focuses gannot turn itself on, “read” in the world, process it, and then
the hierarchical generalized Voronoi graph (HGVG), detailed in theconstruct the HGVG (or any other structure) from one single
companion paper in this issue. The incremental construction procgantage point. The robot must use an incremental algorithm.
dure of the HGVG requires only local distance sensor measurements, A lot of work in sensor-based planning deals with inter-
and therefore the method can be used as a basis for sensor-baeding sensing with motion. Here, we use an incremental
planning algorithms. Simulations and experiments using a mobionstruction procedure that automatically determines when
robot with ultrasonic sensors verify this approach. to sense and to move. This algorithm uses distance infor-
mation to numerically construct the HGVG edges. Since sen-
sors provide distance measurements, the numerical procedure
readily uses raw sensor data to generate a small portion of an

HGVG edge. The robot then moves along this portion, and

This paper describes a numerically Wel[-posed and comple[}?e procedure is repeated to generate the next segment. This
algorithm for sensor-based robot mapping of unknown enviz

. ) ncremental construction technique, therefore, automatically
ronments. This algorithm producesaadmap a network of

di ional that el s th I_intterleves sensing with motion.
one-dimensional curves Inat concisely represents the sallentry e o0t traces an edge until it reaches a node in the

geometry ofa rObOt’S environment. Once the robot CQnStru%VG, at which point it branches to explore all edges ema-
the roadmap, it can use the roadmap to plan paths in the %ting from that node. When all nodes have no unexplored

vironment, and hence, when the robot constructsaroadmzaﬁ)recﬁons (and all cycles have been traversed), the algo-

It e;fﬁct_wely epr?rIes antunl<tr_10wn env(ljronment. lt rithm finishes. This termination property differentiates the
€ incremental construction procedure 1s generalto maglysy,q sensor-based construction procedure from other mo-

roadmaps, but this paper applies the construction algo”.thﬁﬂe robottechniques: itis complete. In otherwords, using the

to a roadmap termed thaierarchical generalized Voronoi :
HGVG procedure, the robot can conclude it has explored the
graph (HGVG) which is described in Choset and Burdick P P

environment.
The International Journal of Robotics Research Flna"y' since the HGVG is defined in multidimen-

Vol. 19, No. 2, February 2000, pp. 126-148, sional configuration spaces and work spaces, the incremental
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construction allows exploration of multidimensional environ- In contrast, this paper formulates a method for the con-
ments. While sensor-based planning motivates this work, tls&ruction of roadmap segments from sensor data. Although
HGVG has many other applications when full knowledge athe construction procedure generates the HGVG (Choset and
the world is available. In fact, prior methods for construcBurdick 2000), it can be readily adapted to construct other
tion Voronoi diagrams (the HGVG in the plane) are limited tooadmaps, such as the OPP (Choset 1998).
point sets, simple polygons, or convex obstacles with known It is worth noting that in the planar case, there have been
curvature. The incremental construction procedure here dosther Voronoi diagram—based approaches. In Rao, Stolz-
not place any of these restructions on the obstacles; in fafits, and lyengar (1991), an incremental approach to create
the obstacle can also be a sampled set of points, which is wiaatoronoi diagram—like structure was introduced. Also, in
sensors really provide. Kuipers and Byan (1991), the robot essentially traces double
equidistance until a sensor threshold is met, at which point
the robot follows the obstacle boundaries. The nodes in this
1.1. Relation to Prior Work graph are termed distinct places, which are local maxima of
the distance to nearby obstacles.

There is a vast literature in sensor-based planning, especially
for mobile _rol_)ots. However, most of this work is r_lo'F COM-; 5 Overview
plete and limited to the plane. One class of heuristic algo-
rithms employs a behavioral-based approach in which thiéhe incremental construction algorithms borrow techniques
robot is armed with a simple set of behaviors (e.g., followfrom the numerical curve tracing literature. Initially, the tech-
ing a wall) (Brooks 1986). Another heuristic approach inniqueswere developed to generate GVG edges (Section 2), but
volves discretizing a planar world into pixels of some resathen they were generalized to trace GA/&lges (Section 3).
lution. Typically, this approach handles errors in sonar sen$he incremental linking procedure is described in Section 5.
ing readings quite well by assigning each pixel a value indNext, combining the GVG-based results with some basic non-
cating the likelihood that it overlaps an obstacle (Borenstesmooth analysis, we describe the numerical procedure to ef-
and Koren 1990). Strong experimental results indicate tHect incremental accessibility (Section 6). The accessibility
utility of these approaches, and thus these algorithms magction may seem out of order because the tracability and ac-
provide a future basis for complete sensor-based plannetessibility sections use some common results that are easier
Unfortunately, these approaches neither afford proofs of cdp visualize in the tracability context. The incremental de-
rectness that guarantee a path can be found nor offer wedhartability procedure is described in Section 7. The entire
established thresholds for when these heuristic algorithratgorithm is verified by simulations and experiments that are
fail. Finally, these approaches do not typically generalizesviewed in Section 8 and Section 9, respectively.
into higher dimensions. Recall from Choset and Burdick (2000), that the HGVG is
There are many nonheuristic sensor-based algorithms fesigned to operate in a bounded environment of the world.
which provably correct solutions exist in the plane (Rao et al'hat is,
1993). Our qpproac.h is to ad.apt the structure of a provat,’,k(ssuwﬂ oN1.
correct classical motion-planning scheme to sensor-based i
plementation. One such approach is based on a road
(Canny 1988).
Our roadmap approach was motivated by Rimon’s work, Also, the obstacles are positioned in a generic fashion giv-
which adapted Canny and Lin’s OPP (Canny and Lin 19937 rise to equidistant surfaces that transversally intersect. In
method to sensor-based use. Originally, the OPP construét§er words,

partofitsroadmap (the freeways) foramultidimensional work ssympTion2.  The Equidistant Surface Transversality As-
space using local information and is therefore partially inCrésymption: If equidistant surjective surfaces are manifolds,

mental. However, the construction (_)f “bridg_e curves,” Wh_ifjﬁhen they intersect transversally. Thats;, i, ;M SSi, i, »
guarantee the roadmap’s connectivity, requires the identificgjt respect te8S;, ., if j1 # jo.

tion of “interesting critical points.” Complete prior knowl-

edge of the world’s geometry is needed to identify the critical

points. Thisis a major limitation of their algorithm for sensor2. Tracability of the GVG

based implementation. Rimon and Canny (1994) suggested

a way to “sensorize” the OPP algorithm. They introduce thien an incremental context, the property of connectivity is in-
notion of a “critical point sensor” and a “minimum clearance’terpreted agracability. More specifically, tracability implies
sensor, though the implementation of such sensors is not witlht using only local data, the robot can “trace” the GVG
detailed. Furthermore, they do not provide a detailed methdgdr HGVG) edges and determine when to terminate the trac-
to construct the freeway segments from sensor data. ing procedure. The robot concludes the edge-tracing process

Boundedness Assumption: The robot op-
Blates in a bounded, connected subset of the free space
MRs subset is bounded by obstacles.
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when it encounters (1) ameet point, a point where GVG edgdlew, letY = R”~1 and define the functiofy : ¥ xR — ¥
intersect; (2) a boundary point, a point where a GVG edge imas follows:
tersects an obstacle; or (3) a floating boundary point, a point

where two gradient vectors converge on each other (Choset (dy — d2)(y. 2)

and Burdick 2000) (i.e., become colinear). At each node, the Gi(y. 2) = (d1 —d3)(y. 4) ' (1)
robot begins tracing the appropriate edges that emanate from :

the node, or returns to a node with unexplored edges emanat- (d1— d)(y, M)

ing from it. In this section, we present and analyze a method
for tracing a connected component of the GVG. Now, we willhe functionG1(y, 1) assumes a zero value only on the GVG.
demonstrate how to trace a GVG edge and when to termindtet Vy G1 be the matrix formed by taking the derivative of

the tracing procedure. eq. 1 with respect to thE coordinates. It takes the form
. _ (Vydi(y, 1) — Vyda(y, 2)"
2.1. Properties for Tracing (Vydi(y, A) — Vydg(y T
VyGi(y, A) = : . (@

Our approach borrows some basic ideas and techniques from

numerical continuation methods (Keller 1987). Continua- (Vydi(y, X) — vydm(y, Nt

tion methods are used to trace the roots of the expression

G1(y,2) = 0 as the parameter is varied. In a sense, in- where Vy denotes the gradient with respect to the

cremental construction techniques are an instantiation of thgordinates. 1fVyGi(y, A) is surjective atc = (1, y)7,

implicit function theorem. then the implicit function theorem implies that the roots of
o ] G1(y, A) locally define a GVG edge asis varied. By nu-

THEOREML.  Implicit Function Theorem: L&b : ¥ xR —  merically tracing the roots of this function, we can locally

Y such that construct an edge.

While there are a number of curve-tracing techniques
(Keller 1987), we use an adaptation of a common predictor-
corrector scheme, as illustrated in Figure 1. Assume that the
robot is located at a point on the GVG. The robot takes a
« VyG(y*, 4*) is nonsingular with bounded inverse, i.e.’“small" step, A4, in thezl—directiqn (i.(_e.,.the tangent to the

I(VyG(y*, x*) 71| < M for someM local GVG edge). In general, thiwediction steptakes the
robot off the GVG. Next, @orrection methodk used to bring
« G(y*, ") andVy G (y*, »*) are continuous in a neigh- th_e robot back onto th_e GVG. K i_s small, then the graph
borhood of(y*, »*) denoned nbh@d*) x nbhd*) will intersect .acor_rectlng p.Iane,wh|ch is a plane orth.ogo—
nal to thez;-direction at a distancAa . away from the origin.
then for allx € nbhdA*), there exists a : R — R™~1such The correction step finds the location where the GVG inter-
that fory (1) € nbhdy*) such that sects the correcting plane and is an application of the Newton
convergence theorem (Keller 1987).

e Y is a Banach space,

* G(y*, 1*) = 0 for somey* andi*

. AF) = v*
YA =y THEOREM2. Newton-Raphson Convergence Theorem: Let
: G:Y Y such thatt is a Banach space a@(y*) = 0.
* G(y(), ) = 0 (existance), For sogao >l(J) letG SaltiSfy P o

o for all A € n_bhot)»*)ﬂR, there is no solution of » VG(y*) is nonsingular with bounded inverse, i.e.,
G(y,») = 0in nbhc{y*)ﬂ]Rm_l other thany(k) ”(VG(y*))—l” <8
(uniqueness), N
* IVG(x)=VGW)I < ylx—ylforallx, y € B,(y*).
e y(A) is continuous. 5
* pBy < 5

The incremental construction of a GVG edge can be im- Then for every® € B ,(y*) (ball of radiusp), the iterates,
plemented as follows. Let be a point on the GVG. Choose
local coordinates at so that the first coordinate;, lies in the Yl =y — (ve "),
direction of the tangent to the graphvafsee Fig. 1). Ak, let
the hyperplane spanned by coordinatgs . ., z,, be termed satisfy
the “normal plane.” We can thus decompose the local cooy-= T
ere, we are abusmg ﬂOtatIODY Gl is more conventional, but we use

dinate_s intax = (y, A), wherex = z; is termed the “sweep” p as the multiobject distance function and therefore want to avoid using
coordinate and = (zo, ..., z,;) are the “slice” coordinates. here.
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determining a rigorous upper bound for the size of the ball is
a topic of research, but in our experiments, we use a step-size
of one robot diameter.

The following two subsections demonstrate that equation
(3) is well posed becaus®y G1(y, 1)) is defined, and that
we can always compute (using local sensor data) a vector that
is tangent to the GVG. In proving these assertions, several
new and useful properties of the generalized Voronoi graph
are presented.

Vor Graph

Correcting 2.1.1. Computing the Tangent to the Graph.

Z
/ 3 Plane , , ,
, . We first tackle the question of how to determine the tangent
Tangent (Slice) to a GVG edge from sensor data. Recall that the Voronoi
graph (Avis and Bhattacharya 1983) was defined for point
A sites. To better distinguish it from the GVG, let thegular
Voronoi graph(RVG) be the Voronoi graph for the case in
Fig. 1. Continuation method. which the obstacles are points. Furthermore, letréyeilar
k-equidistant faceR;, . ;,, be ak-equidistant face whose
.« yi e B,(y") closest obstacles are points. #indimensions, a regulan-
? ' equidistant face is an RVG edge and it is equidistant:to
+ {y"} quadratically converge ontg", i.e., closest point objects.
. A .o The following proposition produces the tangentto the GVG
=yl =aly” =yl by exploiting the coincidence of a GVG edge and an RVG
By 1 edge at a point where the GVG edge is defined by, : i =
4= 2T0Bn) S o 1,...,m}andthe RVG edgeisdefinedhy : i = 1,...,m},
them closest points on the closest obstacles.

h+1
[ly"*

where
We will show thatVy G1(y, ) is full rank at every(y, 1)

in a neighborhood of the GVG, and so it is possible to use &/ROPOSITIONL.  The tangent to a GVG edge-ats defined
iterative Newton’s method to implement the corrector step. iy the vector orthogonal to the hyperplane, which contains

y" andr” are thenth estimates of andx, thek + 1stiteration the m closest pointsey, ..., ¢, Of the m closest objects,
is defined as C1,...,Cp.
YL =y (Ve G Gat, A, 3) Proof. This proposition is a simple consequence of the fol-

lowing two lemmas wheh = m. The proofs of these lemmas
whereVy G is evaluated aty”, A"). After taking the pre- appear in the appendix.
diction step, the goal of the correction step is to find wheregmma 1. Letcs, ..., ¢ be thek closest obstacle points
the GVG locally intersects the “correcting plane.” to a pointx. Let R;, ; be the regular Voronoi graph face

There are several things worth noting about this methoglefined by these points whete< m. When Assumption

First, to evaluat&1(y, ) andVy G1(y, 1), oneonly needsto 1.2 is upheld, any vector in the tangent spager;,. ;, is
know the distance and direction to tieobjects that are clos- orthogonal to thék —1)-dimensional affine hull ofy, . . . , .
est to the robot’s current location—information that is easilyhe tangent spacg R;, ., is also orthogonal to the — 1)-

obtained from local distance sensor data. Second, Newtginensional affine hull of the heads of the gradient vectors
methods are quadratic in their convergence, and thus thgysed at.

would be substantially faster than the naive gradient ascent .

techniques. Thirdyy G1(y, %) is an(m — 1) x (m — 1) ma- LEMMA 2. Letey, s ¢ be the cl_oses_t points in tb.kerjear—
trix, and is thus typically quite small in size (e.g., a scalar foi3St obstacles to € i, .;; 'NAt a pomtx in the k-equidistant
two-dimensional environments, or ax22 matrix for three- ace, the tangent Spade‘f"lm"k, is the same as thg Fangent
dimensional environments), and the method is not comp paceT; Ri..,, WhereR;,..;, is the regulark-equidistant
tationally burdensome. In fact, we symbolically invert th ace defined by, ..., ¢

matrix once and use the result in the actual programs that Let x be a point on a GVG edge defined by the obstacles
generate the HGVG. Finally, there is the issue for how big @1, ..., C,,. Them closest pointgy, ..., ¢, of them clos-
step-sizeA A should be. This step-sizeshould keep the robot est obstacles define an RVG edge. Whea m, Lemma 1

in the ball B,(y*) for Newton’s method to work; currently, asserts that the tangent space of the RVG edge iata
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one-dimensional vector space whose basis vector is orthand
onal to the hyperplane that contains theclosest points

q =m — l,
Cly ..., Cpy- [ :1 f =1... _1
Lemma 2 contends that the tangent spacedadtthe RVG vz r 1 fg:: _1 Z 1 ©)
edge, defined by, . . ., ¢, is the same as the tangent space at o= ' S ’

x ofthe GVG edge defined s, ..., C. Thus, by knowing  G-1(0) is the intersection of: — 1 two-equidistant surjective
the distance and direction to thenearest points, the tangentsyrfaces, which gives rise to a GVG edge. In other words,
to a generalized Voronoi graph edge is easily computéd. G(x) = Gy(x). From here, this proof is now a simple

ExaMPLE 1. Two-Dimensional World: LeC; andC; be consequence of the following (whose proofs appear in the
the two closest obstacles to a painbn Fio. Letcy andec,  appendix):

be the two closest points on the two closest obstacles. Passuva 3. Consider the mapping : R” — RY defined as

a line throughc1 andcy; parallel shift this line so it passes

throughx. The displaced line is the normal plane and the (diy —dj;)(x)

line orthogonal to the normal plane is the tangent space. See G(x) = : . (7

Figure 2. (d;, — d;,)(x)

ExAMPLE 2. Three-Dimensional World: L&, C2, andC3 .

be the three closest obstacles to a peioh #1,3. Letcy, ¢, The rank of VG (x) is ¢ for all x € 88/, (-85S
andes be the three closest points on the three closest obstaci¥g€n

The tangent to the GVG atis a vector that is normal to the 88ivja ﬂ o ﬂ $Sigjy 7Y

plane defined byi, ¢, andcs. Letcyo be the vector formed and for allrq, 7o, {iry» jri} # lirps jry}. That is, each pair
by subtracting:, from c;. Letciz be defined in a likewise {;,, j.} is unique.

manner. The normal to the plane that contains,, andcs
is collinear with the vectofi> x ¢13.

igjgr

LEMMA 4. Consider the mapping : R™ — R? defined as
(di]_ - djl)(x)
2.1.2. The MatrixVy G1 is Invertible Gx) = ; : (8)

Now we can take a step along the tangent direction of the iy = di) )

GVG. If this tangent step takes the robot off of the GVG, thefn the normal slice plane (and all planes parallel to it)
the robot must invoke a correction procedure on a hyperplaf@kV,G) = rank (VG) for x € 8Sij, (---(8Si,j,»
orthogonal to the tangent. This correction procedure is dahen 8S;,;, (---(18S;,;, # ¥ and each paifi,, j.} Is
scribed in eq. 3. The following proposition illustrates that theinique. That s, for alky, r2, {iy;, jr} # liry, Jrp}-

numerical procedure defined by eq. 3 is well posedAar

o The matrixVG1 is anm — 1 bym — 1 matrix, and thus by
sufficiently small.

Lemma 3, the rank oV G1 ism — 1. Lemma 4 asserts that
PROPOSITION 2. Equidistant Surface Full Rank Propertyrank(V,Gy) ism — 1 for allx € #_;, and therefore must
VyG1(y, 1) has full rank (i.e., has rankz — 1)) on the cor- be invertible atr.

recting plane in a neighborhood of the GVG. Since the rank operation is a continuous functi®)G

, ) . must be invertible in an open neighborhood around=
Proof. The following two lemmas are necessary in showmﬁ

. ) y,A) € F™. This open neighborhood will intersect the
V,G1(x) is full rank. These lemmas furnish a general resu orrecting plane for. sufficiently small, and thus’, G is
for the functionG : R™ — RY, which is defined as Y

invertible on the correcting plane as well. d
(diy —djy)(x) In practice, the neighborhood of invertibility is quite large
G(x) = . 4) with this method. Practically speaking, this result states that
: ' the numerical procedure defined by eq. 3 will be robust for
di, —dj,)(x) reasonable errors in robot position, sensor errors, and numer-

ical round-off errors.

Naively, one could trace an edge by repeated application

of the accessibility method. That is, the robot would move a

{irys Jr} # Lirg, Jra)s (5)  small distance along a given direction—either a fixed direc-
tion or perhaps the tangent direction to the current edge. Gra-

then G~1(0) represents the intersection af distinct dient ascent would then be used to move back onto the local
two-equidistant surjective surfaces, i.eG~1(0 = edge. The OPP (Canny and Lin 1993) method and its sensor-
8Siyjy (---(18S8i,;,- When the condition in eq. 5 is met based adaptation (Rimon and Canny 1994) use this strategy

Ifforall r1,r2 € {1,...,n},
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Fig. 2. The tangent space is the line orthogonal to the line that connects the two closest points on the two closest obstacles.

with a fixed stepping direction. However, gradient ascent cgrocedure is recursively repeated. When the robot reaches a
be a computationally expensive procedure because of its slbwundary point, it simply turns around and retraces its path to
convergence. Also, the constant step direction leads to und®me previous meet point with unexplored directions. The

sirable roadmap artifacts (Choset and Burdick 1994). robot terminates exploration of the GVG component (i.e.,
there may be other disconnected GVG components) when
2.2. Terminating Conditions there are no more unexplored directions at any meet point. If

the robot is looking for a particular destination whose coor-
Sofar, we have shown that the robot can trace a GVG edge, llifiates are known, then the robot can invoke graph-searching

when does a tracing procedure stop? Due to the boundednggshniques such as the A-star algorithm or depth first search
of the robot’s environment, the GVG edges must terminatgigorithm.

as stated in the following proposition.

PrROPOSITION3.  Given the Equidistant Surface Transversal-

ity Assumption, in a bounded environment, if a generalize . .
Voronoi edge is not a cycle (a GVG edgé diffeomorphic to 9'2'1' Meet Point Detection
a.circle), it must terminate (1) at a generalized Voronoivertelginding the meet points is essential to proper construction
(a meet point), (2) on the boundary of the environment, o

3) at int where t dients of single obiect dist It the graph. While meet points occur when the robot is
Eu%ciioiszlgcc\;vmsrceolngrra Ients of single object dis anC(?quidistant ton + 1 objects, it is unreasonable to expect that

a robot can exactly detect such points. For example, while
Proof. This proof is a consequence of the following propositracing an edge, it is unlikely that the robot will pass exactly

tion from Choset and Burdick (2000) whén= m. through ann + 1 equidistant point. Furthermore, sensor error
may make such detection difficult. Nevertheless, as shown in
Figure 3, meet points can be robustly detected by watching for
an abrupt change in the direction of the (negated) gradients

Y% them closest obstacles. Such a change will occur in the
vicinity of a meet point.

ProposITION4. If a (k + 1)-equidistant facef;, ., is
nonempty, then thé-equidistant facef;, ; must also be
nonempty; however, the converse is not necessarily tr
Furthermore,

70 — . . . . . . .
0Fiy.ir = Fiyoivier | Civoi | FCinoii-

O

When the GVG edge is cycle, the edge tracing procedu C C;
terminates when the robot circumnavigates the cycle. Th
procedure requires that the robot possess an accurate d
reckoning system.

Incremental construction of the GVG is akin to a grapl N\
search method where the generalized Voronoi edges are
“edges” and the meet points and boundary points are tl
“nodes.” Once the robot has accessed a point on the GVG
begins tracing an edge. If the robot encounters a meet poi :
it marks the direction from where it came as explored, an  f--------ermmrerrmri :
then explores one of the otharedges that emanate from theFig. 3. Meet point detection.
meet point. It also marks that direction as being explored. If
the robot encounters another unvisited meet point, the above

Negated Object Gradients
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2.2.2. Departing a Meet Point 3.1.1. Computing the Tangent

Recall that the robot is equidistantiio+ 1 objects at a meet The tangent to the GV&edges is the null space of
point. It must be able to identify and explore the+ 1

GVG edges that emanate from each meet point to completely (Vy(dy — d2)(y, k));

construct the GVG. Note that each emanating edge corre- v - (Vy(dz —da)(y, 1)) 10
sponds to am:-wise combination of then 4+ 1 closest ob- yGa(y, 4) = : (10)
jects. Assume that we wish to explore and trace the edge V.(d _é o7
corresponding to objecty, . .., C,,, the distances to which (Vy(ds = dn) (7, 1))

aredi(x) = do(x) = --- = d,(x), respectively. Proposi-

3 thi i i i -
tion 1 yields the one-dimensional tangent space to the gequ-R , this can be easily computed with local sensor informa;

eralized Voronoi edge corresponding to thesebjects. If tion. InR?,
v is a basis vector of this GVG edge’s tangent space, the

robot must determine if it should depart the meet point in VyGa(y, A) = [
the +v or —v direction. We want the robot to mowavay

from them + 1st obstacle, the distance to whichijs; 1 (x). 3 i
If (Vdyi1,v) > (Vd;, v), wherei € {L,...,m}, then the In R ,.the null space oV, G2(y, A) is the set of vectorsy,
robot should move in direction-v, otherwise—v. This ef- or Which
fects motion away fron@,, ;1.

(V(d1 — do) (., A»T}
(Vy(ds —dy(ran” | @D

<Vy(dl - dZ)(y’ )")7 U) =0 a.nd
(12)
(Vy(dz —dg)(y, 1), v) =0.

3. Constructing the Second-Order GVG That is, the tangent to a G\VfGquidistant edge is the inter-
section of the tangent spacg&$> and$S34. The Equidistant
The GVG serves as the backbone for the HGVG roadmagurface Transversality Assumption guarantees that these tan-
This section applies the curve-tracing methods of the prevgent spaces transversally intersect and thus their intersection
ous sectionto trace the edges of the HGVG, which connect tigone-dimensional. A basis vector for this tangent space is
GVG when the GVG is disconnected. In this section, howv (d; — do)(y, 1) x V,(d1 — d3)(y, A). Since the tangent
ever, we only consider edges that can be represented by #pece is computed from the cross product of gradient vec-
roots of a functionG, i.e., GV& equidistant edges, bound-tors, the tangent space can be readily computed from sensor
ary edges, and floating boundary edges. Occluding edges mf@rmation.
considered separately because they are points where functions
become discontinuous.
3.1.2. The MatriX¥G> Is Invertible

When
3.1. Second-Order Generalized Voronoi Edges 1
qg=m—Jd,
The second- (and higher) order GVG can be incrementally —
constructed in an analogous fashion. The key is to define a =454
function whose roots define G\\Gadges. The roots of the i — 2 13
: 1=2, (13)
function
ir =3, forr=2,...,m—1,
(d1 —d2)(y, ) jy=r+2  forr=2,...,m-1,

(d3 —da)(y, )
Galy, M) = : ©) Lemmas 3 and 4 guarantee the matVixG2(y, 1) has full

(d3 — dr'n)(y 2) rank in a neighborhood of the G\A@n the correcting plane.

locally trace out a GV& equidistant edge. The first row of 3.2. Boundary Edges

G enforces equidistance between the closest ob{ectnd

C». The remaining rows enforce equidistance between tfidhe incremental tracing of boundary edges requires that the
second closest objects. Again, a predictor-corrector algorithrabot move along the perimeter of the environment wivere

is used. obstacles meet im dimensions. This can be done by tracing
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the roots of the following functionG,, defined as 4. Occluding Edges
di(y, \) — € So far, we have described the tracing procedure for HGVG
ds(y, 1) — € edges that can be represented by the roots of a differentiable
Gy(y, ) = . , (14) function. Since occluding edges cannot be described this way,

: they present a bigger challenge to edge tracing. In this sec-
dm-1(y,») — € tion, we describe a method for tracing discontinuities. The

underlying method of generating occluding edges traces the

where in this case is a small “safety” distance away from boundaries of the adjacent second-order generalized Voronoi

the environment. Continuity of the single object distancéegions who share the common occluding edge, as opposed

function guarantees there exists a small enotigh 0 such  to explicitly tracing the occluding edge.

that the topology of the traced edges reflects that of the actual

boundary edges. In future work, we will see th@j will

be used in tracing edges of thaturated generalized Voronoi

graph,which is a roadmap used when sensors function ovghe robot arrives at an occluding edgm%, either as a

afinite range, less than result of a linking procedure or tracing an HGVG edge. In
the latter case, an HGVG edge either terminated at a floating
boundary edge, a second-order floating boundary edge, or at
some point in the interior of a boundary edge.

Floating boundary edges are straight-line segments and thus-etxg, be the point of arrival on the occluding edge| g, -
do not require complicated numerical curve-tracing tect3ecall that an occluding edge lies on the shared boundary of
niques. Proposition 4 asserts that a floating boundary edi¥ second-order generalized Voronoi regions where the dis-
terminates at either a GVG edge end point or a boundary edgéce to t_he second closest obstacle changes discontinuously.
(Ci;) end point, which is a point where two convex obstacle actuality, the robot stores) € Fi|z, andx? € Filg ,
(C; andC ;) merge into one convex obstacle. which are the points on the boundary of their respective
When a GVG edge terminates at a floating boundary edgécond-order generalized Voronoi region near their bound-
point, the basis vector of the floating boundary edge muaties. Eithen? or x? are approximations tef).
be determined. Let* be the point where the two gradient At this point, the robot draws a small circle arom)fﬂ(or
vectors converge and lebe the limiting vector ovd; (x) (or  x?) contained in¥;; and determines all points on this circle
Vdj(x)) asx approaches*. The vectow is the basis vector that are in occluding edges also. Again, it looks for pairs
of the floating boundary edge point, and after encounteringf points where the distance to the second closest obstacles
the floating boundary edge point, the robot moves intle drastically changes. Assume for the sake of discussion that
direction. When a boundary edge terminates at a floating; is locally flat. If there are only two additional occluding
boundary edge, the robot moves in a directipas described points, sayxl, andx,},’, and they are collinear, thetfl is a

above. (Note that when obstacles are polyhedra, the floatiggint in the interior of the occluding eddé| ¢ (between
1

i ight-li i , /.
2332?2%?3;:;3&:33)t ine extension and a boundaxr%/l andxg,). In fact, the line defined by}, andx} is the

“tangent” of the occluding edge (see Fig. 4).

Now consider the scenario Wherk andx,}l' do not define
aline or there are points in the circle from multiple occluding
edges. Since we can let the circle be as small as we want,
In summary, the GV&has the similar terminating conditionswe are guaranteed that there is at least one pgjnon the
as the GVG: aecond-order meet poirgecond-order bound- circle that belongs to the same occluding edge,?,’;land isin
ary point second-order floating boundary pojandsecond- a straight line.
order cycle The second-order meet points are detected in a Again, a point on the occluding edge is represented by
fashion analogous to the (first-order) meet points—the robtwo points, one from each second-order generalized Voronoi
looks for a change in the gradients to the second nearest objesdion. So, when the robot searches for a point on the circle
while maintaining equidistance to the two nearest objects. Associated with the same occluding edgec,%tsit is really
a second- order boundary point, the robot does not necessatigking for the appropriate pair of points. The robot performs
turn around and retrace its steps to the previous second-orttas search by drawing two segments between the access’ pair
meet point with unexplored directions. Instead, it traces botif points and the candidate pair on the circle. If both line
of the directions of the boundary edge it intersects (seconsegments are fully contained in their respective second-order
order equidistant edges intersect boundary edges only in theneralized Voronoi regions, then the access point and the
interior). candidate point on the circle form a straight-line segment,

4.1. Accessing the Occluding Edge

3.3. Floating Boundary Edges

3.4. Terminating Conditions
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Fig. 4. Local neighborhood of occluding edgm%.

albeit very small, of an occluding period. The initial tangenstep onto the two-equidistant sheet and one along the two-

vector is based on the perimeter of the circle pointing towarequidistant sheet to the occluding edge.

the access point, i.eckll — x,?l. Figures 7 and 8 display only a box that is in the middle of

If multiple points on the circle satisfy this no-cutting-the-a rectangular enclosure. The halolike structure surrounding

corner condition, then the robot simply picks one direction tthe box is a GVG cycle. Emanating from the cycle is a link

go. If all points on the circle satisfy this test, then the robot ithat terminates at an occluding edge. The occluding edge is

at a node of an occluding period. Since we are only lookinthe rectangular-like structure hovering over the box.

for a tangent direction, the robot simply picks one direction The outer halo surrounding the box is a GVG edge, which

to initiate tracing. is three-way equidistant to the box, the floor, and the ceiling.
The floor has been removed. The square period floating on
top of the box is a collection of occluding edges that form

4.2. Tracing the Occluding Edge a period. Points inside of the occluding period over the box

. L .. cannot look straight down to the floor.
The robottraces the occluding edge by moving in the direction

ofthe tangent. In actuality, boti} andx} are translated in the
tangent direction, not,}l. Since#;; is nominally not flat,x,}

or x/ may fall off the sheet, so we invoke the similar NewtonThe robot repeats this pairwise step and correct procedure un-
iterative correction procedure to bring them back ofifp.  til it encounters an occluding corner, an occluding meet point,
(Note that correction onto a sheet is described in Section 6g GVG floating boundary point, a G\?G;;q floating bound-

The robot then steps again in the tangent direction 10f th@y point, or a boundary point. These nodes are essentially
occluding edge. This tangent is approximateddBy- x{ " detected when the above described correction procedures fail
(or x]' — x/'~1), whereh is the/ith step the robot has takento converge onto an occluding edge. Insuchacase, atleastone
since it accessed the occluding edge and the subscript sgilthe pairs of points being traced has changed second-order
indicates which region contains the point. Again, beth generalized Voronoi regions. Now, we describe the methods
andx]" are translated in the tangent direction. to detect which node the robot has encountered.

The occluding edge may also have curvature, inwhich case Unlike the rest of the edges in the HGVG, an occluding
x,i’ —x,i’_ltakes the robot off of the occluding edge, even aftegdge is not guaranteed to i&-diffeomorphic toR. The
correcting back onto the two-equidistant sheet. Thereforeccluding edges can have nonsmooth kinks, which are termed
the robot moves along a linke, which is the projection of the occluding corners. The robot can detect occluding corners by
hyperplane orthogonal to the current tangent. looking atx,i‘+1 andxlh*l. When both points are in the same

The direction to move is determined as follows:Agfx;  second-order generalized Voronoi region (e +1 xlh+1 c
be the current location of the robot after it corrected baCkk|$_),then the robot has passed by a corner point. By taking
onto the two-equidistant sheet, and assume without loss giccessively small steps from theh iteration, the robot can
generalityxi, x; € Filg; andL passes throughy andx;.  hone in on the true location of the corner point. The robot
The robot moves along away fromx; until the robotreaches determines the new direction to trace using the same circle-
apoint where there is a change in the second closest obstaglgsed approach when accessing the occluding edge.

This point isx;""* and the previous point before the change An occluding meet point is where two or more occlud-

is x,f*l. So, there are two types of correction: a correctioing edges meet. This can occur in a variety of ways:

4.3. Terminating Conditions
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Fig. 6. Tracing an occluding edgém%.

Fig. 8. The HGVG is connected.

T-intersection, Y-intersection, a cross-intersection, and so on.
The robot detects occluding meet points in a similar fashion
as it does meeting points and second-order meet points. The
robot looks for a change in one of the points from the pair itis
Fig. 7. The GVG is disconnected. tracing; if either point enters@ewsecond-order generalized
\oronoi region G:P|5L',~,~ wherep # k andp # 1), then it has
passed by an occluding meet point. At this point, the robot
takes a step back to the previous iteration and hones in on
the occluding meeting point by taking successively smaller
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steps toward it. The robot determines the new directions &1. Links to Cycles

trace using the same circle-based approach when accessi,nq(, ¢ les. if th L hi .
the occluding edge. Linking to (from) GVG cycles, if they exit, is achieved via

gradient descent (ascent) of distance to the second closest ob-
stacles in a second-order generalized Voronoi regmn;” .
In other words¢(r) = 77, Jcidek(c(t)). The projected

4.4. Departing the Occluding Edge vector is

The robot encounters other HGVG nodes—floating boundar
points, GV@ floating boundary points, and isolated points in 7= Fij
t_he interior qf the bounda_ry edge_—much in the same way it (Vd; (x) — Vd;(x), Vdi(x))
finds nodes in the occluding period. In fact, when the robotVdk(x) — V() — V(). Vi () — Vd ()
is tracing an occluding period, it finds the node first and then ! SR T J

determines what type of node it is. Take, for example, Rqe thatthe correcting hyperplaneis a line (see Fig. 9). When
second-order floating boundary that has occluding edges afking from the outer period to the inner cycle, the link can
one GV@ equidistant edge emansft’g;g from it. 'When they, 1t from any point on the outer period, and likewise from the
robot initiates motion along the GVGequidistant edge, it jner cycle to the outer period. All that needs to be determined
initially treats the edge as an occluding edge. In other Wordg ot the robot has traced a cycle or period. Detecting this can
It tr_aces two pointsy andx; along_the shared poundary of thebe computationally expensive, so in Section 8, we establish a
adjacent second-order generalized Voronoi regions. NOMigmntationally simple method that is sufficient for making

nally, if the distances to the second closest obstacles of eaglis hut comes at the cost of making redundant links.
of these points are the same, then the robot can conclude it the next two linking procedures, the following lemma,

has started tracing a GVA@quidistant edge and invoke the,y,ce proof appears in Choset and Burdick (2000), is useful.
appropriate procedure. In practice, these distances will never

be identical, so one would naturally look for a threshold ot EMMA S.  Ifthe object<’;, .. ., C;, intersect, then the asso-
difference of these distances. However, there is a better w&jatedk-equidistant surjective surfaces;, . ;;., is unbounded.

Vdj(x) =

Vi (x).

If C; is within line of sight ofx; andCy is within line ofx;, [N fact, if objectsCy,, . .., C; intersect, then none of the gra-
then the robot is tracing a G\VAGequidistant edge becausedients,Vd;; (x), ..., Vd;, (x), is orthogonal tdr §S;,...i, for
there is no occlusion. all x € 8S8;; .. In other words, there are no extrema»in

Departing onto a boundary edge is quite simple: when tHBe interior ofsS;, .
distance of théirst pair of closest obstacles goes to zero, then
the robot has encountered a boundary edge at which poingib |qner Boundary Edge Period
can branch into two directions along the boundary edge.
The linking procedure to an inner boundary period is a two-
step process: detection of the inner period and then the explicit
o construction of the link. By Lemma 5, this linking procedure
5. Incremental Linking amounts to following a path defined by gradient desceiit of
on the second-order generalized Voronoi region, which con-
The companion paper (Choset and Burdick 2000) outlingsins the boundary period. Linking from the inner boundary
four types of links to and from the following: an inner GYG period is accomplished via gradient ascenDofconstrained
period, a boundary period, an occluding boundary period, andl a two-equidistant face (Section 5).
a GVG cycle. To describe the detection scheme, we definednedis-
Recall from Choset and Burdick (2000) that we introducethnce functionwhich provides the distance to all the points on
the notion of an inner and outer boundary for a second-ordttte boundary of the environment that aii¢hin line of sighof
generalized Voronoi region. There are situations in which thtee robot. For the following definition, recall th&t*—1 is an
robot can infer if it is on an outer or inner boundary compo¢m — 1)-dimensional sphere embeddediiti. Sometimes we
nent. For example, while traversing a boundary componentats € 5”1 as a point on awn — 1)-dimensional sphere,
of a second-order generalized Voronoi region, if the robot dend other times we treat it as a unit vector whose head is in
tects a boundary period, then the robot is on an outer bourttie (m — 1)-dimensional sphere.
ary component (Choset and Burdick 2000) and the bound . . .
JEFINITION 1.  Raw Distance Function: The distance be-

period is an inner boundary component. In our currentimpl - een in R™ and int on an obiect that is within
mentation, the robot exploits the fact that it is tracing a on ween a pointy € R™, and a point on an object that is

dimensional closed curve (the boundary of a second-ord l?eel(i)riesg:tr?:;;tn a}\dlrercl:élsvrﬁ eref— n-l1—|hnls |zthe le{{'gth_Of
generalized Voronoi region) on a two-dimensional surface f 9 tasa T8 = o) (x+As) =
determine the outer and inner boundaries. 0. That s,
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Second-Order
GVG

Fig. 9. Boxinaroom. Solid lines representthe GVG, and the dashed lines are the GNé&thick dashed arrow represents the
set of points equidistant to the floor and ceiling that decrease distance to the inner box, i.e., the path traced out by constrained
gradient descent to the second closest obstacles.

p(x,s)=|lx+Ais|| whereA= min D(x + As) =0,

A€[0,00)
(15)
where D is the multiobject distance function that measure "
distance to the nearest point on the nearest obstacle.
A key feature of the raw distance function (Fig. 10) is
that it can be readily approximated by many realistic sens

configurations. The sensor measurement provides an appr

imate value of the distance functipitx, s), and the direction gy 10 The solid lines are values of the raw distance function,
to which the sensor is facing corresponds to the direction %f(x 5), for a fixedx € R? and nine samples af € 5. The
measurement (e §”~1). We term this function the “raw dis- f1o4 régions are obstacles.

tance function” because raw sensor readings approximate this

function. The raw distance function is a necessary component

for the experimental implementation of the GVG. discontinuities in the raw distance function restricted to a nor-
To detect a boundary edge from an outer boundary compgral slice. If for all points on the outer boundary component

nent, we look at the values pf(x, s) restricted to the normal of a second-order generalized Voronoi region there exists a

plane (a hyperplane orthogonal to the tangent vecterat discontinuity on each normal plane, then the outer boundary

a GVG edge). It can be seen from Figure 11 that for cortomponent surrounds an inner occluding period (see Fig. 7).
vex polyhedra, if there exists a local maximaadfc, s) with

respect tos restricted to the normal plane, then there exists

a point on a boundary edge. If for all points on the outes.4. Inner GV& Period Link

boundary component of a second-order generalized Voronoi

region there exists a local maxima on each normal plane, therhile traversing an inner boundary compone@yt?“;:ij,

the outer boundary component surrounds an inner boundggyiich contains GV& equidistant edges and is disconnected
period. However, we will demonstrate in Section 8 an altefiom the outer boundary component, the robot builds a link
native method to looking at maximag which is quicker but tward from a meet POINF,| ¢ , which is formed by the
provides redundant links. o~ ij L .
edge5fk1|}~l,j, ?kp|¢ij, and ?p,|5fij. The link is the inter-
section ofSS | %j\f‘”k” e That is, instead of tracing the

GVG? equidistant edge, the robot traces the pointsyhere
The linking procedure to an occluding period is the same @s(x) = d,(x) > di(x) > d;i(x) = d;j(x). This link brings

it is for a boundary period. The detection scheme is simthe robot to an outer boundary component (Choset and Bur-
lar; instead of looking for local maxima, the robot looks fordick 2000).

5.3. Occluding Period
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redundant structure. A similar procedure exists for boundary
C edges and floating boundary edges.

6. Incremental Accessibility

Incremental accessibilitis the ability to access some point
on the GVG via a collision-free path from any pointin the free
space, using onliocal information It is obtained by gradi-
ent ascent of the multiobject distance functibn(Choset and
Burdick 2000). Recall from Choset (1996, 1998), using non-
smooth analysis it can be shown that ¢femeralized gradient

C of D(x) is

oD(x) = Co{Vd;(x) : i € I(x)}, (16)

where Co is the convex hull operation, an¢k) is the set
Fig. 11. A local maxima ofo(x, s) with respect tas corre- of indices such thati € I(x), eachC; is the closest object
sponds to a boundary point. The dotted lines delineate two x (so there can be more than one “closest” object). Since
values of the raw distance function on opposite sides of &D(x) is composed of single object distance gradients, it can
local maxima. The solid line connects two points from twdde readilycomputed from sensor data.

different convex set<;; andC;. In the planar case, gradient ascentldfis simply mov-

ing away from the nearest obstacle until the robot is two-way
equidistant. InR3, the robot initially moves away from its
nearest obstacle until it achieves two-way equidistance, and

then while maintaining two-way equidistance, the robot per-

pnfortunately, the robot may not know initially if it is on orms gradient ascent until it reaches a point that is equidistant
an inner boundary component. Therefore, at all second-or 8

. h b ‘ hi p hi "three obstacles, a point on the GVGRA. InR™, one can
meelt pc_)mts,dt edro cit TUSt_Fﬁr 0”;: this proce ureh, V‘: IGssume that gradient ascent@freduces to a sequence of
resu ts in redundant lin S- e robot terminates the links.» jient ascent operations, constrained to equidistant faces
tracing procedure when it encounters a GVG edge, a &V

q bound q floating bound 4 T here the robot travels via a collision-free path along a two-
edge, a boundary edge, or a floating boundary edge. Suidistant face, then a three-equidistant, and eventually to

term_inz_iting point becomes a node in the HGVG. anm-equidistant face (Choset and Burdick 2080).
Similarly, if the robot is on an outer boundary component,

it must look for an additional pair of equidistant obstaclesEXAMPLE 3. Figure 12 is a cross section of a three-
However, the robot need not know if it is on an outer bounddimensional world (imagine the polygons are coming out of
ary component, so it must always perform the following link{he page), which contains two examples of accessibility in
ing strategy, once again resulting in redundant links. Ontree dimensions. Starting from (A), the robot follows gra-
GVG edge, i, the robot starts constructing a link whendient ascent ofl; until it reaches¥j,. From there, it does

it encounters a point where two additional obstactgsand ~ gradient ascent ob = d; = dj constrained taF until it

C,, are equidistant with the following distance relationshipféaches¥; i, an edge of the GVG. o _

di(x) = dp(x) = dp(x) > d;(x) = d;(x). The robot termi- The procedure to trace a path okraquidistant face, using
nates the link-tracing process when it encounters a structi@nstrained gradient ascent of the multiobject distance func-
in the HGVG. If this structure is a second-order meet pointion, borrows some basic ideas and techniques from numerical
the link is formed. Otherwise, the robot may backtrack tgontinuation methods (Keller 1987), in a fashion similar to the

continue tracing the outer boundary component or save tRBProach described in Section 2. Here, the roots of the ex-
link as another redundant structure. pressiorG 4 (y, ) = O asthe “parametet’is varied describe

A Sim”"f‘r procedure is followed when a G\?Gqu_JidiS' 2. In actuality, the description of gradient ascentfcascading through a
tant edge is on the outer boundary component. While tracingquence of increasing equidistant sheets, is not entirely correct in dimen-

}*k”? , the robot’s range sensor must look for equidistarﬂions greater than three. The above procedure represents the tail end of a
i sequence of gradient ascent operations, each constrained to an equidistant

between two ObStades;P and Cq- At this point, the robot face. Itis possible that gradient ascenibélescribes a path of the robot that
traces a pathwhetg, (x) = d,;(x) > di(x) > di(x) =d;j(x) traverses a two-equidistant face, then a three-equidistant faceaniogmer
on % until it encounters an HGVG structure. Just like betwo-equidistant face, then a three-equidistant face, and so on. That is, in

fore, if this structure is a second-order meet point, the link ﬁe course of doing gradient ascent/of the robot may drop down to dou-
’ ! e equidistance before undergoing the cascading sequence of constrained

formEd- Otherwise, the robot may backtrack to (_:ontinue tragradient ascent operations that bring the robot to a GVG edge. We have
ing the outer boundary component or save the link as anoth@nstructed generic four-dimensional examples where this occurs.




Choset et al. / Sensor-Based Exploration: Incremental Construction of HGVG 139

-1
Y = Y — (V4G A)TGAG", A, (18)

whereV, G 4 is evaluated aty", A"). After taking the pre-
diction step, the goal of the correction step is to find where
thek-equidistant face locally intersects the correcting plane.
Again, it is important to note that to evaluat®s (y, 1)
andV,G(y, 1), one only needs to know the distance and
direction to thek objects that are closest to the robot’s cur-
rent location—information that is easily obtained from local
distance sensor data. The following propositions and lemmas
demonstrate that this procedure is theoretically sound and can
be implemented using local information.
Computing the Tangent Vector. The predictor step is
i a small step the direction in the tangent space of ihe
equidistant face that maximally increasBs$x). This step
is determined in two steps: first the tangent space okthe
equidistant face at is computed, and then the generalized
gradient of D is projected onto it. Lemmas 1 and 2 furnish
a path on &-equidistant face. Note, in this casés a vector, the tangent space, and the following proposition shows how
i.e., it is not a scalar as it was in the incremental tracabilitthe genera"zed gradient is projected onto it. In fact, the fol-
procedure. lowing proposition states that the generalized gradien® of
Letx be a point on thé-equidistant face. Choose a localprojects to a single vector on the tangent space.

coordinate frame at so that the first: — k 4+ 1 coordinates,

(21, ..., Zm_i+1), are the coordinates that span the tangeﬁ[ROPOSITION& The restriction of the multiobject distance
space of th&-equidistant face at, and the next — 1 coor- function D to ak-equidistant face is smooth. That is, the gen-

dinates(zm_i+2, - - ., zm), SPan a plane termed the “normal€ralized gradient oD (x) projected ontchJ_’L‘,»lm,-k is equal to
slice plane.” We can thus decompose the local coordinat&s; 7, ., Vd; foralli € {i1...ix}, wherer is the orthogonal
into z = (v, A), wherex = (z1,...,Zn—k+1), the “sweep Projection operator.

coordinates,” and = (zm—k+2 .-, zn) are the “slice” co- | o4 & e 4 plane i, R”. Letw, be the unique minimum
ordinates. Note that there can be some confusion with tn@ngth vector inE (i.e., v, is based at the origin of, R"
oy e X

choic:_e of coordinfates: when= (y, 1), A is thefirstm —k+1 and its head is itE). Define P to be the subspace @t R”
cocl:\:dln%te? ang:]|sfthengxtk B %ﬁ?gfd'%aﬁfh pie1  PavalleloF, e, P = E — ve. Let P be the orthogonal
ow define the functio@ 4 : x e compliment ofPg. Therefore I,R™ = P P PEL, and thus

Fig. 12. Gradient ascent accessibilityR.

as follows: for all vectorsu € T,R™, u can be written as the sum + u»,
(d1—d2)(y, 1) whereu; € Pg andup € Pg. The orthogonal projection
(d1—d3)(y, 1) mp,(u) isu1. We can now define the orthogonal projection
Galy, ») = . 17 operatorrg to benp, .
(d1—d)(y, M) Proof. Note thato D(x) is the affine hull of the heads of

the k gradient vectorsvd,,, ..., Vd;,. So,dD(x) can be
i[ewed as a plane ifi, R and by Lemmas 1 and 2, the plane
D(x) is orthogonal tdl, 8S;,. ;,. Transversality considera-
tions imply thatd D (x) andT,SS;, ;, intersect at a point, and
thus the generalized gradient Bf constrained td, §S;,. .,
is always a point, not a vector. This point, which we denote
by v € T:8S;,..i, [1dD(x) is the closest point id D (x) to
e T,R™.

Define P to be a subspace dof \R™ given by P =
dD(x) — v (again,dD(x) is viewed as a plane). The or-
é)_gonal projection ofi € 3 D(x) is given by

The procedure for tracing a path on thequidistant face
is similar to the approach described in Section 2. The robé
starts at a point on thé-equidistant face. At this point,
and all others on thé&-equidistant face(G 4 vanishes. The
robot takes a “small” stepAA, in the tangent space of the
k-equidistant face such thd@(x) increases the most. Typ-
ically, this step takes the robot off of tlkeequidistant face.
So, on ak — 1)-dimensional plane orthogonal to the tangen
space, the robot moves back onto thequidistant face. This
(k — 1)-dimensional plane is called the “correcting plane.
The correction step is the same as the one described in S
tion 2. If y" and)r” are theh'" estimates of andx, theh + 1st

iteration is defined as T S88iy i ID(x) = T88iy..ix- (19)
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SinceD andnTXSSil__jk are continuous, the restriction of the

generalized gradient dd on §S;,. _;, is continuous. There- Generalized Voronoi Graph
fore, the restriction of the multiobject distance functibrio Osbtacle

ak-equidistant face is smooth. a
Therefore, the robot takes the following step: '

jT‘{}Ttilu.ik aD(x) = nﬁl,.“ik lel (x)

® Goal

\
= Vdj, (X)Vd ()—Vds. () Generalized Voronoi Vertex
=k ip (X)—=Vd; . (x (Meet Point)
~ 2j=2 Wayeo=va, cor I Veis Il

Fig. 13. Original GVG.
Computing the Correction Step. The correction proce-

dure is guaranteed by

PROPOSITIONG.  The matrixV,G 4 (y, A) has full rank (i.e.,
has rank(k — 1)) in a neighborhood of &-equidistant face i
on the correcting plane.

Proof. This is a simple consequence of Lemmas 3 and -
SinceV, G 4 is ak—1 byk—1 matrix, by these lemmas, it must
have rankk — 1) for x € F*, and therefore be invertible at

Since the rank operation is a continuous functd@y(; 4 must e

be invertible in an open neighborhood aroune= (y, A) € Star-Shaﬁi s _ _

F™. This open neighborhood will intersect the correcting Gor —2pC_ 1 Virtual Generalized Voronoi Graph
plane for|| AA|| sufficiently small, and thus, G 4 is invertible

on the correcting plane as well. | Fig. 14. Virual GVG of Figure 13.

7. Incremental Departability

In sensor-based exploration, the robot may or may not know
the coordinates of its goal location. If the robot does not
know the goal coordinates, it is assumed that the goal is de-
fined by a beacon or other feature that the robot can detect
once it is within line of sight of it. We therefore would like

to find a departing method in which the robot can access the
goal in a straight line. Treating the goal as an object, create a
“virtual” generalized Voronoi graph (Fig. 14). A star-shaped
set, bounded by the virtual GVG, surrounds the goal, and
thus there exists a straight-line path between any point on the
boundary of this virtual star-shaped set and the goal. Gener-
ally, the virtual GVG is connected to the GVG and thus there is
a point within line of sight of the goal on the GVG. However,
as we know from previous sections, the virtual GVG may be Obstacle
d@sconnected. In this case, itis necessary to build a Iink'to tr,}_qg 15. Floor plan of bounded environment.
disconnected component that surrounds the goal. The linking

strategy is a special case of the strategy one would use to link

GVG cycles to other second-order GVG edges.

GVG, traced one GVG edge, encountered a meet point, and

8. Simulations continued tracing until a boundary point. The ticked solid
. ] lines represent the planar GVG (also the GVD); these are the
8.1. Planar Simulations locus of points equidistant to the two nearest obstacles. The

A planar simulator has validated this approach for a point dicks point to the nearest obstacles. Figures 17 and 18 display
circularly symmetric robot operating in the plane. Figure 15vo more intermediate simulation results. Figure 19 shows
contains an example of a bounded environment in which othre final simulation result.

algorithm was tested. In Figure 16, the robot has accessed theFigures 20 and 21 contain other examples of planar GVGs.



Choset et al. / Sensor-Based Exploration: Incremental Construction of HGVG 141

Fig. 16. Iteration 1. Fig. 19. Iteration 14.

8.2. Three-Dimensional Simulator

A major advantage that the HGVG has over other methods
is that it is applicable in higher dimensional workspaces. To
this end, we have implemented a three-dimensional simula-
tor that traces GVG edges. The algorithm and data structure
of the three-dimensional simulator is similar to that of the
planar version. The distance function code, used in the three-
dimensional simulator, was written by Brian Mirtich at Berke-
ley. Currently, the linking procedures are under development.
Figure 22 contains a GVG for a three-dimensional environ-
ment, and Figure 23 contains the GVG and G\&guidistant
edges for the same environment.

Figure 24 contains the GVG for a rectangular enclosure
with two boxes in its interior. In this example, the GVG is not
] ) connected and thus the robot cannot use the GVG to plan paths
Fig. 17. Iteration 5. in this environment. Essentially, the robot-highway system
has a big gap in it. However, our solution recursively defines
GVG edges on the two-dimensional sheets; these edges are
second-order GVG edges and together with the GVG form
the HGVG, which is connected in Figure 25.

Figures 26 and 27 display only a box that is in the middle
of a rectangular enclosure. In these figures, the box has a
hole on its top, which can be a through-hole or entrance to
an environment in the box’s interior. Regardless, the hole has
a GVG structure associated with it and there is a GVG cycle
surrounding the box. Emanating from the cycle is a link that
terminates at an occluding edge. In these figures, the second-
order GVG, comprising occluding edges and GA&juidis-
tant edges, links the GVG connected components. Again, the
HGVG is connected in this example.

Figure 28 contains an HGVG that is connected through
links that were formed via constrained gradient descent to the
second closest obstacle, as described in Section 5.1. Although
one link is sufficient to connect the HGVG, the HGVG here
has many redundant links. These redundant links are reason-

Fig. 18. Iteration 10.



142 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 2000

Fig. 22. Results of applying the simulator to a three-

) o— dimensional box with a long box that is located off-center

Fig. 20. Planar GVG. in the inte.rior. Notg that some of thg vyalls were removed o]
the GVG lines, depicted as thick solid lines, can be displayed.

Fig. 23. HGVG for the same environment in Fig. 23.

Fig. 21. Planar GVG.
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Fig. 24. The GVG is disconnected. Fig. 27. The HGVG is connected.

able because they provide parallel pathways that may serve
as shortcuts that direct the robot from the exterior to the in-
terior of the environment. However, they were formed for a
different reason. In the course of developing the simulator,
searching for every possible GVG and G¥6ycle became
computationally expensive. Instead, it proved to be quicker
to bypass searching for cycles and just invoke the linking
procedure at every node in the HGVG. Figure 28 also high-
lights these nodes. Note that additional nodes, termed critical
points, are also used. These are points whgrbtains an
extremal value on the GVG edge; two nodes represent each
degenerate extrema.

The main advantage of storing the nodes comes into play
when multiple links terminate on the same GVG edge. In
Figure 28, four links terminate onthe GVG cycle intheinterior
of the room. In this example, the front-left second-order meet
point was the origin of the first link to the cycle. Once the link
was formed, the planner generated the inner GVG cycle. The
revised algorithm requires linking from all the nodes, so the
front-right second-order meet point also sources a link. When
this link terminates on the GVG cycle, how does the planner
know the cycle was already traced out? A naive method would
be to search every point on every edge that has been generated,
but that would prove to be computationally intensive. Instead,
the planner starts to retrace the GVG cycle until it encounters
a node. At this point, the planner can look up the coordinates
of this point in a list of all nodes. Since all of the nodes for
a set of measure zero on the HGVG, this does not constitute
a major search. If a duplicate node was found, the link is
inserted into the appropriate edge that was already generated.

Fig. 25. The HGVG is connected.

9. Experiments

] o To verify the incremental construction procedure, we imple-
Fig. 26. The GVG is disconnected mented this approach in the planar case (ke.= 2) on
a circular mobile robot base. The mobile robot is the B12
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Fig. 28. Two views of the HGVG with links connecting the outer GVG to the inner one.

Mobile Robot Base, produced by Real World Interface, Inc.,
and it is instrumented with a ring of 12 sonar sensors that
provide local distance measurement information. While the

sensors are quite accurate in distance measurement (on the or- T S?ed Room

der of 1 cm), their angular resolution is only accurate to. 22
In terms of our algorithmg; (x) can be accurately measured
using this robot, buvd; (x) will be inaccurate.

The result of one experimentis shown in Figures 29 and 30,
though many other experiments were successfully completed.
In this trial, the room was “T-shaped,” with the geometry of
the room and the theoretical GVG shown in Figure 29. In
Figure 30 the experimental GVG constructed by the robot is

shown. The small squares denote the edge termination points,

while the hatched squares represent meet points. For safety

reasons, the robot does not trace the edge all the way to the

wall’s boundary. The octagon shown on the graph represents Q&
the scale size of the robot. The experimental GVG edges are 6(‘)
jagged because the tangent is crudely approximated. This

crude approximation results from the angular inaccuracy of

the sonar distance sensors. However, the GVG is connectegly. 29. Room with Actual GVG.
and the edges are maximally far away from the workspace

boundary. Note that the actual GVG construction is quite

robust even with large errors in distance measurements.

GVG

10. Conclusion

This paper introduced an incremental procedure to construct
the GVG and the HGVG. This procedure requires only local
sensor distance measurement data, and is therefore practi-
cally implementable, as demonstrated by our simulations and
experiments. Hence, the generalized Voronoi graph and hier-
archical generalized Voronoi graph introduced in this work
appear to be useful means for implementing sensor-based
motion-planning algorithms. We have shown in related work
the numerical methods introduced are useful for “sensorizing”
other (e.g., the OPP method) robot motion planners.

In addition to tracing the roots of a continuous function,
we also developed a procedure to trace a one-dimensional set
of points in the domaln ofadlscqntmuous.functlon'. This prol—:ig. 30. Experimental GVG.
cedure has been implemented in simulation and in the future
will be generalized to all discontinuous functions.
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A critical component to sensor-based exploration is th
robot’s ability to ascertain its location in the partially explorec
map or to determine that it has entered new territory. Mar
conventional methods attempt to make this determination v
a localization scheme that updates they) coordinates of
the robot. Most robots update their location by integratin
data from their wheel encoders that count the number of whe
rotations (or fractional rotations). Ifthe robot slips, the wheel
do not rotate and thus this motion cannot be integrated |
the robot's encoder, thereby causing error. GPS systems n
offer an alternative, but commercially available systemsdon
work inside buildings nor provide the necessary resolutiol
Finally, landmarks with known locations can be deployed i
the environment, but the task described in this paper considi
environments that are completely unknown a priori. Futur
work will exploit geometries of the HGVG to locate itself ongjy 31 cone formed by points.
the partially explored map or conclude the robot has enteredg

new territory.
: d is zero dimensional, there can only be one point in
Appendix an ’
ppend Ty Ri,..i, (Af{c1, ..., ck}. Thereforep = 0.
Thereforew, which is equal toc — 0, is orthogonal to all
Proof of Lemma 1 vectors in the affine hull ofcy, . . ., cx}. Sincew is atranslate

Proof. It can be shown that given Assumption 2, flegu- ©f @ w iS also perpendicular to Ady, ..., ci}.

lar k-equidistant faceskfequidistant faces of the RVG) are Now, Ie_tgradient planebe the(k B 1)-dimensional plane
C2-diffeomorphic toR”~*+1 and thus regulat-equidistant that contains the heads of thegradient vectors based at

Jgﬂs is the affine hull of the heads bfyradient vectors. Note

faces are isometric to their tangent spaces. In other words, ‘ )
g P éhatdij (x) is the length of the line that connectsandc;

Ty Riy. iy = Riy..i,- Assumption 2 guarantees that the affin 3
hull of {c1, ..., ck}, Af{ct, . .., ek}, is a(k — 1)-dimensional W erI‘IEC,f € {e1, ..., e} Since,flx — Cél” f: ¢ E ci |
plane. Furthermore, Assumption 2 guarantees that embedd@@!! /, ¥ — ¢i; = llx —¢iy[Vd;; (v). Therefore, the cone
in the base plane, there is a uniqiie-2)-dimensional sphere, ormed by the gradient vectors is “similar” to the one formed

S, defined bylcy, . .., ¢ ). Define a coordinate frame whoseby thek closest points and thus theadient pIane}s parallel t_o

origin is the center of this sphere. Let O denote the origin. Af {;1’ T ’d?k}' Trerefore, the tangent space is perpendicular
Pick aw € Ty R;,._;, and translate this vector so itis based® e gradient plane. -

at 0, the origin of the above described coordinate system. Let

w be the translated vector. SineR;, ;, ~ Ri,.i,w can Proofof Lemma 2

be viewed as the difference of two points;- 0, wherexr is  pro¢ A x_equidistant face can be defined@y (0), where

equidistant tdci, . . ., ck}. (This is the same thing as saying
there is a natural identification between a Euclidean space and (d1 — d2)(x)
the tangent space of a point of a Euclidean space.) Gx) =
Drop a perpendicular fron¥ to Af{c1,...,ct}. Letp
be the point where the perpendicular intersects the affine hull. (d1 — dp) (x)
Sincel|x —c¢;|| = ||x —cj| foralli andj, | p—c;|| = [Ip—c;j| Let {¢;} denote the closest points toin thek closest ob-
for alli and;. Thereforep is an element ofR;; . stacles. Theegular k-equidistant face for the set of points

The next step is to show thatis 0, the origin of the co- 1,1 is defined byv G—1(0), where
ordinate system (the center of the sph&)e Transversality
guarantees that lx —c1] =[x — c2
lx —c1| — [x —c3]

dim(TxRil.“ik ﬂAf{Cl, ey Ck}) =0. VG(X) =

, , : : Ix —c1f = |x — cxl
Furthermore, since the intersection of two convex sets is a

convex setT R;, i, [|Af{c1, ..., ck} is also a convex set, Since the set of closest point§s;}, is the same for the
which is connected. Since this intersection is connectddequidistant face and the regulafequidistant face at,



146 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 2000

dp(x) = |x —cp| forall h = 1,...,k. Thatis, V(d,, Consider the matrix,
—dp,)(x) = |x —cpy| — |x —cp,| forall hy, hp =1, ..., k. . T
Therefore G (x) = VG(x) atx. (Vidiy —dj)(x)
; : VG(x) = [ (V(di; —djp)(x)" |-
By the preimage theorem, the tangent space at a paint vid : T
G~1(0) is the null space o¥ G (x), where (Vdiy — dj5)(x))
The Equidistant Surface Transversality Assumption (As-
V(d1 — d2)(x) sumption 2) guarantees each row is pairwise linearly
VG(x) = : : independent:

V(dy — di)(x) Vdi, — Vdj,  # k12(Vdi, — Vd,,),

Vd,'l - Vdjl 75 Klgng,'3 - VdjS), (20)

And the tangent space at a pointe VG~1(0) is the null
gent sp P © Vdi, —Vd;, # k23(Vdiy — Vdj,).

space ofVV G (x), where
Itremainsto showthat no one rowis alinear combination of

é:gﬁ - é:gf\ the other two. Again, we prove this by contradiction. Assume
Z e
VWG = | el Tl Vidiy — djy) = a(V(di, —djp)) + B(V(diy — dp)). By
X) = . : definition, for allw € T,8S;,;,, (V(di, — dj;)(x), w) = O.
x—ep | x—cq Thus,
x—c1|  |x—ci]

o _ _ Vdi, —dj) =a(V(di, —dj,)) + B(V(diy — dj3)),
Again, since the set of closest points;}, is the same for = ((Ol(V(diz — djz)) + 5(v(dl.3 — dja)))v w) =0,
the k-equidistant face and the regularequidistant face at = (((Vdi, —d},)) + E(V(dig —djy)), w) = 0.
x, Vdp(x) = 2= forallh = 1,...,k. Thatis,Vd, (x) ¢

[x—cn]

Since by Equidistant Surface Transversality Assumption

x—cp xX—cp
—Vdi(X) = =57~ gy OF @l ki ke = 1.k, (Choset and Burdick 1995), for all € 7S;, j;:
ThereforeVG(x) = VVG(x) atx. Hence, th&-equidistant
face and the reguld-equidistant face have the same tangent (V(di, —dj)(x)), w) #0
space ak. O (V(diy —dj) (), w) #0,

we conclude thaV (d;, — dj,) = £(V(di, —d};)). However,
this contradicts one of the three inequalities in eq. 20. There-
Proof. First, consider the case when= 2. In this case, fore, allthe rows oV G are linearly independent of each other

the robot is either equidistant to three obstacles (&3g= and rankVG) = 3.
1, j1 = 2,i1 = 1, and j» = 3) or two sets of two obstacles The lemma follows by induction. Assume the matrix

(e.g.,i1 = 1, j1 = 2,ip = 3, andj, = 4). The respective Vd —d: T
tangent spaces &fs;, ;, andss;,,, are (Vidy, _ )

Proof of Lemma 3

G(x) = :
TxSSiljl = {U € Tme : (V(d,'l — djl)(x), U) = 0}, (V(diq,1 _ djq,l)(x))r

. . P— m . . — . —
Lc88izrp = (v € TR™ 2 (V{di, = djp) (%), v) = O}. has a rank ofy — 1, and letss;_ ;. be a two-equidistant sur-

By the Equidistant Surface Transversality Assumptioictive surface defined by obstacleg and C;,. The re-
from Choset and Burdick (2000), we know thes; j, mainder of this proof follows by contradiction. Assume that
—88i,/,- Assume at some point V(di, —dj)(x) = «V(d;, V(di,—d;)= 23;11 o, (V(di, —d},)). Atapointx € §S; ;. ,
—dj,)(x). By definition, for allw € T7.8S;;, (V(d;, forallw e T\SS; ;, wis orthogonal toV(d;, — d;,)(x).
—dj)(x),w) = 0. SinceV(di, — dj,)(x) = kV(d;, Therefore,

—djz)(x), for w € TxSSij, (V(diz — djz)(x),w) = 0.
This implies that7,8S;,, = T,8S;,;,, which violates the
Equidistant Surface Trg;lsversalityzﬁssumption (Assumption Z(“’(V(dir —dj)(x), w) =0
2). ThereforeV(di, —d;,)(x) # «V(di, —dj,)(x);i.e., they "=

q—1

are linearly independent. It therefore follows that -1
= Y . (V(d, —d;)(x)) =0. (21)
(V(diy, —dj )(x))T} =1
rank[ roon =2
(V(diy —djp)(x)T It follows that
Now, we consider the case where= 3. Here, the robot 9-1 a,
may be equidistant to four obstacles, three sets of two obsta- V(di; —dj;)(x) = Z a—l(V(dir —dj)(x)), (22)

cles, or three obstacles and an additional pair of obstacles. r=2
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which leads to a contradiction because the rank i g — 1 Letmy,;, be the orthogonal projection onto thie operator.

(i.e., the rows ofG are linearly independent of each other)By definition, my,;, (cj, — ¢;,) = ¢j, — ¢;,. From this, we can

Therefore,V(d,-q —d;,) # Zf;ll ar(V(d;, —d,,)), and thus conclude thatx — ¢;,) — (x — ¢;,) is equal to the projection
of itself ontob!,.. In other words(x —¢;,) — (x —c},) € bl,,

V(diy — Vdj;)(x) or
rankG(x)) = rank : =q. o, (X = i) = (x = ¢j.)) =7, (¢j, —ciy)
V(d _Vd) ) :er_cir
iq Jg)(x =x—-c,)— (- er)‘
O (23)
Note that(x —_ Ciy) = _dir ()C)Vdir (x) and (x — er) =

Proof of Lemma 4 —d;, (x)Vd;, (x) (recall thatd;, (x) = d;,(x)). Substitute

Proof. As a consequence of the preimage theorem, each elgese relationships into eq. (19).
ment (i.e., row) ofG defines a two-equidistant surjective sur-
face. SincesS; j, ()---N 88i,j, # ¥ and each paiti, j,}
is unique (i.e., for alky, r2, {ir, jr} # {iry, jrp}), NO two
components of; are the same. Therefore, when Assumption my;, (—d;, (x)Vd;, (x) — (—=d;, (x)Vd;, (x)))
1.2 is uphe.ld, the.pre|m_age theorem asserts@dt0) is a . = —d;, (X)Vd;, (x) — (=d;, (x)Vd;, (x))
manifold with codimensiog whose tangent space at a point
x €88,;,(---N8Si,j, isthe null space oV G (x), which
is equal toT (SS;, j, ﬂq- % M 8S;,;,)- Finally, let thenormal i ()70, (Vdi, (x) = Vd, (x))
slice be theg-dimensional plane orthogonal to the tangent =d;, (x)(Vd;, (x) — Vd;, (x))
space ofG ~1(0) atx.

.Pick ref{l,...,q}. Letg, and Cjr be the two closest i, (Vdi, (x) — Vd,, (x)) = Vd; (x) — Vd,, (x).
points on obstacles;, andCj,, respectively, toc. By Lem- o .
mas 1 and 27, §S;, ;, can be viewed as codimension one plan&ince the slice line is parallel to the base line,

p, (X —¢i,) — (x —¢j,)) = (x —¢,) — (x —cj,)

that is the locus of points equidistantdp andc;, . 51, (Vdi, (x) — Vd;, (x)) = mpi, (Vd;, (x) — Vdj, (x))
Let ny,...,n,_1 be an orthonormal basis fdf,SS;, ;, = Vd, (x) — Vd; (x)
whose origin is the midpoint of the segment that connects r i
ci, andc;j,. In this coordinate frame, We can conclude that
x =@l 1T V(diy —dj)(x) Vi (diy — djp)(x)
ci, =(0,...,0,0)7 = )
cj, =0.....0,-a)7, V(d;, —dj,)(x) Vi, (di, — dj,)(x)
Wherey = lar=¢irl and since slice plane Y is the spanséf, . . ., sl,,
Let the slice ling si,, be the line that is orthogonal to VG(x) = VyG(x). (24)
T, 8S;, ;, and passes through That is,
’ Therefore, rankVG(x)) = rank(Vy G(x)). [l
sl, =x+i VAeR,
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