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Abstract

This paper prescribes an incremental procedure to construct
roadmaps of unknown environments. Recall that a roadmap is a ge-
ometric structure that a robot uses to plan a path between two points
in an environment. If the robot knows the roadmap, then it knows
the environment. Likewise, if the robot constructs the roadmap, then
it has effectively explored the environment. This paper focuses on
the hierarchical generalized Voronoi graph (HGVG), detailed in the
companion paper in this issue. The incremental construction proce-
dure of the HGVG requires only local distance sensor measurements,
and therefore the method can be used as a basis for sensor-based
planning algorithms. Simulations and experiments using a mobile
robot with ultrasonic sensors verify this approach.

1. Introduction

This paper describes a numerically well-posed and complete
algorithm for sensor-based robot mapping of unknown envi-
ronments. This algorithm produces aroadmap, a network of
one-dimensional curves that concisely represents the salient
geometry of a robot’s environment. Once the robot constructs
the roadmap, it can use the roadmap to plan paths in the en-
vironment, and hence, when the robot constructs a roadmap,
it effectively explores an unknown environment.

The incremental construction procedure is general to many
roadmaps, but this paper applies the construction algorithm
to a roadmap termed thehierarchical generalized Voronoi
graph (HGVG) which is described in Choset and Burdick
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(2000). The incremental construction algorithm is applied to
the Opportunistic Path Planner (OPP) (Canny and Lin 1993;
Rimon and Canny 1994) in Choset (1998).

To map an unknown environment, the robot must system-
atically move about and sense the environment because most
environments do not contain one vantage point from which a
robot can “see” the entire world. In other words, the robot
cannot turn itself on, “read” in the world, process it, and then
construct the HGVG (or any other structure) from one single
vantage point. The robot must use an incremental algorithm.

A lot of work in sensor-based planning deals with inter-
leving sensing with motion. Here, we use an incremental
construction procedure that automatically determines when
to sense and to move. This algorithm uses distance infor-
mation to numerically construct the HGVG edges. Since sen-
sors provide distance measurements, the numerical procedure
readily uses raw sensor data to generate a small portion of an
HGVG edge. The robot then moves along this portion, and
the procedure is repeated to generate the next segment. This
incremental construction technique, therefore, automatically
interleves sensing with motion.

The robot traces an edge until it reaches a node in the
HGVG, at which point it branches to explore all edges ema-
nating from that node. When all nodes have no unexplored
directions (and all cycles have been traversed), the algo-
rithm finishes. This termination property differentiates the
HGVG sensor-based construction procedure from other mo-
bile robot techniques: it is complete. In other words, using the
HGVG procedure, the robot can conclude it has explored the
environment.

Finally, since the HGVG is defined in multidimen-
sional configuration spaces and work spaces, the incremental
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construction allows exploration of multidimensional environ-
ments. While sensor-based planning motivates this work, the
HGVG has many other applications when full knowledge of
the world is available. In fact, prior methods for construc-
tion Voronoi diagrams (the HGVG in the plane) are limited to
point sets, simple polygons, or convex obstacles with known
curvature. The incremental construction procedure here does
not place any of these restructions on the obstacles; in fact,
the obstacle can also be a sampled set of points, which is what
sensors really provide.

1.1. Relation to Prior Work

There is a vast literature in sensor-based planning, especially
for mobile robots. However, most of this work is not com-
plete and limited to the plane. One class of heuristic algo-
rithms employs a behavioral-based approach in which the
robot is armed with a simple set of behaviors (e.g., follow-
ing a wall) (Brooks 1986). Another heuristic approach in-
volves discretizing a planar world into pixels of some reso-
lution. Typically, this approach handles errors in sonar sens-
ing readings quite well by assigning each pixel a value indi-
cating the likelihood that it overlaps an obstacle (Borenstein
and Koren 1990). Strong experimental results indicate the
utility of these approaches, and thus these algorithms may
provide a future basis for complete sensor-based planners.
Unfortunately, these approaches neither afford proofs of cor-
rectness that guarantee a path can be found nor offer well-
established thresholds for when these heuristic algorithms
fail. Finally, these approaches do not typically generalize
into higher dimensions.

There are many nonheuristic sensor-based algorithms for
which provably correct solutions exist in the plane (Rao et al.
1993). Our approach is to adapt the structure of a provably
correct classical motion-planning scheme to sensor-based im-
plementation. One such approach is based on a roadmap
(Canny 1988).

Our roadmap approach was motivated by Rimon’s work,
which adapted Canny and Lin’s OPP (Canny and Lin 1993)
method to sensor-based use. Originally, the OPP constructs
part of its roadmap (the freeways) for a multidimensional work
space using local information and is therefore partially incre-
mental. However, the construction of “bridge curves,” which
guarantee the roadmap’s connectivity, requires the identifica-
tion of “interesting critical points.” Complete prior knowl-
edge of the world’s geometry is needed to identify the critical
points. This is a major limitation of their algorithm for sensor-
based implementation. Rimon and Canny (1994) suggested
a way to “sensorize” the OPP algorithm. They introduce the
notion of a “critical point sensor” and a “minimum clearance”
sensor, though the implementation of such sensors is not well
detailed. Furthermore, they do not provide a detailed method
to construct the freeway segments from sensor data.

In contrast, this paper formulates a method for the con-
struction of roadmap segments from sensor data. Although
the construction procedure generates the HGVG (Choset and
Burdick 2000), it can be readily adapted to construct other
roadmaps, such as the OPP (Choset 1998).

It is worth noting that in the planar case, there have been
other Voronoi diagram–based approaches. In Rao, Stolz-
fus, and Iyengar (1991), an incremental approach to create
a Voronoi diagram–like structure was introduced. Also, in
Kuipers and Byan (1991), the robot essentially traces double
equidistance until a sensor threshold is met, at which point
the robot follows the obstacle boundaries. The nodes in this
graph are termed distinct places, which are local maxima of
the distance to nearby obstacles.

1.2. Overview

The incremental construction algorithms borrow techniques
from the numerical curve tracing literature. Initially, the tech-
niques were developed to generate GVG edges (Section 2), but
then they were generalized to trace GVG2 edges (Section 3).
The incremental linking procedure is described in Section 5.
Next, combining the GVG-based results with some basic non-
smooth analysis, we describe the numerical procedure to ef-
fect incremental accessibility (Section 6). The accessibility
section may seem out of order because the tracability and ac-
cessibility sections use some common results that are easier
to visualize in the tracability context. The incremental de-
partability procedure is described in Section 7. The entire
algorithm is verified by simulations and experiments that are
reviewed in Section 8 and Section 9, respectively.

Recall from Choset and Burdick (2000), that the HGVG is
designed to operate in a bounded environment of the world.
That is,

ASSUMPTION1. Boundedness Assumption: The robot op-
erates in a bounded, connected subset of the free spaceF7.
This subset is bounded by obstacles.

Also, the obstacles are positioned in a generic fashion giv-
ing rise to equidistant surfaces that transversally intersect. In
other words,

ASSUMPTION2. The Equidistant Surface Transversality As-
sumption: If equidistant surjective surfaces are manifolds,
then they intersect transversally. That is,77i1...ikj1t 77i1...ikj2

with respect to77i1...ik if j1 6= j2.

2. Tracability of the GVG

In an incremental context, the property of connectivity is in-
terpreted astracability. More specifically, tracability implies
that using only local data, the robot can “trace” the GVG
(or HGVG) edges and determine when to terminate the trac-
ing procedure. The robot concludes the edge-tracing process



128 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 2000

when it encounters (1) a meet point, a point where GVG edges
intersect; (2) a boundary point, a point where a GVG edge in-
tersects an obstacle; or (3) a floating boundary point, a point
where two gradient vectors converge on each other (Choset
and Burdick 2000) (i.e., become colinear). At each node, the
robot begins tracing the appropriate edges that emanate from
the node, or returns to a node with unexplored edges emanat-
ing from it. In this section, we present and analyze a method
for tracing a connected component of the GVG. Now, we will
demonstrate how to trace a GVG edge and when to terminate
the tracing procedure.

2.1. Properties for Tracing

Our approach borrows some basic ideas and techniques from
numerical continuation methods (Keller 1987). Continua-
tion methods are used to trace the roots of the expression
G1(y, λ) = 0 as the parameterλ is varied. In a sense, in-
cremental construction techniques are an instantiation of the
implicit function theorem.

THEOREM1. Implicit Function Theorem: LetG : Y ×R →
Y such that

• Y is a Banach space,

• G(y∗, λ∗) = 0 for somey∗ andλ∗

• ∇Y G(y∗, λ∗) is nonsingular with bounded inverse, i.e.,
‖(∇Y G(y∗, λ∗))−1‖ ≤ M for someM

• G(y∗, λ∗) and∇Y G(y∗, λ∗) are continuous in a neigh-
borhood of(y∗, λ∗) denoned nbhd(y∗) × nbhd(λ∗)

then for allλ ∈ nbhd(λ∗), there exists ay : R → R
m−1 such

that fory(λ) ∈ nbhd(y∗) such that

• y(λ∗) = y∗

• G(y(λ), λ) = 0 (existance),

• for all λ ∈ nbhd(λ∗)
⋂

R, there is no solution of
G(y, λ) = 0 in nbhd(y∗)

⋂
R

m−1 other thany(λ)

(uniqueness),

• y(λ) is continuous.

The incremental construction of a GVG edge can be im-
plemented as follows. Letx be a point on the GVG. Choose
local coordinates atx so that the first coordinate,z1, lies in the
direction of the tangent to the graph atx (see Fig. 1). Atx, let
the hyperplane spanned by coordinatesz2, . . . , zm be termed
the “normal plane.” We can thus decompose the local coor-
dinates intoz = (y, λ), whereλ = z1 is termed the “sweep”
coordinate andy = (z2, . . . , zm) are the “slice” coordinates.

Now, letY = R
m−1 and define the functionG1 : Y ×R → Y

as follows:

G1(y, λ) =




(d1 − d2)(y, λ)

(d1 − d3)(y, λ)
...

(d1 − dm)(y, λ)


 . (1)

The functionG1(y, λ) assumes a zero value only on the GVG.
Let ∇Y G1 be the matrix1 formed by taking the derivative of
eq. 1 with respect to theY coordinates. It takes the form

∇Y G1(y, λ) =




(∇Y d1(y, λ) − ∇Y d2(y, λ))T

(∇Y d1(y, λ) − ∇Y d3(y, λ))T

...

(∇Y d1(y, λ) − ∇Y dm(y, λ))T


 , (2)

where ∇Y denotes the gradient with respect to they-
coordinates. If∇Y G1(y, λ) is surjective atx = (λ, y)T ,
then the implicit function theorem implies that the roots of
G1(y, λ) locally define a GVG edge asλ is varied. By nu-
merically tracing the roots of this function, we can locally
construct an edge.

While there are a number of curve-tracing techniques
(Keller 1987), we use an adaptation of a common predictor-
corrector scheme, as illustrated in Figure 1. Assume that the
robot is located at a pointx on the GVG. The robot takes a
“small” step,1λ, in thez1-direction (i.e., the tangent to the
local GVG edge). In general, thisprediction steptakes the
robot off the GVG. Next, acorrection methodis used to bring
the robot back onto the GVG. If1λ is small, then the graph
will intersect acorrecting plane,which is a plane orthogo-
nal to thez1-direction at a distance1λ away from the origin.
The correction step finds the location where the GVG inter-
sects the correcting plane and is an application of the Newton
convergence theorem (Keller 1987).

THEOREM2. Newton-Raphson Convergence Theorem: Let
G : Y → Y such thatY is a Banach space andG(y∗) = 0.
For someρ > 0, letG satisfy

• ∇G(y∗) is nonsingular with bounded inverse, i.e.,
‖(∇G(y∗))−1‖ ≤ β

• ‖∇G(x)−∇G(y)‖ ≤ γ ‖x −y‖ for all x, y ∈ Bρ(y∗).

• ρβγ ≤ 2
3

Then for everyy0 ∈ Bρ(y∗) (ball of radiusρ), the iterates,

yh+1 = yh − (∇G(yh))−1G(yh),

satisfy

1. Here, we are abusing notation.DY G1 is more conventional, but we use
D as the multiobject distance function and therefore want to avoid usingD

here.
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Fig. 1. Continuation method.

• yh ∈ Bρ(y∗),

• {yh} quadratically converge ontoy∗, i.e.,

‖yh+1 − y∗‖ ≤ a‖yh − y∗‖2,

wherea = βγ
2(1−ρβγ )

< 1
ρ
.

We will show that∇Y G1(y, λ) is full rank at every(y, λ)

in a neighborhood of the GVG, and so it is possible to use an
iterative Newton’s method to implement the corrector step. If
yh andλh are thehth estimates ofy andλ, theh+1st iteration
is defined as

yh+1 = yh − (∇Y G1)
−1 G1(y

h, λh), (3)

where∇Y G1 is evaluated at(yh, λh). After taking the pre-
diction step, the goal of the correction step is to find where
the GVG locally intersects the “correcting plane.”

There are several things worth noting about this method.
First, to evaluateG1(y, λ) and∇Y G1(y, λ), one only needs to
know the distance and direction to them objects that are clos-
est to the robot’s current location—information that is easily
obtained from local distance sensor data. Second, Newton
methods are quadratic in their convergence, and thus they
would be substantially faster than the naive gradient ascent
techniques. Third,∇Y G1(y, λ) is an(m − 1) × (m − 1) ma-
trix, and is thus typically quite small in size (e.g., a scalar for
two-dimensional environments, or a 2× 2 matrix for three-
dimensional environments), and the method is not compu-
tationally burdensome. In fact, we symbolically invert the
matrix once and use the result in the actual programs that
generate the HGVG. Finally, there is the issue for how big a
step-size1λ should be. This step-sizeλ should keep the robot
in the ballBρ(y∗) for Newton’s method to work; currently,

determining a rigorous upper bound for the size of the ball is
a topic of research, but in our experiments, we use a step-size
of one robot diameter.

The following two subsections demonstrate that equation
(3) is well posed because(∇Y G1(y, λ))−1 is defined, and that
we can always compute (using local sensor data) a vector that
is tangent to the GVG. In proving these assertions, several
new and useful properties of the generalized Voronoi graph
are presented.

2.1.1. Computing the Tangent to the Graph.

We first tackle the question of how to determine the tangent
to a GVG edge from sensor data. Recall that the Voronoi
graph (Avis and Bhattacharya 1983) was defined for point
sites. To better distinguish it from the GVG, let theregular
Voronoi graph(RVG) be the Voronoi graph for the case in
which the obstacles are points. Furthermore, let theregular
k-equidistant face, Ri1...ik , be ak-equidistant face whosek
closest obstacles are points. Inm dimensions, a regularm-
equidistant face is an RVG edge and it is equidistant tom

closest point objects.
The following proposition produces the tangent to the GVG

by exploiting the coincidence of a GVG edge and an RVG
edge at a pointx where the GVG edge is defined by{Ci : i =
1, . . . , m}and the RVG edge is defined by{ci : i = 1, . . . , m},
them closest points on them closest obstacles.

PROPOSITION1. The tangent to a GVG edge atx is defined
by the vector orthogonal to the hyperplane, which contains
the m closest points,c1, . . . , cm, of the m closest objects,
C1, . . . , Cm.

Proof. This proposition is a simple consequence of the fol-
lowing two lemmas whenk = m. The proofs of these lemmas
appear in the appendix.

LEMMA 1. Let c1, . . . , ck be thek closest obstacle points
to a pointx. Let Ri1...ik be the regular Voronoi graph face
defined by these points wherek ≤ m. When Assumption
1.2 is upheld, any vector in the tangent spaceTxRi1...ik is
orthogonal to the(k−1)-dimensional affine hull ofc1, . . . , ck.
The tangent spaceTxRi1...ik is also orthogonal to the(k − 1)-
dimensional affine hull of the heads of the gradient vectors
based atx.

LEMMA 2. Letc1, . . . , ck be the closest points in thek near-
est obstacles tox ∈ Fi1...ik . At a pointx in thek-equidistant
face, the tangent spaceTxFi1...ik is the same as the tangent
spaceTxRi1...ik , whereRi1...ik is the regulark-equidistant
face defined byc1, . . . , ck.

Let x be a point on a GVG edge defined by the obstacles
C1, . . . , Cm. Them closest pointsc1, . . . , cm of them clos-
est obstacles define an RVG edge. Whenk = m, Lemma 1
asserts that the tangent space of the RVG edge atx is a
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one-dimensional vector space whose basis vector is orthog-
onal to the hyperplane that contains them closest points
c1, . . . , cm.

Lemma 2 contends that the tangent space atx of the RVG
edge, defined byc1, . . . , cm, is the same as the tangent space at
x of the GVG edge defined byC1, . . . , Cm. Thus, by knowing
the distance and direction to them nearest points, the tangent
to a generalized Voronoi graph edge is easily computed.�
EXAMPLE 1. Two-Dimensional World: LetC1 andC2 be
the two closest obstacles to a pointx on F12. Let c1 andc2
be the two closest points on the two closest obstacles. Pass
a line throughc1 andc2; parallel shift this line so it passes
throughx. The displaced line is the normal plane and the
line orthogonal to the normal plane is the tangent space. See
Figure 2.

EXAMPLE 2. Three-Dimensional World: LetC1, C2, andC3
be the three closest obstacles to a pointx onF123. Let c1, c2,
andc3 be the three closest points on the three closest obstacles.
The tangent to the GVG atx is a vector that is normal to the
plane defined byc1, c2, andc3. Let c12 be the vector formed
by subtractingc2 from c1. Let c13 be defined in a likewise
manner. The normal to the plane that containsc1, c2, andc3
is collinear with the vectorc12 × c13.

2.1.2. The Matrix∇Y G1 is Invertible

Now we can take a step along the tangent direction of the
GVG. If this tangent step takes the robot off of the GVG, then
the robot must invoke a correction procedure on a hyperplane
orthogonal to the tangent. This correction procedure is de-
scribed in eq. 3. The following proposition illustrates that the
numerical procedure defined by eq. 3 is well posed for1λ

sufficiently small.

PROPOSITION 2. Equidistant Surface Full Rank Property:
∇yG1(y, λ) has full rank (i.e., has rank(m − 1)) on the cor-
recting plane in a neighborhood of the GVG.

Proof. The following two lemmas are necessary in showing
∇yG1(x) is full rank. These lemmas furnish a general result
for the functionG : R

m → R
q , which is defined as

G(x) =



(di1 − dj1)(x)
...

(diq − djq )(x)


 . (4)

If for all r1, r2 ∈ {1, . . . , n},

{ir1, jr1} 6= {ir2, jr2}, (5)

then G−1(0) represents the intersection ofq distinct
two-equidistant surjective surfaces, i.e.,G−1(0) =
77i1j1

⋂ · · · ⋂ 77iq jq . When the condition in eq. 5 is met

and

q = m − 1,

ir = 1, for r = 1, . . . , m − 1,

jr = r + 1, for r = 1, . . . , m − 1,

(6)

G−1(0) is the intersection ofm−1 two-equidistant surjective
surfaces, which gives rise to a GVG edge. In other words,
G(x) = G1(x). From here, this proof is now a simple
consequence of the following (whose proofs appear in the
appendix):

LEMMA 3. Consider the mappingG : R
m → R

q defined as

G(x) =



(di1 − dj1)(x)
...

(diq − djq )(x)


 . (7)

The rank of∇G(x) is q for all x ∈ 77i1j1

⋂ · · · ⋂ 77iq jq ,
when

77i1j1

⋂
· · ·

⋂
77iq jq 6= ∅

and for all r1, r2, {ir1, jr1} 6= {ir2, jr2}. That is, each pair
{ir , jr} is unique.

LEMMA 4. Consider the mappingG : R
m → R

q defined as

G(x) =



(di1 − dj1)(x)
...

(diq − djq )(x)


 . (8)

On the normal slice plane (and all planes parallel to it)
rank(∇yG) = rank (∇G) for x ∈ 77i1j1

⋂ · · · ⋂ 77iq jq ,
when 77i1j1

⋂ · · · ⋂ 77iq jq 6= ∅ and each pair{ir , jr} is
unique. That is, for allr1, r2, {ir1, jr1} 6= {ir2, jr2}.

The matrix∇G1 is anm − 1 bym − 1 matrix, and thus by
Lemma 3, the rank of∇G1 is m − 1. Lemma 4 asserts that
rank(∇yG1) is m − 1 for all x ∈ Fil ...im and therefore must
be invertible atx.

Since the rank operation is a continuous function,∇yG

must be invertible in an open neighborhood aroundx =
(y, λ) ∈ Fm. This open neighborhood will intersect the
correcting plane for1λ sufficiently small, and thus∇yG is
invertible on the correcting plane as well. �

In practice, the neighborhood of invertibility is quite large
with this method. Practically speaking, this result states that
the numerical procedure defined by eq. 3 will be robust for
reasonable errors in robot position, sensor errors, and numer-
ical round-off errors.

Naively, one could trace an edge by repeated application
of the accessibility method. That is, the robot would move a
small distance along a given direction—either a fixed direc-
tion or perhaps the tangent direction to the current edge. Gra-
dient ascent would then be used to move back onto the local
edge. The OPP (Canny and Lin 1993) method and its sensor-
based adaptation (Rimon and Canny 1994) use this strategy
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Fig. 2. The tangent space is the line orthogonal to the line that connects the two closest points on the two closest obstacles.

with a fixed stepping direction. However, gradient ascent can
be a computationally expensive procedure because of its slow
convergence. Also, the constant step direction leads to unde-
sirable roadmap artifacts (Choset and Burdick 1994).

2.2. Terminating Conditions

So far, we have shown that the robot can trace a GVG edge, but
when does a tracing procedure stop? Due to the boundedness
of the robot’s environment, the GVG edges must terminate,
as stated in the following proposition.

PROPOSITION3. Given the Equidistant Surface Transversal-
ity Assumption, in a bounded environment, if a generalized
Voronoi edge is not a cycle (a GVG edgeC2 diffeomorphic to
a circle), it must terminate (1) at a generalized Voronoi vertex
(a meet point), (2) on the boundary of the environment, or
(3) at a point where two gradients of single object distance
functions become collinear.

Proof. This proof is a consequence of the following proposi-
tion from Choset and Burdick (2000) whenk = m.

PROPOSITION 4. If a (k + 1)-equidistant faceFi1...ik+1 is
nonempty, then thek-equidistant faceFi1...ik must also be
nonempty; however, the converse is not necessarily true.
Furthermore,

∂Fi1...ik = Fi1...ik ik+1

⋃
Ci1...ik

⋃
FCi1...ik .

�
When the GVG edge is cycle, the edge tracing procedure

terminates when the robot circumnavigates the cycle. This
procedure requires that the robot possess an accurate dead
reckoning system.

Incremental construction of the GVG is akin to a graph
search method where the generalized Voronoi edges are the
“edges” and the meet points and boundary points are the
“nodes.” Once the robot has accessed a point on the GVG, it
begins tracing an edge. If the robot encounters a meet point,
it marks the direction from where it came as explored, and
then explores one of the otherm edges that emanate from the
meet point. It also marks that direction as being explored. If
the robot encounters another unvisited meet point, the above

procedure is recursively repeated. When the robot reaches a
boundary point, it simply turns around and retraces its path to
some previous meet point with unexplored directions. The
robot terminates exploration of the GVG component (i.e.,
there may be other disconnected GVG components) when
there are no more unexplored directions at any meet point. If
the robot is looking for a particular destination whose coor-
dinates are known, then the robot can invoke graph-searching
techniques such as the A-star algorithm or depth first search
algorithm.

2.2.1. Meet Point Detection

Finding the meet points is essential to proper construction
of the graph. While meet points occur when the robot is
equidistant tom + 1 objects, it is unreasonable to expect that
a robot can exactly detect such points. For example, while
tracing an edge, it is unlikely that the robot will pass exactly
through anm+1 equidistant point. Furthermore, sensor error
may make such detection difficult. Nevertheless, as shown in
Figure 3, meet points can be robustly detected by watching for
an abrupt change in the direction of the (negated) gradients
to them closest obstacles. Such a change will occur in the
vicinity of a meet point.

Fig. 3. Meet point detection.
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2.2.2. Departing a Meet Point

Recall that the robot is equidistant tom + 1 objects at a meet
point. It must be able to identify and explore them + 1
GVG edges that emanate from each meet point to completely
construct the GVG. Note that each emanating edge corre-
sponds to anm-wise combination of them + 1 closest ob-
jects. Assume that we wish to explore and trace the edge
corresponding to objectsC1, . . . , Cm, the distances to which
ared1(x) = d2(x) = · · · = dm(x), respectively. Proposi-
tion 1 yields the one-dimensional tangent space to the gen-
eralized Voronoi edge corresponding to thesem objects. If
v is a basis vector of this GVG edge’s tangent space, the
robot must determine if it should depart the meet point in
the +v or −v direction. We want the robot to moveaway
from them + 1st obstacle, the distance to which isdm+1(x).
If 〈∇dm+1, v〉 > 〈∇di, v〉, wherei ∈ {1, . . . , m}, then the
robot should move in direction+v, otherwise−v. This ef-
fects motion away fromCm+1.

3. Constructing the Second-Order GVG

The GVG serves as the backbone for the HGVG roadmap.
This section applies the curve-tracing methods of the previ-
ous section to trace the edges of the HGVG, which connect the
GVG when the GVG is disconnected. In this section, how-
ever, we only consider edges that can be represented by the
roots of a functionG, i.e., GVG2 equidistant edges, bound-
ary edges, and floating boundary edges. Occluding edges are
considered separately because they are points where functions
become discontinuous.

3.1. Second-Order Generalized Voronoi Edges

The second- (and higher) order GVG can be incrementally
constructed in an analogous fashion. The key is to define a
function whose roots define GVG2 edges. The roots of the
function

G2(y, λ) =




(d1 − d2)(y, λ)

(d3 − d4)(y, λ)
...

(d3 − dm)(y, λ)


 (9)

locally trace out a GVG2 equidistant edge. The first row of
G2 enforces equidistance between the closest objectsC1 and
C2. The remaining rows enforce equidistance between the
second closest objects. Again, a predictor-corrector algorithm
is used.

3.1.1. Computing the Tangent

The tangent to the GVG2 edges is the null space of

∇yG2(y, λ) =




(∇y(d1 − d2)(y, λ))T

(∇y(d3 − d4)(y, λ))T

...

(∇y(d3 − dm)(y, λ))T


 . (10)

In R
3, this can be easily computed with local sensor informa-

tion. In R
3,

∇yG2(y, λ) =
[
(∇y(d1 − d2)(y, λ))T

(∇y(d3 − d4)(y, λ))T

]
. (11)

In R
3, the null space of∇yG2(y, λ) is the set of vectors,v,

for which

〈∇y(d1 − d2)(y, λ), v〉 = 0 and

〈∇y(d3 − d4)(y, λ), v〉 = 0.
(12)

That is, the tangent to a GVG2 equidistant edge is the inter-
section of the tangent spaces7712 and7734. The Equidistant
Surface Transversality Assumption guarantees that these tan-
gent spaces transversally intersect and thus their intersection
is one-dimensional. A basis vector for this tangent space is
∇y(d1 − d2)(y, λ) × ∇y(d1 − d3)(y, λ). Since the tangent
space is computed from the cross product of gradient vec-
tors, the tangent space can be readily computed from sensor
information.

3.1.2. The Matrix∇G2 Is Invertible

When

q = m − 1,

i1 = 1,

j1 = 2,

ir = 3, for r = 2, . . . , m − 1,

jr = r + 2, for r = 2, . . . , m − 1,

(13)

Lemmas 3 and 4 guarantee the matrix∇yG2(y, λ) has full
rank in a neighborhood of the GVG2 on the correcting plane.

3.2. Boundary Edges

The incremental tracing of boundary edges requires that the
robot move along the perimeter of the environment wherem

obstacles meet inm dimensions. This can be done by tracing
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the roots of the following function,Gb, defined as

Gb(y, λ) =




d1 (y, λ) − ε

d3 (y, λ) − ε
...

dm−1 (y, λ) − ε


 , (14)

where in this caseε is a small “safety” distance away from
the environment. Continuity of the single object distance
function guarantees there exists a small enoughε > 0 such
that the topology of the traced edges reflects that of the actual
boundary edges. In future work, we will see thatGb will
be used in tracing edges of thesaturated generalized Voronoi
graph,which is a roadmap used when sensors function over
a finite range, less thanε.

3.3. Floating Boundary Edges

Floating boundary edges are straight-line segments and thus
do not require complicated numerical curve-tracing tech-
niques. Proposition 4 asserts that a floating boundary edge
terminates at either a GVG edge end point or a boundary edge
(Cij ) end point, which is a point where two convex obstacles
(Ci andCj ) merge into one convex obstacle.

When a GVG edge terminates at a floating boundary edge
point, the basis vector of the floating boundary edge must
be determined. Letx∗ be the point where the two gradient
vectors converge and letv be the limiting vector of∇di(x) (or
∇dj (x)) asx approachesx∗. The vectorv is the basis vector
of the floating boundary edge point, and after encountering
the floating boundary edge point, the robot moves in the−v

direction. When a boundary edge terminates at a floating
boundary edge, the robot moves in a directionv, as described
above. (Note that when obstacles are polyhedra, the floating
boundary edge is a straight-line extension and a boundary
edge is also a straight line.)

3.4. Terminating Conditions

In summary, the GVG2 has the similar terminating conditions
as the GVG: asecond-order meet point, second-order bound-
ary point, second-order floating boundary point, andsecond-
order cycle. The second-order meet points are detected in a
fashion analogous to the (first-order) meet points—the robot
looks for a change in the gradients to the second nearest object
while maintaining equidistance to the two nearest objects. At
a second- order boundary point, the robot does not necessarily
turn around and retrace its steps to the previous second-order
meet point with unexplored directions. Instead, it traces both
of the directions of the boundary edge it intersects (second-
order equidistant edges intersect boundary edges only in the
interior).

4. Occluding Edges

So far, we have described the tracing procedure for HGVG
edges that can be represented by the roots of a differentiable
function. Since occluding edges cannot be described this way,
they present a bigger challenge to edge tracing. In this sec-
tion, we describe a method for tracing discontinuities. The
underlying method of generating occluding edges traces the
boundaries of the adjacent second-order generalized Voronoi
regions who share the common occluding edge, as opposed
to explicitly tracing the occluding edge.

4.1. Accessing the Occluding Edge

The robot arrives at an occluding edgeVkl |Fij
, either as a

result of a linking procedure or tracing an HGVG edge. In
the latter case, an HGVG edge either terminated at a floating
boundary edge, a second-order floating boundary edge, or at
some point in the interior of a boundary edge.

Letx0
kl be the point of arrival on the occluding edgeVkl |Fij

.
Recall that an occluding edge lies on the shared boundary of
two second-order generalized Voronoi regions where the dis-
tance to the second closest obstacle changes discontinuously.
In actuality, the robot storesx0

k ∈ Fk|Fij
andx0

l ∈ Fl |Fij
,

which are the points on the boundary of their respective
second-order generalized Voronoi region near their bound-
aries. Eitherx0

k or x0
l are approximations tox0

kl .
At this point, the robot draws a small circle aroundx0

k (or
x0
l ) contained inFij and determines all points on this circle

that are in occluding edges also. Again, it looks for pairs
of points where the distance to the second closest obstacles
drastically changes. Assume for the sake of discussion that
Fij is locally flat. If there are only two additional occluding
points, sayx1

kl andx1′
kl , and they are collinear, thenx0

kl is a
point in the interior of the occluding edgeVkl |Fij

(between

x1
kl andx1′

kl ). In fact, the line defined byx1
kl andx1′

kl is the
“tangent” of the occluding edge (see Fig. 4).

Now consider the scenario wherex1
kl andx1′

kl do not define
a line or there are points in the circle from multiple occluding
edges. Since we can let the circle be as small as we want,
we are guaranteed that there is at least one pointx1

kl on the
circle that belongs to the same occluding edge asx0

kl and is in
a straight line.

Again, a point on the occluding edge is represented by
two points, one from each second-order generalized Voronoi
region. So, when the robot searches for a point on the circle
associated with the same occluding edge asx0

kl , it is really
looking for the appropriate pair of points. The robot performs
this search by drawing two segments between the access’ pair
of points and the candidate pair on the circle. If both line
segments are fully contained in their respective second-order
generalized Voronoi regions, then the access point and the
candidate point on the circle form a straight-line segment,
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Fig. 4. Local neighborhood of occluding edgeVkl |Fij
.

albeit very small, of an occluding period. The initial tangent
vector is based on the perimeter of the circle pointing toward
the access point, i.e.,x1

kl − x0
kl .

If multiple points on the circle satisfy this no-cutting-the-
corner condition, then the robot simply picks one direction to
go. If all points on the circle satisfy this test, then the robot is
at a node of an occluding period. Since we are only looking
for a tangent direction, the robot simply picks one direction
to initiate tracing.

4.2. Tracing the Occluding Edge

The robot traces the occluding edge by moving in the direction
of the tangent. In actuality, bothx1

k andx1
l are translated in the

tangent direction, notx1
kl . SinceFij is nominally not flat,x1

k

or x1
l may fall off the sheet, so we invoke the similar Newton

iterative correction procedure to bring them back ontoFij .
(Note that correction onto a sheet is described in Section 6.)

The robot then steps again in the tangent direction of the
occluding edge. This tangent is approximated byxh

k − xh−1
k

(or xh
l − xh−1

l ), whereh is thehth step the robot has taken
since it accessed the occluding edge and the subscript still
indicates which region contains the point. Again, bothxh

k

andxh
l are translated in the tangent direction.

The occluding edge may also have curvature, in which case
xh
k −xh−1

k takes the robot off of the occluding edge, even after
correcting back onto the two-equidistant sheet. Therefore,
the robot moves along a lineL, which is the projection of the
hyperplane orthogonal to the current tangent.

The direction to move is determined as follows: letxk, xl

be the current location of the robot after it corrected back
onto the two-equidistant sheet, and assume without loss of
generalityxk, xl ∈ Fk|Fij

andL passes throughxk andxl .
The robot moves alongL away fromxk until the robot reaches
a point where there is a change in the second closest obstacle.
This point isxh+1

l and the previous point before the change
is xh+1

k . So, there are two types of correction: a correction

step onto the two-equidistant sheet and one along the two-
equidistant sheet to the occluding edge.

Figures 7 and 8 display only a box that is in the middle of
a rectangular enclosure. The halolike structure surrounding
the box is a GVG cycle. Emanating from the cycle is a link
that terminates at an occluding edge. The occluding edge is
the rectangular-like structure hovering over the box.

The outer halo surrounding the box is a GVG edge, which
is three-way equidistant to the box, the floor, and the ceiling.
The floor has been removed. The square period floating on
top of the box is a collection of occluding edges that form
a period. Points inside of the occluding period over the box
cannot look straight down to the floor.

4.3. Terminating Conditions

The robot repeats this pairwise step and correct procedure un-
til it encounters an occluding corner, an occluding meet point,
a GVG floating boundary point, a GVG2|Fij

floating bound-
ary point, or a boundary point. These nodes are essentially
detected when the above described correction procedures fail
to converge onto an occluding edge. In such a case, at least one
of the pairs of points being traced has changed second-order
generalized Voronoi regions. Now, we describe the methods
to detect which node the robot has encountered.

Unlike the rest of the edges in the HGVG, an occluding
edge is not guaranteed to beC2-diffeomorphic toR

1. The
occluding edges can have nonsmooth kinks, which are termed
occluding corners. The robot can detect occluding corners by
looking atxh+1

k andxh+1
l . When both points are in the same

second-order generalized Voronoi region (e.g.,xh+1
k , xh+1

l ∈
Fk|Fij

), then the robot has passed by a corner point. By taking
successively small steps from thehth iteration, the robot can
hone in on the true location of the corner point. The robot
determines the new direction to trace using the same circle-
based approach when accessing the occluding edge.

An occluding meet point is where two or more occlud-
ing edges meet. This can occur in a variety of ways:
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Fig. 5. Local neighborhood of occluding edgeVkl |Fij
.

Fig. 6. Tracing an occluding edgeVkl |Fij
.

Fig. 7. The GVG is disconnected.

Fig. 8. The HGVG is connected.

T-intersection, Y-intersection, a cross-intersection, and so on.
The robot detects occluding meet points in a similar fashion
as it does meeting points and second-order meet points. The
robot looks for a change in one of the points from the pair it is
tracing; if either point enters anewsecond-order generalized
Voronoi region (Fp|Fij

wherep 6= k andp 6= l), then it has
passed by an occluding meet point. At this point, the robot
takes a step back to the previous iteration and hones in on
the occluding meeting point by taking successively smaller
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steps toward it. The robot determines the new directions to
trace using the same circle-based approach when accessing
the occluding edge.

4.4. Departing the Occluding Edge

The robot encounters other HGVG nodes—floating boundary
points, GVG2 floating boundary points, and isolated points in
the interior of the boundary edge—much in the same way it
finds nodes in the occluding period. In fact, when the robot
is tracing an occluding period, it finds the node first and then
determines what type of node it is. Take, for example, a
second-order floating boundary that has occluding edges and
one GVG2 equidistant edge emanating from it. When the
robot initiates motion along the GVG2 equidistant edge, it
initially treats the edge as an occluding edge. In other words,
it traces two pointsxk andxl along the shared boundary of the
adjacent second-order generalized Voronoi regions. Nomi-
nally, if the distances to the second closest obstacles of each
of these points are the same, then the robot can conclude it
has started tracing a GVG2 equidistant edge and invoke the
appropriate procedure. In practice, these distances will never
be identical, so one would naturally look for a threshold of
difference of these distances. However, there is a better way.
If Cl is within line of sight ofxk andCk is within line of xl ,
then the robot is tracing a GVG2 equidistant edge because
there is no occlusion.

Departing onto a boundary edge is quite simple: when the
distance of thefirst pair of closest obstacles goes to zero, then
the robot has encountered a boundary edge at which point it
can branch into two directions along the boundary edge.

5. Incremental Linking

The companion paper (Choset and Burdick 2000) outlines
four types of links to and from the following: an inner GVG2

period, a boundary period, an occluding boundary period, and
a GVG cycle.

Recall from Choset and Burdick (2000) that we introduced
the notion of an inner and outer boundary for a second-order
generalized Voronoi region. There are situations in which the
robot can infer if it is on an outer or inner boundary compo-
nent. For example, while traversing a boundary component
of a second-order generalized Voronoi region, if the robot de-
tects a boundary period, then the robot is on an outer bound-
ary component (Choset and Burdick 2000) and the boundary
period is an inner boundary component. In our current imple-
mentation, the robot exploits the fact that it is tracing a one-
dimensional closed curve (the boundary of a second-order
generalized Voronoi region) on a two-dimensional surface to
determine the outer and inner boundaries.

5.1. Links to Cycles

Linking to (from) GVG cycles, if they exit, is achieved via
gradient descent (ascent) of distance to the second closest ob-
stacles in a second-order generalized Voronoi region,Fk|Fij

.
In other words,ċ(t) = −πTc(t)Fij

∇dk(c(t)). The projected
vector is

πTxFij
∇dk(x) =

∇dk(x) − 〈∇di(x) − ∇dj (x), ∇dk(x)〉
〈∇di(x) − ∇dj (x), ∇di(x) − ∇dj (x)〉∇dk(x).

Note that the correcting hyperplane is a line (see Fig. 9). When
linking from the outer period to the inner cycle, the link can
start from any point on the outer period, and likewise from the
inner cycle to the outer period. All that needs to be determined
is that the robot has traced a cycle or period. Detecting this can
be computationally expensive, so in Section 8, we establish a
computationally simple method that is sufficient for making
links but comes at the cost of making redundant links.

For the next two linking procedures, the following lemma,
whose proof appears in Choset and Burdick (2000), is useful.

LEMMA 5. If the objectsCi1 . . . , Cik intersect, then the asso-
ciatedk-equidistant surjective surface,77i1...ik , is unbounded.
In fact, if objectsCi1, . . . , Cik intersect, then none of the gra-
dients,∇di1(x), . . . ,∇dik (x), is orthogonal toTx77i1...ik for
all x ∈ 77i1...ik . In other words, there are no extrema ofD in
the interior of77i1...ik .

5.2. Inner Boundary Edge Period

The linking procedure to an inner boundary period is a two-
step process: detection of the inner period and then the explicit
construction of the link. By Lemma 5, this linking procedure
amounts to following a path defined by gradient descent ofD

on the second-order generalized Voronoi region, which con-
tains the boundary period. Linking from the inner boundary
period is accomplished via gradient ascent ofD, constrained
to a two-equidistant face (Section 5).

To describe the detection scheme, we define theraw dis-
tance function, which provides the distance to all the points on
the boundary of the environment that arewithin line of sightof
the robot. For the following definition, recall thatSm−1 is an
(m−1)-dimensional sphere embedded inR

m. Sometimes we
treats ∈ Sm−1 as a point on an(m − 1)-dimensional sphere,
and other times we treat it as a unit vector whose head is in
the(m − 1)-dimensional sphere.

DEFINITION 1. Raw Distance Function: The distance be-
tween a point,x ∈ R

m, and a point on an object that is within
line of sight ofx, in a directions ∈ Sm−1. This is the length of
the line segmentx +λs and whereλ = min

3∈[0,∞)
D(x +3s) =

0. That is,
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Fig. 9. Box in a room. Solid lines represent the GVG, and the dashed lines are the GVG2. The thick dashed arrow represents the
set of points equidistant to the floor and ceiling that decrease distance to the inner box, i.e., the path traced out by constrained
gradient descent to the second closest obstacles.

ρ(x, s) = ‖x + λs‖ whereλ = min
3∈[0,∞)

D(x + 3s) = 0,

(15)

whereD is the multiobject distance function that measures
distance to the nearest point on the nearest obstacle.

A key feature of the raw distance function (Fig. 10) is
that it can be readily approximated by many realistic sensor
configurations. The sensor measurement provides an approx-
imate value of the distance functionρ(x, s), and the direction
to which the sensor is facing corresponds to the direction of
measurement (s ∈ Sm−1). We term this function the “raw dis-
tance function” because raw sensor readings approximate this
function. The raw distance function is a necessary component
for the experimental implementation of the GVG.

To detect a boundary edge from an outer boundary compo-
nent, we look at the values ofρ(x, s) restricted to the normal
plane (a hyperplane orthogonal to the tangent vector atx on
a GVG edge). It can be seen from Figure 11 that for con-
vex polyhedra, if there exists a local maxima ofρ(x, s) with
respect tos restricted to the normal plane, then there exists
a point on a boundary edge. If for all points on the outer
boundary component of a second-order generalized Voronoi
region there exists a local maxima on each normal plane, then
the outer boundary component surrounds an inner boundary
period. However, we will demonstrate in Section 8 an alter-
native method to looking at maximaρ, which is quicker but
provides redundant links.

5.3. Occluding Period

The linking procedure to an occluding period is the same as
it is for a boundary period. The detection scheme is simi-
lar; instead of looking for local maxima, the robot looks for

Fig. 10. The solid lines are values of the raw distance function,
ρ(x, s), for a fixedx ∈ R

2 and nine samples ofs ∈ S. The
filled regions are obstacles.

discontinuities in the raw distance function restricted to a nor-
mal slice. If for all points on the outer boundary component
of a second-order generalized Voronoi region there exists a
discontinuity on each normal plane, then the outer boundary
component surrounds an inner occluding period (see Fig. 7).

5.4. Inner GVG2 Period Link

While traversing an inner boundary component,∂IFk|Fij
,

which contains GVG2 equidistant edges and is disconnected
from the outer boundary component, the robot builds a link
outward from a meet point,Fklp|Fij

, which is formed by the
edgesFkl |Fij

, Fkp|Fij
, andFpl |Fij

. The link is the inter-
section of77pl |Fij

\Fkl |Fij
. That is, instead of tracing the

GVG2 equidistant edge, the robot traces the points,x, where
dl(x) = dp(x) > dk(x) > di(x) = dj (x). This link brings
the robot to an outer boundary component (Choset and Bur-
dick 2000).
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Fig. 11. A local maxima ofρ(x, s) with respect tos corre-
sponds to a boundary point. The dotted lines delineate two
values of the raw distance function on opposite sides of a
local maxima. The solid line connects two points from two
different convex sets,Ci andCj .

Unfortunately, the robot may not know initially if it is on
an inner boundary component. Therefore, at all second-order
meet points, the robot must perform this procedure, which
results in redundant links. The robot terminates the link-
tracing procedure when it encounters a GVG edge, a GVG2

edge, a boundary edge, or a floating boundary edge. The
terminating point becomes a node in the HGVG.

Similarly, if the robot is on an outer boundary component,
it must look for an additional pair of equidistant obstacles.
However, the robot need not know if it is on an outer bound-
ary component, so it must always perform the following link-
ing strategy, once again resulting in redundant links. On a
GVG edge,Fijk, the robot starts constructing a link when
it encounters a point where two additional obstacles,Cl and
Cp, are equidistant with the following distance relationship:
dl(x) = dp(x) = dk(x) > di(x) = dj (x). The robot termi-
nates the link-tracing process when it encounters a structure
in the HGVG. If this structure is a second-order meet point,
the link is formed. Otherwise, the robot may backtrack to
continue tracing the outer boundary component or save the
link as another redundant structure.

A similar procedure is followed when a GVG2 equidis-
tant edge is on the outer boundary component. While tracing
Fkl |Fij

, the robot’s range sensor must look for equidistant
between two obstacles,Cp andCq . At this point, the robot
traces a path wheredp(x) = dq(x) > dk(x) > di(x) = dj (x)

on Fij until it encounters an HGVG structure. Just like be-
fore, if this structure is a second-order meet point, the link is
formed. Otherwise, the robot may backtrack to continue trac-
ing the outer boundary component or save the link as another

redundant structure. A similar procedure exists for boundary
edges and floating boundary edges.

6. Incremental Accessibility

Incremental accessibilityis the ability to access some point
on the GVG via a collision-free path from any point in the free
space, using onlylocal information. It is obtained by gradi-
ent ascent of the multiobject distance function,D (Choset and
Burdick 2000). Recall from Choset (1996, 1998), using non-
smooth analysis it can be shown that thegeneralized gradient
of D(x) is

∂D(x) = Co{∇di(x) : i ∈ I (x)}, (16)

where Co is the convex hull operation, andI (x) is the set
of indices such that∀i ∈ I (x), eachCi is the closest object
to x (so there can be more than one “closest” object). Since
∂D(x) is composed of single object distance gradients, it can
be readilycomputed from sensor data.

In the planar case, gradient ascent ofD is simply mov-
ing away from the nearest obstacle until the robot is two-way
equidistant. InR3, the robot initially moves away from its
nearest obstacle until it achieves two-way equidistance, and
then while maintaining two-way equidistance, the robot per-
forms gradient ascent until it reaches a point that is equidistant
to three obstacles, a point on the GVG inR

3. In R
m, one can

assume that gradient ascent ofD reduces to a sequence of
gradient ascent operations, constrained to equidistant faces
where the robot travels via a collision-free path along a two-
equidistant face, then a three-equidistant, and eventually to
anm-equidistant face (Choset and Burdick 2000).2

EXAMPLE 3. Figure 12 is a cross section of a three-
dimensional world (imagine the polygons are coming out of
the page), which contains two examples of accessibility in
three dimensions. Starting from (A), the robot follows gra-
dient ascent ofdj until it reachesFjk. From there, it does
gradient ascent ofD = dj = dk constrained toFjk until it
reachesFijk, an edge of the GVG.

The procedure to trace a path on ak-equidistant face, using
constrained gradient ascent of the multiobject distance func-
tion, borrows some basic ideas and techniques from numerical
continuation methods (Keller 1987), in a fashion similar to the
approach described in Section 2. Here, the roots of the ex-
pressionGA(y, λ) = 0 as the “parameter”λ is varied describe

2. In actuality, the description of gradient ascent ofD, cascading through a
sequence of increasing equidistant sheets, is not entirely correct in dimen-
sions greater than three. The above procedure represents the tail end of a
sequence of gradient ascent operations, each constrained to an equidistant
face. It is possible that gradient ascent ofD describes a path of the robot that
traverses a two-equidistant face, then a three-equidistant face, thenanother
two-equidistant face, then a three-equidistant face, and so on. That is, in
the course of doing gradient ascent ofD, the robot may drop down to dou-
ble equidistance before undergoing the cascading sequence of constrained
gradient ascent operations that bring the robot to a GVG edge. We have
constructed generic four-dimensional examples where this occurs.
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Fig. 12. Gradient ascent accessibility inR
3.

a path on ak-equidistant face. Note, in this caseλ is a vector,
i.e., it is not a scalar as it was in the incremental tracability
procedure.

Let x be a point on thek-equidistant face. Choose a local
coordinate frame atx so that the firstm − k + 1 coordinates,
(z1, . . . , zm−k+1), are the coordinates that span the tangent
space of thek-equidistant face atx, and the nextk − 1 coor-
dinates,(zm−k+2, . . . , zm), span a plane termed the “normal
slice plane.” We can thus decompose the local coordinates
into z = (y, λ), whereλ = (z1, . . . , zm−k+1), the “sweep
coordinates,” andy = (zm−k+2, . . . , zm) are the “slice” co-
ordinates. Note that there can be some confusion with this
choice of coordinates: whenz = (y, λ), λ is thefirstm−k+1
coordinates andy is thenextk − 1 coordinates.

Now define the functionGA : R
k−1 × R

m−k+1 → R
k−1

as follows:

GA(y, λ) =




(d1 − d2)(y, λ)

(d1 − d3)(y, λ)
...

(d1 − dk)(y, λ)


 . (17)

The procedure for tracing a path on thek-equidistant face
is similar to the approach described in Section 2. The robot
starts at a point on thek-equidistant face. At this point,
and all others on thek-equidistant face,GA vanishes. The
robot takes a “small” step,1λ, in the tangent space of the
k-equidistant face such thatD(x) increases the most. Typ-
ically, this step takes the robot off of thek-equidistant face.
So, on a(k − 1)-dimensional plane orthogonal to the tangent
space, the robot moves back onto thek-equidistant face. This
(k − 1)-dimensional plane is called the “correcting plane.”
The correction step is the same as the one described in Sec-
tion 2. Ifyh andλh are thehth estimates ofy andλ, theh+1st
iteration is defined as

yh+1 = yh − (∇yGA

)−1
GA(yh, λh), (18)

where∇yGA is evaluated at(yh, λh). After taking the pre-
diction step, the goal of the correction step is to find where
thek-equidistant face locally intersects the correcting plane.

Again, it is important to note that to evaluateGA(y, λ)

and∇yGA(y, λ), one only needs to know the distance and
direction to thek objects that are closest to the robot’s cur-
rent location—information that is easily obtained from local
distance sensor data. The following propositions and lemmas
demonstrate that this procedure is theoretically sound and can
be implemented using local information.

Computing the Tangent Vector. The predictor step is
a small step the direction in the tangent space of thek-
equidistant face that maximally increasesD(x). This step
is determined in two steps: first the tangent space of thek-
equidistant face atx is computed, and then the generalized
gradient ofD is projected onto it. Lemmas 1 and 2 furnish
the tangent space, and the following proposition shows how
the generalized gradient is projected onto it. In fact, the fol-
lowing proposition states that the generalized gradient ofD

projects to a single vector on the tangent space.

PROPOSITION5. The restriction of the multiobject distance
functionD to ak-equidistant face is smooth. That is, the gen-
eralized gradient ofD(x) projected ontoTxFi1...ik is equal to
πTxFi1...ik

∇di for all i ∈ {i1 . . . ik}, whereπ is the orthogonal

projection operator.

Let E be a plane inTxR
m. Let ve be the unique minimum

length vector inE (i.e., ve is based at the origin ofTxR
m

and its head is inE). DefinePE to be the subspace ofTxR
m

parallel toE, i.e.,PE = E − ve. Let P ⊥
E be the orthogonal

compliment ofPE . Therefore,TxR
m = PE

⊕
P ⊥

E , and thus
for all vectorsu ∈ TxR

m, u can be written as the sumu1+u2,
whereu1 ∈ PE andu2 ∈ P ⊥

E . The orthogonal projection
πPE

(u) is u1. We can now define the orthogonal projection
operatorπE to beπPE

.

Proof. Note that∂D(x) is the affine hull of the heads of
the k gradient vectors∇di1, . . . ,∇dik . So, ∂D(x) can be
viewed as a plane inTxR

m and by Lemmas 1 and 2, the plane
∂D(x) is orthogonal toTx77i1...ik . Transversality considera-
tions imply that∂D(x) andTx77i1...ik intersect at a point, and
thus the generalized gradient ofD constrained toTx77i1...ik

is always a point, not a vector. This point, which we denote
by v ∈ Tx77i1...ik

⋂
∂D(x) is the closest point in∂D(x) to

0 ∈ TxR
m.

Define P to be a subspace ofTxR
m given by P =

∂D(x) − v (again,∂D(x) is viewed as a plane). The or-
thogonal projection ofu ∈ ∂D(x) is given by

πTx77i1...ik
: ∂D(x) → Tx77i1...ik . (19)
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SinceD andπTx77i1...ik
are continuous, the restriction of the

generalized gradient ofD on 77i1...ik is continuous. There-
fore, the restriction of the multiobject distance functionD to
ak-equidistant face is smooth. �

Therefore, the robot takes the following step:

πFi1...ik
∂D(x) = πFi1,...ik

∇di1(x)

= ∇di1(x)

− ∑j=k

j=2

∇di1(x)−∇dij
(x)

‖∇di1(x)−∇dij
(x)‖‖∇di1(x)‖.

Computing the Correction Step. The correction proce-
dure is guaranteed by

PROPOSITION6. The matrix∇yGA(y, λ) has full rank (i.e.,
has rank(k − 1)) in a neighborhood of ak-equidistant face
on the correcting plane.

Proof. This is a simple consequence of Lemmas 3 and 4.
Since∇yGA is ak−1 byk−1 matrix, by these lemmas, it must
have rank(k −1) for x ∈ F k, and therefore be invertible atx.
Since the rank operation is a continuous function,∇yGA must
be invertible in an open neighborhood aroundx = (y, λ) ∈
Fm. This open neighborhood will intersect the correcting
plane for‖1λ‖ sufficiently small, and thus∇yGA is invertible
on the correcting plane as well. �

7. Incremental Departability

In sensor-based exploration, the robot may or may not know
the coordinates of its goal location. If the robot does not
know the goal coordinates, it is assumed that the goal is de-
fined by a beacon or other feature that the robot can detect
once it is within line of sight of it. We therefore would like
to find a departing method in which the robot can access the
goal in a straight line. Treating the goal as an object, create a
“virtual” generalized Voronoi graph (Fig. 14). A star-shaped
set, bounded by the virtual GVG, surrounds the goal, and
thus there exists a straight-line path between any point on the
boundary of this virtual star-shaped set and the goal. Gener-
ally, the virtual GVG is connected to the GVG and thus there is
a point within line of sight of the goal on the GVG. However,
as we know from previous sections, the virtual GVG may be
disconnected. In this case, it is necessary to build a link to the
disconnected component that surrounds the goal. The linking
strategy is a special case of the strategy one would use to link
GVG cycles to other second-order GVG edges.

8. Simulations

8.1. Planar Simulations

A planar simulator has validated this approach for a point or
circularly symmetric robot operating in the plane. Figure 15
contains an example of a bounded environment in which our
algorithm was tested. In Figure 16, the robot has accessed the

Fig. 13. Original GVG.

Fig. 14. Virtual GVG of Figure 13.

Fig. 15. Floor plan of bounded environment.

GVG, traced one GVG edge, encountered a meet point, and
continued tracing until a boundary point. The ticked solid
lines represent the planar GVG (also the GVD); these are the
locus of points equidistant to the two nearest obstacles. The
ticks point to the nearest obstacles. Figures 17 and 18 display
two more intermediate simulation results. Figure 19 shows
the final simulation result.

Figures 20 and 21 contain other examples of planar GVGs.
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Fig. 16. Iteration 1.

Fig. 17. Iteration 5.

Fig. 18. Iteration 10.

Fig. 19. Iteration 14.

8.2. Three-Dimensional Simulator

A major advantage that the HGVG has over other methods
is that it is applicable in higher dimensional workspaces. To
this end, we have implemented a three-dimensional simula-
tor that traces GVG edges. The algorithm and data structure
of the three-dimensional simulator is similar to that of the
planar version. The distance function code, used in the three-
dimensional simulator, was written by Brian Mirtich at Berke-
ley. Currently, the linking procedures are under development.
Figure 22 contains a GVG for a three-dimensional environ-
ment, and Figure 23 contains the GVG and GVG2 equidistant
edges for the same environment.

Figure 24 contains the GVG for a rectangular enclosure
with two boxes in its interior. In this example, the GVG is not
connected and thus the robot cannot use the GVG to plan paths
in this environment. Essentially, the robot-highway system
has a big gap in it. However, our solution recursively defines
GVG edges on the two-dimensional sheets; these edges are
second-order GVG edges and together with the GVG form
the HGVG, which is connected in Figure 25.

Figures 26 and 27 display only a box that is in the middle
of a rectangular enclosure. In these figures, the box has a
hole on its top, which can be a through-hole or entrance to
an environment in the box’s interior. Regardless, the hole has
a GVG structure associated with it and there is a GVG cycle
surrounding the box. Emanating from the cycle is a link that
terminates at an occluding edge. In these figures, the second-
order GVG, comprising occluding edges and GVG2 equidis-
tant edges, links the GVG connected components. Again, the
HGVG is connected in this example.

Figure 28 contains an HGVG that is connected through
links that were formed via constrained gradient descent to the
second closest obstacle, as described in Section 5.1. Although
one link is sufficient to connect the HGVG, the HGVG here
has many redundant links. These redundant links are reason-
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Fig. 20. Planar GVG.

Fig. 21. Planar GVG.

Fig. 22. Results of applying the simulator to a three-
dimensional box with a long box that is located off-center
in the interior. Note that some of the walls were removed so
the GVG lines, depicted as thick solid lines, can be displayed.

Fig. 23. HGVG for the same environment in Fig. 23.
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Fig. 24. The GVG is disconnected.

Fig. 25. The HGVG is connected.

Fig. 26. The GVG is disconnected

Fig. 27. The HGVG is connected.

able because they provide parallel pathways that may serve
as shortcuts that direct the robot from the exterior to the in-
terior of the environment. However, they were formed for a
different reason. In the course of developing the simulator,
searching for every possible GVG and GVG2 cycle became
computationally expensive. Instead, it proved to be quicker
to bypass searching for cycles and just invoke the linking
procedure at every node in the HGVG. Figure 28 also high-
lights these nodes. Note that additional nodes, termed critical
points, are also used. These are points whereD obtains an
extremal value on the GVG edge; two nodes represent each
degenerate extrema.

The main advantage of storing the nodes comes into play
when multiple links terminate on the same GVG edge. In
Figure 28, four links terminate on the GVG cycle in the interior
of the room. In this example, the front-left second-order meet
point was the origin of the first link to the cycle. Once the link
was formed, the planner generated the inner GVG cycle. The
revised algorithm requires linking from all the nodes, so the
front-right second-order meet point also sources a link. When
this link terminates on the GVG cycle, how does the planner
know the cycle was already traced out? A naive method would
be to search every point on every edge that has been generated,
but that would prove to be computationally intensive. Instead,
the planner starts to retrace the GVG cycle until it encounters
a node. At this point, the planner can look up the coordinates
of this point in a list of all nodes. Since all of the nodes for
a set of measure zero on the HGVG, this does not constitute
a major search. If a duplicate node was found, the link is
inserted into the appropriate edge that was already generated.

9. Experiments

To verify the incremental construction procedure, we imple-
mented this approach in the planar case (i.e.,m = 2) on
a circular mobile robot base. The mobile robot is the B12
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Fig. 28. Two views of the HGVG with links connecting the outer GVG to the inner one.

Mobile Robot Base, produced by Real World Interface, Inc.,
and it is instrumented with a ring of 12 sonar sensors that
provide local distance measurement information. While the
sensors are quite accurate in distance measurement (on the or-
der of 1 cm), their angular resolution is only accurate to 22◦.
In terms of our algorithm,di(x) can be accurately measured
using this robot, but∇di(x) will be inaccurate.

The result of one experiment is shown in Figures 29 and 30,
though many other experiments were successfully completed.
In this trial, the room was “T-shaped,” with the geometry of
the room and the theoretical GVG shown in Figure 29. In
Figure 30 the experimental GVG constructed by the robot is
shown. The small squares denote the edge termination points,
while the hatched squares represent meet points. For safety
reasons, the robot does not trace the edge all the way to the
wall’s boundary. The octagon shown on the graph represents
the scale size of the robot. The experimental GVG edges are
jagged because the tangent is crudely approximated. This
crude approximation results from the angular inaccuracy of
the sonar distance sensors. However, the GVG is connected,
and the edges are maximally far away from the workspace
boundary. Note that the actual GVG construction is quite
robust even with large errors in distance measurements.

10. Conclusion

This paper introduced an incremental procedure to construct
the GVG and the HGVG. This procedure requires only local
sensor distance measurement data, and is therefore practi-
cally implementable, as demonstrated by our simulations and
experiments. Hence, the generalized Voronoi graph and hier-
archical generalized Voronoi graph introduced in this work
appear to be useful means for implementing sensor-based
motion-planning algorithms. We have shown in related work
the numerical methods introduced are useful for “sensorizing”
other (e.g., the OPP method) robot motion planners.

In addition to tracing the roots of a continuous function,
we also developed a procedure to trace a one-dimensional set
of points in the domain of a discontinuous function. This pro-
cedure has been implemented in simulation and in the future
will be generalized to all discontinuous functions.

Fig. 29. Room with Actual GVG.

Fig. 30. Experimental GVG.
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A critical component to sensor-based exploration is the
robot’s ability to ascertain its location in the partially explored
map or to determine that it has entered new territory. Many
conventional methods attempt to make this determination via
a localization scheme that updates the(x, y) coordinates of
the robot. Most robots update their location by integrating
data from their wheel encoders that count the number of wheel
rotations (or fractional rotations). If the robot slips, the wheels
do not rotate and thus this motion cannot be integrated by
the robot’s encoder, thereby causing error. GPS systems may
offer an alternative, but commercially available systems do not
work inside buildings nor provide the necessary resolution.
Finally, landmarks with known locations can be deployed in
the environment, but the task described in this paper considers
environments that are completely unknown a priori. Future
work will exploit geometries of the HGVG to locate itself on
the partially explored map or conclude the robot has entered
new territory.

Appendix

Proof of Lemma 1

Proof. It can be shown that given Assumption 2, theregu-
lar k-equidistant faces (k-equidistant faces of the RVG) are
C2-diffeomorphic toR

m−k+1 and thus regulark-equidistant
faces are isometric to their tangent spaces. In other words,
TxRi1...ik ' Ri1...ik . Assumption 2 guarantees that the affine
hull of {c1, . . . , ck}, Af{c1, . . . , ck}, is a(k − 1)-dimensional
plane. Furthermore, Assumption 2 guarantees that embedded
in the base plane, there is a unique (k−2)-dimensional sphere,
S, defined by{c1, . . . , ck}. Define a coordinate frame whose
origin is the center of this sphere. Let 0 denote the origin.

Pick aw ∈ TxRi1...ik and translate this vector so it is based
at 0, the origin of the above described coordinate system. Let
w̄ be the translated vector. SinceTxRi1...ik ' Ri1...ik , w̄ can
be viewed as the difference of two points,x̄ − 0, wherex̄ is
equidistant to{c1, . . . , ck}. (This is the same thing as saying
there is a natural identification between a Euclidean space and
the tangent space of a point of a Euclidean space.)

Drop a perpendicular from̄x to Af{c1, . . . , ck}. Let p

be the point where the perpendicular intersects the affine hull.
Since‖x̄−ci‖ = ‖x̄−cj‖ for all i andj , ‖p−ci‖ = ‖p−cj‖
for all i andj . Therefore,p is an element ofRi1...ik .

The next step is to show thatp is 0, the origin of the co-
ordinate system (the center of the sphereS). Transversality
guarantees that

dim(TxRi1...ik

⋂
Af{c1, . . . , ck}) = 0.

Furthermore, since the intersection of two convex sets is a
convex set,TxRi1...ik

⋂
Af{c1, . . . , ck} is also a convex set,

which is connected. Since this intersection is connected

Fig. 31. Cone formed by points.

and is zero dimensional, there can only be one point in
TxRi1...ik

⋂
Af{c1, . . . , ck}. Therefore,p = 0.

Therefore,w̄, which is equal tōx − 0, is orthogonal to all
vectors in the affine hull of{c1, . . . , ck}. Sincew is a translate
of w̄, w is also perpendicular to Af{c1, . . . , ck}.

Now, letgradient planebe the(k − 1)-dimensional plane
that contains the heads of thek gradient vectors based atx.
This is the affine hull of the heads ofk gradient vectors. Note
that dij (x) is the length of the line that connectsx and cj

wherecj ∈ {c1, . . . , ck}. Since,‖x − ci1‖ = ‖x − cij ‖
for all j , x − cij = ‖x − ci1‖∇dij (x). Therefore, the cone
formed by the gradient vectors is “similar” to the one formed
by thek closest points and thus thegradient planeis parallel to
Af{c1, . . . , ck}. Therefore, the tangent space is perpendicular
to the gradient plane. �

Proof of Lemma 2

Proof. A k-equidistant face can be defined byG−1(0), where

G(x) =



(d1 − d2)(x)
...

(d1 − dk)(x)


 .

Let {ci} denote the closest points tox in thek closest ob-
stacles. Theregular k-equidistant face for the set of points
{ci} is defined byV G−1(0), where

V G(x) =




|x − c1| − |x − c2|
|x − c1| − |x − c3|

...

|x − c1| − |x − ck|


 .

Since the set of closest points,{ci}, is the same for the
k-equidistant face and the regulark-equidistant face atx,
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dh(x) = |x − ch| for all h = 1, . . . , k. That is, ∇(dh1−dh2)(x) = |x − ch1| − |x − ch2| for all h1, h2 = 1, . . . , k.
Therefore,G(x) = V G(x) atx.

By the preimage theorem, the tangent space at a pointx ∈
G−1(0) is the null space of∇G(x), where

∇G(x) =



∇(d1 − d2)(x)
...

∇(d1 − dk)(x)


 .

And the tangent space at a pointx ∈ V G−1(0) is the null
space of∇V G(x), where

∇V G(x) =




x−c1|x−c1| − x−c2|x−c1|
x−c1|x−c1| − x−c3|x−c1|

...
x−c1|x−c1| − x−ck|x−c1|


 .

Again, since the set of closest points,{ci}, is the same for
the k-equidistant face and the regulark-equidistant face at
x, ∇dh(x) = x−ch|x−ch| for all h = 1, . . . , k. That is,∇dh1(x)

−∇dh2(x) = x−ch1|x−ch1 | − x−ch2|x−ch2 | for all h1, h2 = 1, . . . , k.

Therefore,∇G(x) = ∇V G(x) atx. Hence, thek-equidistant
face and the regulark-equidistant face have the same tangent
space atx. �

Proof of Lemma 3

Proof. First, consider the case whenq = 2. In this case,
the robot is either equidistant to three obstacles (e.g.,i1 =
1, j1 = 2, i1 = 1, andj2 = 3) or two sets of two obstacles
(e.g.,i1 = 1, j1 = 2, i2 = 3, andj2 = 4). The respective
tangent spaces of77i1j1 and77i2j2 are

Tx77i1j1 = {v ∈ TxR
m : 〈∇(di1 − dj1)(x), v〉 = 0},

Tx77i2j2 = {v ∈ TxR
m : 〈∇(di2 − dj2)(x), v〉 = 0}.

By the Equidistant Surface Transversality Assumption
from Choset and Burdick (2000), we know that77i1j1 t
−77i2j2. Assume at some pointx, ∇(di1 − dj1)(x) = κ∇(di2− dj2)(x). By definition, for all w ∈ Tx77ij , 〈∇(di1− dj1)(x), w〉 = 0. Since∇(di1 − dj1)(x) = κ∇(di2− dj2)(x), for w ∈ Tx77ij , 〈∇(di2 − dj2)(x), w〉 = 0.
This implies thatTx77i1j1 = Tx77i2j2, which violates the
Equidistant Surface Transversality Assumption (Assumption
2). Therefore,∇(di1 − dj1)(x) 6= κ∇(di2 − dj2)(x); i.e., they
are linearly independent. It therefore follows that

rank

[
(∇(di1 − dj1)(x))T

(∇(di2 − dj2)(x))T

]
= 2.

Now, we consider the case whereq = 3. Here, the robot
may be equidistant to four obstacles, three sets of two obsta-
cles, or three obstacles and an additional pair of obstacles.

Consider the matrix,

∇G(x) =

(∇(di1 − dj1)(x))T

(∇(di2 − dj2)(x))T

(∇(di3 − dj3)(x))T


 .

The Equidistant Surface Transversality Assumption (As-
sumption 2) guarantees each row is pairwise linearly
independent:

∇di1 − ∇dj1 6= κ12
(∇di2 − ∇dj2

)
,

∇di1 − ∇dj1 6= κ13
(∇di3 − ∇dj3

)
,

∇di2 − ∇dj2 6= κ23
(∇di3 − ∇dj3

)
.

(20)

It remains to show that no one row is a linear combination of
the other two. Again, we prove this by contradiction. Assume
∇(di1 − dj1) = α(∇(di2 − dj2)) + β(∇(di3 − dj3)). By
definition, for allw ∈ Tx77i1j1, 〈∇(di1 − dj1)(x), w〉 = 0.
Thus,

∇(di1 − dj1) = α(∇(di2 − dj2)) + β(∇(di3 − dj3)),

⇒ 〈(
α
(∇(di2 − dj2)

) + β
(∇(di3 − dj3)

))
, w

〉 = 0,

⇒ 〈((∇(di2 − dj2)
) + β

α

(∇(di3 − dj3)
))

, w
〉 = 0.

Since by Equidistant Surface Transversality Assumption
(Choset and Burdick 1995), for allw ∈ TxSi1j1:〈(∇(di2 − dj2)(x)

)
, w

〉 6= 0〈(∇(di3 − dj3)(x)
)
, w

〉 6= 0,

we conclude that∇(di2 − dj2) = β
α

(∇(di3 − dj3)
)
. However,

this contradicts one of the three inequalities in eq. 20. There-
fore, all the rows of∇G are linearly independent of each other
and rank(∇G) = 3.

The lemma follows by induction. Assume the matrix

G̃(x) =



(∇(di1 − dj1)(x))T

...

(∇(diq−1 − djq−1)(x))T




has a rank ofq − 1, and let77iq jq be a two-equidistant sur-
jective surface defined by obstaclesCiq and Cjq . The re-
mainder of this proof follows by contradiction. Assume that
∇(diq −djq ) = ∑q−1

r=1 αr(∇(dir −djr )). At a pointx ∈ 77iq jq ,
for all w ∈ Tx77iq jq , w is orthogonal to∇(diq − djq )(x).
Therefore,

q−1∑
r=1

〈αr(∇(dir − djr )(x)), w〉 = 0

H⇒
q−1∑
r=1

αr(∇(dir − djr )(x)) = 0. (21)

It follows that

∇(di1 − dj1)(x) =
q−1∑
r=2

αr

α1
(∇(dir − djr )(x)), (22)
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which leads to a contradiction because the rank ofG̃ is q − 1
(i.e., the rows ofG̃ are linearly independent of each other).
Therefore,∇(diq − djq ) 6= ∑q−1

r=1 αr(∇(dir − djr )), and thus

rank(G(x)) = rank




∇(di1 − ∇dj1)(x)
...

∇(diq − ∇djq)(x)


 = q.

�

Proof of Lemma 4

Proof. As a consequence of the preimage theorem, each ele-
ment (i.e., row) ofG defines a two-equidistant surjective sur-
face. Since77i1j1

⋂ · · · ⋂ 77iq jq 6= ∅ and each pair{ir , jr}
is unique (i.e., for allr1, r2, {ir1, jr1} 6= {ir2, jr2}), no two
components ofG are the same. Therefore, when Assumption
1.2 is upheld, the preimage theorem asserts thatG−1(0) is a
manifold with codimensionq whose tangent space at a point
x ∈ 77i1j1

⋂ · · · ⋂ 77iq jq is the null space of∇G(x), which
is equal toTx(77i1j1

⋂ · · · ⋂ 77iq jq ). Finally, let thenormal
slice be theq-dimensional plane orthogonal to the tangent
space ofG−1(0) atx.

Pick r ∈ {1, . . . , q}. Let cir andcjr be the two closest
points on obstaclesCir andCjr , respectively, tox. By Lem-
mas 1 and 2,Tx77ir jr can be viewed as codimension one plane
that is the locus of points equidistant tocir andcjr .

Let n1, . . . , nm−1 be an orthonormal basis forTx77ir jr

whose origin is the midpoint of the segment that connects
cir andcjr . In this coordinate frame,

x = (x1, . . . , xm−1, 0)T

cir = (0, . . . , 0, α)T

cjr = (0, . . . , 0, −α)T ,

whereα = ‖cir −cjr ‖
2 .

Let the slice line, slr , be the line that is orthogonal to
Tx77ir jr and passes throughx. That is,

slr = x + λv ∀λ ∈ R,

wherev ∈ (Tx77ij )
⊥. Let thebase line, blr , be the line

defined bycir andcjr , i.e.,

blr = λ(cjr − cir ) ∀λ ∈ R

= (0, . . . , 0, λ)T ∀λ ∈ R.

By construction,blr is also orthogonal toTx77ir jr , i.e., for all
w ∈ Tx77ij ,

〈w, blr 〉 = 〈(w1, . . . , wm−1, 0)T , (0, . . . , 0, λ)T 〉 ∀λ ∈ R

= 0.

Therefore, the slice line and the base line are parallel, and
thus for allλ ∈ R, blr = λv wherev ∈ (Tx77ij )

⊥.

Letπblr be the orthogonal projection onto theblr operator.
By definition,πblr (cjr − cir ) = cjr − cir . From this, we can
conclude that(x − cir ) − (x − cjr ) is equal to the projection
of itself ontoblr . In other words,(x − cir ) − (x − cjr ) ∈ blr ,
or

πblr ((x − cir ) − (x − cjr )) = πblr (cjr − cir )

= cjr − cir

= (x − cir ) − (x − cjr ).

(23)

Note that(x − cir ) = −dir (x)∇dir (x) and (x − cjr ) =
−dir (x)∇djr (x) (recall thatdir (x) = djr (x)). Substitute
these relationships into eq. (19).

πblr ((x − cir ) − (x − cjr )) = (x − cir ) − (x − cjr )

πblr (−dir (x)∇dir (x) − (−dir (x)∇djr (x)))

= −dir (x)∇dir (x) − (−dir (x)∇djr (x))

dir (x)πblr (∇dir (x) − ∇djr (x))

= dir (x)(∇dir (x) − ∇djr (x))

πblr (∇dir (x) − ∇djr (x)) = ∇dir (x) − ∇djr (x).

Since the slice line is parallel to the base line,

πslr (∇dir (x) − ∇djr (x)) = πblr (∇dir (x) − ∇djr (x))

= ∇dir (x) − ∇djr (x).

We can conclude that


∇(di1 − dj1)(x)
...

∇(diq − djq )(x)


 =




∇sl1(di1 − dj1)(x)
...

∇slq (diq − djq )(x)


 ,

and since slice plane Y is the span ofsl1, . . . , slq ,

∇G(x) = ∇Y G(x). (24)

Therefore, rank(∇G(x)) = rank(∇Y G(x)). �

Acknowledgments

The authors would like to thank Dr. Teresa McMullen at ONR,
Grant 97PR06977, and Dr. Howard Moraff, Dr. Jing Xiao,
Dr. Larry Reeker, and Dr. Ephraim P. Glinert at NSF, Grant
IRI-9702768, for supporting this work. The authors would
like to thank the fearless members of Carnegie Mellon’s Sen-
sor Based Planning Lab and Caltech Robotics group for the
frequent conversations on the topics in this paper. In particu-
lar, special thanks goes out to Andrew Lewis, Jim Ostrowski,
Luis Goncalves, Andrew Connely, Bill Messner, and Elon Ri-
mon for their insights and contributions to this work. Finally,
the authors would like to thank an anonymous reviewer for his
or her careful and considerate comments toward this work.



148 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 2000

References

Avis, D., and Bhattacharya, B. K. 1983. Algorithms for com-
putingD-dimensional Voronoi diagrams and their duals.
Advances in Computing Research1:159–180.

Borenstein, J., and Koren, J. 1990 (May). Real-time obstacle
avoidance for fast mobile robots in cluttered environments.
IEEE Conference of Robotics and Automation, pp. 572–
577.

Brooks, R. A. 1986. A robust layered control system for a
mobile robot.IEEE Journal on Robotics and Automation
RA-2(March).

Canny, J. F. 1988.The Complexity of Robot Motion Planning.
Cambridge, MA: MIT Press.

Canny, J. F., and Lin, M. C. 1993. An opportunistic global
path planner.Algorithmica10:102–120.

Choset, H. 1996.Sensor Based Motion Planning: The Hier-
archical Generalized Voronoi Graph. Ph.D. thesis, Cali-
fornia Institute of Technology, Pasadena, CA.

Choset, H. 1998. Nonsmooth analysis, convex analysis, and
their applications to motion planning. Special Issue of the
Int. J. of Comp. Geom. and Apps., to appear.

Choset, H., and Burdick, J. W. 1994. Sensor based plan-
ning and nonsmooth analysis.Proc. IEEE Int. Conf. on
Robotics and Automation, pp. 3034–3041.

Choset, H., and Burdick, J. W. 1995. Sensor based planning,
Part I: The generalized Voronoi graph.Proc. IEEE Int.
Conf. on Robotics and Automation.

Choset, H., and Burdick, J. 2000. Sensor-based motion Ex-
ploration: The hierarchical generalized Voronoi graph.In-
ternational Journal of Robotics Research19:119–148.

Keller, H. B. 1987.Lectures on Numerical Methods in Bifur-
cation Problems. Bombay, India: Tata Institute of Funda-
mental Research.

Kuipers, B., and Byan, Y. T. 1991. A robot exploration and
mapping strategy based on a semantic hierarchy of spa-
tial representations.Journal of Robotics and Autonomous
Systems8:47–63.

Rao, N.S.V., Kareti, S., Shi, W., and Iyenagar, S. S. 1993.
Robot navigation in unknown terrains: Introductory sur-
vey of non-heuristic algorithms.Oak Ridge National Lab-
oratory Technical ReportORNL/TM-12410(July):1–58.

Rao, N.S.V., Stolzfus, N., and Iyengar, S. S. 1991. A retrac-
tion method for learned navigation in unknown terrains
for a circular robot.IEEE Transactions on Robotics and
Automation7(October):699–707.

Rimon, E., and Canny, J. F. 1994. Construction of C-space
roadmaps using local sensory data—What should the sen-
sors look for?Proc. IEEE Int. Conf. on Robotics and Au-
tomation, pp. 117–124.


