

CYTON ALPHA 7D 1G
__

Operations Manual

Copyright © 2008 Robai. All Rights Reserved. 2

Robai
PO Box 37635 #60466

Philadelphia, PA 19101-0635

Copyright © 2008 Robai. All Rights Reserved.

Copyright © 2008 Robai. All Rights Reserved. 3

Copyright © 2008 Robai. All Rights Reserved. ... 2
Introduction ... 4

Physical Configuration.. 4
Mechanical Structure: ... 6

Setup Instructions.. 7
Software Installation ... 7
Hardware Setup ... 7

The Cyton Viewer ... 9
Cyton Viewer Capabilities .. 9
File Options ... 10
Flying the Gripper ... 10
Working with Path Files ... 12

The Cyton C++ API .. 15
Control Interface ... 17
Hardware Interface .. 18

Cyton Code Example .. 20
Tech Support and Contact Info ... 23

Copyright © 2008 Robai. All Rights Reserved. 4

Introduction

The Cyton Alpha 7D 1G is a seven degree of freedom manipulator arm with a gripper
end effector. Humanoid manipulators offer profound advantages. With many degrees of
freedom they are able to reach around obstacles, reconfigure for strength, improve
accuracy, and manipulate objects with fluid motion. Cyton comes with configurable
control software that makes it easy to exploit its kinematic redundancy with built-in
interfaces to input devices, over the Internet, or using your own programs. This software
controls the Cyton arm in real time based on desired behaviors that are configured off
line.

Combined with Actin SE visualization, reasoning, and control software, the Cyton Alpha
performs advanced control by exploiting kinematic redundancy. With built-in networking
software, it can be controlled remotely through a local area network or over the Internet.

Physical Configuration

The Cyton is designed to mimic the configuration of a human arm. It has a shoulder, an
elbow and a wrist. Its hand is a gripper. To accurately simulate the motion of the human

Copyright © 2008 Robai. All Rights Reserved. 5

joints the shoulder has two joints the elbow has one joint and the wrist has three. The
total of the se axis gives the arm 7 degrees of freedom (DOF). This enables the arm to be
kinematically redundant. This allows the arm to reach a given point in space in multiple
ways. This allows the arm to reach that same point while reaching around an obstacle or
avoiding another manipulator.

Axes Range

Shoulder Base 180 degrees

Shoulder Pitch 170 degrees

Shoulder Yaw 180 degrees

Elbow Pitch 170 degrees

Wrist Roll 180 degrees

Wrist Yaw 130 degrees

Wrist Pitch 135 degrees

Copyright © 2008 Robai. All Rights Reserved. 6

Mechanical Structure:

7 DOF plus gripper; all axes are completely independent. All axes can be controlled
simultaneously. Pitching actions have integrated load balancing springs. Key joints have
additional planetary ball bearing support.

Electronics: 32 Channel servo controller with 24 free channels for controlling additional
peripherals such as other end effectors.

Actuators:

High quality PMDC servo
motors with
integral gear reduction.

Rated Payload 200 grams

Maximum Payload 300 grams

Rated Speed 0.2 m/s

Joint Speed 60 rpm

Height 60 cm

Reach 48 cm

Repeatability 0.23 cm

Hardware Interface USB

Copyright © 2008 Robai. All Rights Reserved. 7

Setup Instructions

Software Installation

Simply insert the CD Rom into the CD drive. If the CD does not start automatically you
should be able to browse to the CD folder and select cytonSeteup.exe. This will start the
installation program. Follow the instructions to complete installation.

Starting the software.
Make sure all connections are firm between the Cyton arm and the PC. Connect the
power supply to a power strip. Double click on the Cyton Viewer icon.

Hardware Setup

Hardware components

• 6V DC power supply – This powers the servos on the arm
• 9V Battery – Powers Logic Components.
• 3 meter serial cable – 9-pin DB-9 male on one end and 9-pin DB-9 female on

other.
• USB to serial adapter – 9-pin DB-9 male connector. (Optional)

Copyright © 2008 Robai. All Rights Reserved. 8

Setup Instructions

Place the Cyton arm on firm level surface making sure that the arm is at least 50 cm from
any obstructions. Connect the 9V battery (included) to the battery connector. . A mount
at the bottom of the Cyton holds the battery in place. Connect the power supply to the
power connector on the base of the Cyton arm.

 Next connect the serial cable to the port on the Cyton controller card. Then either
connect the serial cable to the serial port on your pc or connect the cable to the serial to
USB adapter. Then connect the USB adapter to an available USB port on your PC.
Before powering up the arm and starting the Actin control software make sure the arm is
not blocked by other objects. The software will start by initializing a calibration pose for
the arm. This will command the arm to extend fully straight up. If anything obstructs the
path of the arm it could be damaged.

Copyright © 2008 Robai. All Rights Reserved. 9

The Cyton Viewer

Cyton Viewer Capabilities

The Cyton Viewer can be used to both simulate motion of the robot and to directly
control the robot. It has several powerful features that allow for end-effector or joint
level control the Cyton. The figure below shows the viewer with a Cyton model loaded.

Changing perspective

 Eyepoint. The eyepoint icon changes the viewer into eyepoint mode. In this
mode the eyepoint can be changed by dragging the mouse.

Copyright © 2008 Robai. All Rights Reserved. 10

 Center of interest: The center of interest (i.e. the direction where the eyepoint is
looking) can be changed by entering COI mode with the COI icon and dragging
the mouse.

File Options

Shown are the options available within the file menu. These are described below.

Open
Opens in a Cyton model file. The Cyton viewer currently comes with one file called
Cyton.ecz. More files will be made avialge by Robai over time. In addition, new files
can be created using the Cyton C++ API.

Save Image As
Save a snapshot of the current robot. Currently .tif is the only supported image format.

Flying the Gripper

Using the Cyton Viewer, it is possible to command the gripper (or end-effector) to go to
an arbitrary position and orientation in space as long as it’s within the arms workspace.
To do this it’s important to calibrate the viewer view with the position of the actual robot.

The Guide Frame
The Guide Frame is what the Cyton Viewer uses to specify the desired gripper position.
The figure below shows a Guide Frame (with red, green, and blue axes) just in front of
the gripper. You can move the Guide Frame by first selecting the set guide frame button

. This will bring up the following dialog box.

Copyright © 2008 Robai. All Rights Reserved. 11

An end-effector can be placed on any link of the robot. By default the end-effector is
placed at the gripper. Once okay is selected you should be able to move the Guide Frame
within the viewer dragging with either the left or right mouse buttons depressed. Holding
down the right mouse button will allow you to change the position of the Guide Frame
and the left mouse button allows you to rotate the Guide Frame.

Copyright © 2008 Robai. All Rights Reserved. 12

Depending on the type of end-effector selected the gripper will either move to a specific
position in space (with a point end-effector) or position and orientation (with a frame
end-effector). The type of end-effector can be selected with the drop-down list below
under the Edit End-Effector.

The difference between a frame end-effector and a point end-effector can be
seen in the images below. Note that with a point end-effector the orientation
of the gripper is arbitrary—only the position of the Guide Frame is
important). With a frame end-effector (shown on the right) both position
and orientation are considered—note that the gripper is aligned along the red
axis of the Guide Frame.

Left: The arm moved to the guide frame using a point end-effector (i.e. position only).
Right: The arm moved to the guide frame using a frame end-effector (i.e. frame end-
effector).

Working with Path Files

The Cyton Viewer allows you to capture paths of the robot for future playback. This is
very useful for certain applications.

 Recording a Path – Pressing the record button puts the viewer into record mode.
When in this mode robot positions will be stored in memory until the stop button is

Copyright © 2008 Robai. All Rights Reserved. 13

pressed. Positions can be stored in one of two formats: Manipulator (Joint) mode, or
Guide Frame mode. In Manipulator mode the viewer records all of the joint angels for
the robot at each timestep, whereas in Guide Frame mode only the commanded gripper
positions at each timestep are recorded. This means that a Guide Frame mode path file
may result in different joint positions when rerun depending on the control method being
used for the Cyton. For instance, a control system configured to minimize kinetic energy
will result in different joint angle trajectories than a control system configured to
minimize potential energy. A path file recorded in Manipulator mode, by contrast, is
guaranteed to always give the same joint trajectories. By default the Cyton Viewer
records in Manipulator mode. You can enter Guide Frame mode by pressing and can
revert back to Manipulator Mode by pressing .

 Save Path File – This allows you to save a path just recorded. A Save File dialog box
will appear asking for the name and location of the file to be saved.

 Load Path File – Allows you to load a previously saved path file. Once loaded, the
record mode buttons should automatically change to indicate whether the path is in Guide
Frame mode or Manipulator mode.

 Playback Mode – Once a path is loaded it is still necessary to specify that you
would like to playback the path. If the playback mode button is pressed hitting the play

 button. Opening the dropdown list for the Playback
mode button will allow you to select whether or not the
playback should be repeated. If in Guide Frame mode the
Cyton manipulator should be checked under the Guide Frame Manipulators dialog box—
this should be the default.

The Manipulator Configuration Tool

Manipulator Configuration – More precise tasking of the robot can be achieved by
using the manipulator configuration tool. This tool allows you to independently move
each joint. It also lets you change the joint limits for each joint. The figure below
shows the manipulator configuration tool with the Joints tab. Each joint on the robot can
be moved using the slider bars on the right. The upper and lower joint limits can be set
directly in the edit boxes at the left.

Copyright © 2008 Robai. All Rights Reserved. 14

The End-Effectors tab (shown below) allows you to directly control the position and
orientation of the end-effector. This is useful when a precision gripper position is
required.

Copyright © 2008 Robai. All Rights Reserved. 15

The Cyton C++ API

CYTON Alpha 7D-1G Control System API Rev. 1.0.0.2

*All units in SI unless otherwise specified.
In this section we present both the Cyton control interface and the Cyton hardware
interface. The control interface uses Actin-SE to compute joint angles for the robot. The
hardware interface allows for direct control of the joints.

The Cyton Config file (cyton_config.txt)

In the folder holding the test applications and the Cyton Viewer you will see a file called
cyton_config.txt. This file is used for specifiy the serial port to use and various
parameters for calibration. Note that generally all default settings should be sufficient.
The format of the file is as follows:

COMX -- The serial. port that Cyton is connected to
1 – reset On Shutdown (if true (=1) reset the robot before shutting down
8 – Degrees of freedom (including the gripper) This should stay constant
-----next 8 lines
pulseOffset MinPulse MaxPulse MaxPulseRate ScaleFactor

These are the values used for each of the servos starting with the base servo.

Copyright © 2008 Robai. All Rights Reserved. 16

Copyright © 2008 Robai. All Rights Reserved. 17

Control Interface

Method Description
void setConfigurationFilename
 (
 const EcString& filename
);

set the cyton configuration
filename

 const EcString &configurationFilename
 (
) const;

Return the currently
configured filename

bool setDesiredEndEffectorPose
 (
 const EcCoordinateSystemTransformation& desiredPose,
 const EcGeneralMotion& desiredFrameVelocity,
 const unsigned int endEffectorIndex=0
)

Set desired end-effector
pose and rates.

bool getPropagationResults
 (
 EcPropagationResultData& propagationResults
) const

Get the propagation results
from the last advance.

bool computeEndEffectorPose
 (
 const EcRealVector& angles,
 EcCoordinateSystemTransformation& pose
) const

Compute forward kinematics
and get the end-effector
pose, given a set of joint
angles.

 virtual bool initializeAll
 (
 const EcRealVector& angles,
 const Ec::coordinateSystemTransformation& basePose
);

initialize joint angles and
base pose
 /// The quaternion uses
the I={0,0,0,1} formalism.

static void sleep
 (
 const double& timeInSeconds
)

A utility function to sleep
for a specified number of
seconds

 EcBoolean calculateNewJointValuesAndRates
 (
 const EcReal timeInSeconds,
 EcRealVector& jointValues,
 EcRealVector& jointRates
);

calculate new joint values

Copyright © 2008 Robai. All Rights Reserved. 18

Hardware Interface

API Rev. 1.0.0.2

 hardwareInterface
 (
 const EcString &configFile =
 "cyton_config.txt"
);

Constructor. Optional argument allows you
to specify a different configuration file.

void setSerialPort
 (
 const EcString &port
);

Specify a serial port to use for the
connection to the hardware.
port String name of serial port to use.
Platform dependent.

 EcStringVector availableSerialPorts
 (
) const;

Examine current hardware configuration to
list available serial ports.
return EcStringVector A vector of strings
representing the port names
of the serial devices available. Platform
dependent.
Empty list returned if not available, or
plugin not loaded.

void setResetOnShutdown
 (
 const EcBoolean resetOnShutdown
);

Flag indicating whether or not to reset
Cyton joints to their initialization
position before powering down.
resetOnShutdown Whether or not to reset on
power down.

EcBoolean init
 (
);

Initialize hardware, which includes
reading in configuration file, opening
serial port and resetting hardware to a
known good state.
Return EcBoolean Success or failure of
initialization.

EcBoolean reset
 (
);

Send a reset command to the hardware to
move joints back to resting position.
Return EcBoolean Success or failure.

EcBoolean shutdown
 (
);

Unloads plugin device driver.
Return EcBoolean Success or failure of
shutdown command.

 EcBoolean setJointCommands
 (
 const EcReal timeNow,
 const EcRealVector &jointCommands,
 const StateType stateType =
JointAngleInRadians
);

Sends commands to Cyton hardware to move
joints to a specified location.
A time difference is calculated from the
previous command to determine
 the rate at which to move the joints.
timeNow Current time.
jointCommands Vector of joint angles to
move servos to.
stateType Optional unit conversion for
input jointCommands.
Return EcBoolean Success or failure
of set command.

 EcBoolean getJointStates
 (
 EcRealVector &jointStates,
 const StateType stateType =

Retrieve servo information. Depending on
the stateType parameter it will return the
last commanded position (default) or any
of the configuration parameters for the

Copyright © 2008 Robai. All Rights Reserved. 19

JointAngleInRadians
) const;

servos (joint bias, min angle,
 max angle, reset angle, max joint rate,
joint scale).
 jointState Vector of returned values.
 stateType Type and unit of requested
values.
 Return EcBoolean Success or failure
of query command.

 EcBoolean waitUntilCommandFinished
 (
 const EcU32 timeoutInMS
) const;

Wait for the last command to finish, up to
a specified maximum time in milliseconds.
timeoutInMS Maximum time to wait in
milliseconds before failing.
Return EcBoolean Success or failure
of wait command.

 EcU32 numJoints
 (
) const;

Retrieve the number of joints currently
configured.
Return EcU32 Number of joints in Cyton
arm. 8 for this version of the hardware.

Copyright © 2008 Robai. All Rights Reserved. 20

Cyton Code Example

Below is sample code from the hardware interface. Note that this code is provided with
your Cyton install and should be buildable and runnable.

///
//
// Function: testNormalized
// Description: Perform a series of tests on the hardware using
normalized
// joint angles (values in the range [-1,1]). It is
// currently setup to perform the following tasks:
// 1. Set all joints to -1 (minimum joint angle).
// 2. Set all joints to 1 (maximum joint angle).
// 3. Set all joints to 0 (initialization joint angle.
//
// I/O: Returns EcTrue on success or EcFalse on failure.
//
// Notes: The test is currently setup to take 4 seconds to
complete
// each task, with a total wait time of 10 seconds to
wait
// before proceeding to the next task.
// Revisions:
///
//
EcBoolean
hardwareExample::testNormalized
 (
)
{

 EcRealVector minAngleNormalized(m_NumJoints);
 EcRealVector maxAngleNormalized(m_NumJoints);
 EcRealVector centerAngleNormalized(m_NumJoints);

 for(EcU32 ii=0; ii<m_NumJoints; ++ii)
 {
 minAngleNormalized[ii] = -1.0; // Go to minimum joint angle.
 maxAngleNormalized[ii] = 1.0; // Go to max joint angle.
 centerAngleNormalized[ii] = 0.0; // Reset to zero angle.
 }

 // Set all joints to their absolute minimum value.
 std::cout << "Setting all joint to min normalized angles.\n";
 if(!m_hw.setJointCommands(4.0, minAngleNormalized,
cyton::AngleNormalized))
 {
 std::cerr << "Problem setting min normalized angles.\n";
 return EcFalse;
 }
 m_hw.waitUntilCommandFinished(10000); // Let the hardware achieve
its position. 10 sec

Copyright © 2008 Robai. All Rights Reserved. 21

 // Set all joints to their absolute maximum value.
 std::cout << "Setting all joint to max normalized angles.\n";
 if(!m_hw.setJointCommands(8.0, maxAngleNormalized,
cyton::AngleNormalized))
 {
 std::cerr << "Problem setting max normalized angles.\n";
 return EcFalse;
 }
 m_hw.waitUntilCommandFinished(10000); // Let the hardware achieve
its position. 10 sec

 // Set all joints to their 'center' position.
 std::cout << "Setting all joint to 'center' normalized angles.\n";
 if(!m_hw.setJointCommands(12.0, centerAngleNormalized,
cyton::AngleNormalized))
 {
 std::cerr << "Problem setting center normalized angles.\n";
 return EcFalse;
 }
 m_hw.waitUntilCommandFinished(10000); // Let the hardware achieve
its position. 10 sec

 return EcTrue;
}

///
//
// Function: testRadians
// Description: Perform a series of tests on the hardware. It is
// currently setup to perform the following tasks:
// 1. Set all joints to their minimum joint angle.
// 2. Set all joints to their maximum joint angle.
// 3. Set all joints to their initialization joint
angle.
//
// I/O: Returns EcTrue on success or EcFalse on failure.
//
// Notes: In each case the parameters are queried from the
// configuration file. The test is currently setup to
// take 4 seconds to complete each task, with a total
wait
// time of 10 seconds to wait before proceeding to the
// next task.
// Revisions:
///
//
EcBoolean
hardwareExample::testRadians
 (
)
{
 EcRealVector jointAngle(m_NumJoints);

 // Pull information from configuration
 std::cout << "Reading min angles from configuration.\n";

Copyright © 2008 Robai. All Rights Reserved. 22

 if(!m_hw.getJointStates(jointAngle, cyton::MinAngleInRadians))
 {
 std::cerr << "Unable to get minimum angles from
getJointStates.\n";
 return EcFalse;
 }
 // Set all joints to their configured minimum value.
 std::cout << "Setting all joint to min angles.\n";
 if(!m_hw.setJointCommands(0.0, jointAngle))
 {
 std::cerr << "Problem setting min angles.\n";
 return EcFalse;
 }
 m_hw.waitUntilCommandFinished(10000); // Let the hardware achieve
its position. 10 sec

 // Pull information from configuration
 std::cout << "Reading max angles from configuration.\n";
 if(!m_hw.getJointStates(jointAngle, cyton::MaxAngleInRadians))
 {
 std::cerr << "Unable to get maximum angles from
getJointStates.\n";
 return EcFalse;
 }
 // Set all joints to their configured maximum value.
 std::cout << "Setting all joint to max angles.\n";
 if(!m_hw.setJointCommands(4.0, jointAngle))
 {
 std::cerr << "Problem setting max angles.\n";
 return EcFalse;
 }
 m_hw.waitUntilCommandFinished(10000); // Let the hardware achieve
its position. 10 sec

 // Pull information from configuration
 std::cout << "Reading init angles from configuration.\n";
 if(!m_hw.getJointStates(jointAngle, cyton::InitAngleInRadians))
 {
 std::cerr << "Unable to get init angles from getJointStates.\n";
 return EcFalse;
 }
 // Set all joints to their init value.
 std::cout << "Setting all joint to init angles.\n";
 if(!m_hw.setJointCommands(8.0, jointAngle))
 {
 std::cerr << "Problem setting initialize angles.\n";
 return EcFalse;
 }
 m_hw.waitUntilCommandFinished(10000); // Let the hardware achieve
its position. 10 sec

 return EcTrue;
}

The following code snippet shows how to use Actin-SE in conjunction with the hardware
interface to control the arm.

Copyright © 2008 Robai. All Rights Reserved. 23

///
//
// Function: testControlAndHardware
// Description: Consolidated example that positions the end-effector
and
// then pushes the calculated joint values to the
hardware.
// It sets an initial location and tells it to move to
the
// new location. There are 100 timesteps generated for a
// 2 second interval. The simulation will run based on
// internal constraints and rates to achieve the desired
// pose before the 2 seconds.
// I/O: Returns EcTrue on success and EcFalse on failure.
// Notes: none
// Revisions:
///
//
EcBoolean
controlExample::testControlAndHardware
 (
)
{
 EcRealVector jointAngles;
 EcRealVector jointRates;

 // ---

 // test end-effector pose/motion calculation
 // ---

 EcReal time=0.0;

 Ec::coordinateSystemTransformation initialPose;

 initialPose.setTranslation(Ec::Vector(-0.0122878,-
0.136491,0.467294));

 // Desired pose is located 10cm away along X and Y.
 Ec::coordinateSystemTransformation desiredPose = initialPose;
 desiredPose.setTranslationX(desiredPose.translation().x()+0.1);
 desiredPose.setTranslationY(desiredPose.translation().y()+0.1);

 //cyton::hardwareInterface
hardwareInterface("cyton_low_rate_test_config.txt");

 // execution parameters
 EcU32 steps = 200;
 EcReal simRunTime = 2.0;
 EcReal simTimeStep = simRunTime/steps;

 // Set the desired final position.
 EcBoolean passed =
m_ControlInterface.setDesiredEndEffectorPose(desiredPose,2);

Copyright © 2008 Robai. All Rights Reserved. 24

 // move to the desired pose. If running the rendered version, it
will display the
 // progress.
 for(EcU32 ii=0; ii<steps && passed; ++ii)
 {

 // get the current time
 EcReal currentTime = simTimeStep*ii;

 /// calculate new joint values
 passed &=
m_ControlInterface.calculateNewJointValuesAndRates(currentTime,
jointAngles, jointRates);
 std::cout << "Step: " << ii << " Joint Angles: " << jointAngles
<< "\n";

 // Pass joint values to the hardware.
 // passed &= hardwareInterface.setJointCommands(currentTime,
jointAngles, cyton::JointAngleInRadiansBiasScale);
 }
 if(passed)
 {
 std::cout << "Control with Hardware test passed.\n";
 }
 return passed;

}

Tech Support and Contact Info

For tech support contact :

By email:
 support@robai.com

By phone:
 412-307-3050

 (between 9 a.m. and 5 p.m. Eastern Standard Time)

By standard mail:

Robai
PO Box 37635 #60466
Philadelphia, PA 19101-0635

www.robai.com

Copyright © 2008 Robai. All Rights Reserved. 25

