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Abstract. This paper surveys the most recent published techniques in the field of
Simultaneous Localization and Mapping (SLAM). In particular it is focused on the
existing techniques available to speed up the process, with the purpose to handel
large scale scenarios. The main research field we plan to investigate is the filtering
algorithms as a way of reducing the amount of data. It seems that almost all the
current approaches can not perform consistent maps for large areas, mainly due
to the increase of the computational cost and due to the uncertainties that become
prohibitive when the scenario becomes larger.
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Introduction

Simultaneous Localization and Mapping (SLAM) also known as Concurrent Mapping
and Localization (CML) is one of the fundamental challenges of robotics, dealing with
the necessity of building a map of the environment while simultaneously determining the
location of the robot within this map. The aim of this paper is to survey the advantages
and disadvantages of current available techniques, to compare and contrast them, and fi-
nally to identify gaps, i.e. possible new research directions or further improvements. This
survey is conducted as the starting point of a bigger project, which involves computer
vision in SLAM (Visual SLAM) in underwater scenarios.

SLAM is a process by which a mobile robot can build a map of an environment
and at the same time use this map to deduce its location. Initially, both the map and the
vehicle position are not known, the vehicle has a known kinematic model and it is mov-
ing through the unknown environment, which is populated with artificial or natural land-
marks. A simultaneous estimate of both robot and landmark locations is required. The
SLAM problem involves finding appropriate representation for both the observation and
the motion models [1]. In order to do so, the vehicle must be equipped with a sensorial
system capable of taking measurements of the relative location between landmarks and
the vehicle itself.

Several research groups and researchers have worked and are currently working in
SLAM, and the most commonly used sensors can be categorized into laser-based, sonar-
based, and vision-based systems. Additional sensorial sources are used to better perceive
robot state information and the outside world [2], such as, compasses, infrared tech-
nology and Global Positioning System (GPS). However, all these sensors carry certain
errors, often referred to as measurement noise, and also have several range limitations



making necessary to navigate through the environment, for instance, light and sound
cannot penetrate walls.

Laser ranging systems are accurate active sensors. Its most common form operates
on the time of flight principle by sending a laser pulse in a narrow beam towards the
object and measuring the time taken by the pulse to be reflected off the target and returned
to the sender. Sonar-based systems are fast and provide measurements and recognition
capacities with amounts of information similar to vision, but with the lack of appearance
data. However, its dependence on inertial sensors, such as odometers, implies that a small
error can have large effects on later position estimates [2]. On the other hand, Vision
systems are passive, they have long range and high resolution, but the computation cost is
considerably high and good visual features are more difficult to extract and match. Vision
is used to estimate the 3D structure, feature location and robot pose, for instance by
means of stereo camera pairs or monocular cameras with structure from motion recovery.

Further classification can be made in terms of working environment, for instance,
ground indoor, ground outdoor, air-borne or underwater. Most of the work done so far
focuses on ground and mainly indoor environments [3] [4] [5] [6], only few papers
deal with airborne applications [7] [8] and a few more present the SLAM in underwater
conditions and they generally work with acoustic data [9]. Recently, there is a growing
interest in SLAM for underwater scenarios [10], in which vision plays an important role
[11] [12] [13], in most cases combined with other sensory systems to acquire both depth
and appearance information of the scene, for instance, acoustic or inertial sensors.

The representation of the observation and the motion models is generally performed
by computing its prior and posterior distributions using probabilistic algorithms, which
are briefly described in section 1. These algorithms are strongly influenced by the data
measurement and association, which are presented in section 2. Existing literature is
classified in section 3, listing the main advantages and disadvantages of each group.
Finally, section 4 summarizes the main ideas and an overall discussion is given.

1. Solutions to the SLAM Problem : Filters in SLAM

Robotic map-building can be traced back to 25 years ago, and since the 1990s proba-
bilistic approaches (i.e. Kalman Filters (KF), Particle Filters (PF) and Expectation Maxi-
mization (EM)) have become dominant in SLAM. The three techniques are mathematical
derivations of the recursive Bayes rule. The main reason for this probabilistic techniques
popularity is the fact that robot mapping is characterized by uncertainty and sensor noise,
and probabilistic algorithms tackle the problem by explicitly modeling different sources
of noise and their effects on the measurements [2].

1.1. Kalman Filters and its variations (KF)

Kalman filters are Bayes filters that represent posteriors using Gaussians, i.e. unimodal
multivariate distributions that can be represented compactly by a small number of param-
eters. KF SLAM relies on the assumption that the state transition and the measurement
functions are linear with added Gaussian noise, and the initial posteriors are also Gaus-
sian. There are two main variations of KF in the state-of-the-art SLAM: the Extended
Kalman Filter (EKF) and its related Information Filtering (IF) or Extended IF (EIF). The



EKF accommodates the nonlinearities from the real world, by approximating the robot
motion model using linear functions. Several existing SLAM approaches use the EKF
[3] [5] [14] [15]. The IF is implemented by propagating the inverse of the state error
covariance matrix. There are several advantages of the IF filter over the KF. Firstly, the
data is filtered by simply summing the information matrices and vector, providing more
accurate estimates [16]. Secondly, IF are more stable than KF [17]. Finally, EKF is rel-
atively slow when estimating high dimensional maps, because every single vehicle mea-
surement generally effects all parameters of the Gaussian, therefore the updates requires
prohibitive times when dealing with environments with many landmarks [18].

However, IF have some important limitations, a primary disadvantage is the need to
recover a state estimate in the update step, when applied to nonlinear systems. This step
requires the inversion of the information matrix. Further matrix inversions are required
for the prediction step of the information filters. For high dimensional state spaces the
need to compute all these inversions is generally believed to make the IF computation-
ally poorer than the Kalman filter. In fact, this is one of the reasons why the EKF has
been vastly more popular than the EIF [19]. These limitations do not necessarily apply
to problems in which the information matrix possesses structure. In many robotics prob-
lems, the interaction of state variables is local; as a result, the information matrix may
be sparse. Such sparseness does not translate to sparseness of the covariance. Informa-
tion filters can be thought of as graphs, where states are connected whenever the corre-
sponding off-diagonal element in the information matrix is non-zero. Sparse information
matrices correspond to sparse graphs. Some algorithms exist to perform the basic update
and estimation equations efficiently for such fields [20] [21], in which the information
matrix is (approximately) sparse, and allow to develop an extended information filter that
is significantly more efficient than both Kalman filters and non sparse Information Filter.

The Unscented Kalman Filter (UKF) [22] addresses the approximation issues of the
EKF and the linearity assumptions of the KF. KF performs properly in the linear cases,
and is accepted as an efficient method for analytically propagating a Gaussian Random
Variable (GRV) through a linear system dynamics. For non linear models, the EKF ap-
proximates the optimal terms by linearizing the dynamic equations. The EKF can be
viewed as a first-order approximation to the optimal solution. In these approximations
the state distribution is approximated by a GRV, which then is propagated analytically
through the first-order linearization of the nonlinear system. These approximations can
introduce large errors in the true posterior mean and covariance, which may lead some-
times to divergence of the filter. In the UKF the state distribution is again represented by
a GRV, but is now specified using a minimal set of carefully chosen sample points. These
sample points completely capture the true mean and covariance of the GRV, and when
propagated through the true non-linear system, captures the posterior mean and covari-
ance accurately to the 3rd order for any nonlinearity. In order to do that, the unscented
transform is used.

One of the main drawbacks of the EKF and the KF implementation is the fact that
for long duration missions, the number of landmarks will increase and, eventually, com-
puter resources will not be sufficient to update the map in real-time. This scaling prob-
lem arises because each landmark is correlated to all other landmarks. The correlation
appears since the observation of a new landmark is obtained with a sensor mounted on
the mobile robot and thus the landmark location error will be correlated with the error in
the vehicle location and the errors in other landmarks of the map. This correlation is of



fundamental importance for the long-term convergence of the algorithm, and needs to be
maintained for the full duration of the mission. The Compressed Extended Kalman Fil-
ter (CEKF) [23] algorithm significantly reduces the computational requirement without
introducing any penalties in the accuracy of the results. A CEKF stores and maintains
all the information gathered in a local area with a cost proportional to the square of the
number of landmarks in the area. This information is then transferred to the rest of the
global map with a cost that is similar to full SLAM but in only one iteration.

The advantage of KF and its variants is that provides optimal Minimum mean-square
Error (MMSE) estimates of the state (robot and landmark positions), and its covariance
matrix seems to converge strongly. However, the Gaussian noise assumption restricts the
adaptability of the KF for data association and number of landmarks.

1.2. Particle Filter based methods (PF)

PF, also called the sequential Monte-Carlo (SMC) method, is a recursive Bayesian filter
that is implemented in Monte Carlo simulations. It executes SMC estimation by a set
of random point clusters (’particles’) representing the Bayesian posterior. In contrast to
parametric filters (e.g., KF), PF represents the distribution by a set of samples drawn
from this distribution, what makes it capable of handling highly nonlinear sensors and
non-Gaussian noise. However, this ability produces a growth in computational complex-
ity on the state dimension as new landmarks are detected, becoming not suitable for real
time applications [24]. For this reason, PF has only been successfully applied to local-
ization, i.e. determining position and orientation of the robot, but not to map-building,
i.e. landmark position and orientation; therefore, there are no important papers using PF
for the whole SLAM framework, but there exist few works that deal with the SLAM
problem using a combination of PF with other techniques, for instance, the FastSLAM
[24] and the fastSLAM2.0 [25]. FastSLAM takes advantage of an important character-
istic of the SLAM problem (with known data association): landmark estimates are con-
ditionally independent given the robot’s path [26]. FastSLAM algorithm decomposes
the SLAM problem into a robot localization problem, and a collection of landmark es-
timation problems that are conditioned on the robot pose estimate. A key characteristic
of FastSLAM is that each particle makes its own local data association. In contrast, EKF
techniques must commit to a single data association hypothesis for the entire filter. In
addition FastSLAM uses a particle filter to sample over robot paths, which requires less
memory usage and computational time than a standard EKF or KF.

1.3. Expectation Maximization based methods (EM)

EM estimation is a statistical algorithm that was developed in the context of maximum
likelihood (ML) estimation and it offers an optimal solution, being an ideal option for
map-building, but not for localization. The EM algorithm is able to build a map when
the robot’s pose is known, for instance, by means of expectation [27]. EM iterates two
steps: an expectation step (E-step), where the posterior over robot poses is calculated for
a given map, and maximization step (M-step), in which the most likely map is calculated
given these pose expectations. The final result is a series of increasingly accurate maps.
The main advantage of EM with respect to KF is that it can tackle the correspondence
problem (data association problem) surprisingly well [2]. This is possible thanks to



the fact that it localizes repeatedly the robot relative to the present map in the E-step,
generating various hypotheses as to where the robot might have been (different possible
correspondences). In the latter M-step, these correspondences are translated into features
in the map, which then get reinforced in the next E-step or gradually disappear. However,
the need to process the same data several times to obtain the most likely map makes it
inefficient, not incremental and not suitable for real-time applications [28]. Even using
discrete approximations, when estimating the robot’s pose, the cost grows exponentially
with the size of the map, and the error is not bounded; hence the resulting map becomes
unstable after long cycles. These problems could be avoided if the data association was
known [29], what is the same, if the E-step was simplified or eliminated. For this reason,
EM usually is combined with PF, which represents the posteriors by a set of particles
(samples) that represent a guess of the pose where the robot might be. For instance,
some practical applications use EM to construct the map (only the M-step), while the
localization is done by different means, i.e. using PF-based localizer to estimate poses
from odometer readings [2].

2. Measuring and Data Association

The most fundamental key topic into all SLAM solutions is the data association prob-
lem, which arises when landmarks cannot be uniquely identified, and due to this the
number of possible hypotheses may grow exponentially, making absolutely unviable the
SLAM for large areas. Data association in SLAM can be simply presented as a feature
correspondence problem, which identifies two features observed in different positions
and different points in time as being from the same physical object in the world. Two
common applications of such data association are to match two successive scenes and to
close a loop of a long trajectory when a robot comes to the starting point of the trajectory
again.

So far most computer vision approaches only uses 2D information to perform data
association, but in underwater scenarios this data association is more complicated due
to more significant levels of distortion and noise. Therefore, in order to succeed when
solving the correspondence problem very robust features are necessary, even under weak
lighting conditions or under different points of view. The use of vision sensors offers the
possibility to extract landmarks considering 2D and 3D information [11] [30], hence
more robust features can be selected.

Feature recognition, tracking and 3D reconstruction are important steps that feed the
measurements to the SLAM framework. Feature tracking is the problem of estimating the
locations of features in an image sequence (for instance, Harris corner detector and Ran-
dom Sample Consensus (RANSAC), Scale Invariant Feature Transform (SIFT) [15] or
Speeded-up Robust Features (SURF) [31]). 3D reconstruction is the problem of obtain-
ing the 3D coordinates and the camera pose using two or more 2D images (for instance,
by using epipolar geometry and fundamental matrix). Fortunately, recent advances in
computer vision techniques and, more precisely, in feature extraction enable the usage of
high-level vision-based landmarks (complex and natural structures) in contrast to early
attempts using low-level features (e.g., vertical edges, line segments, etc.) and artificial
beacons. However, the use of vision has several limitations and practical difficulties, for
example, several assumptions about the environment must be done in order to simplify



the problem (similarly to what humans do using prior knowledge to make decisions on
what their eyes see); in regions without texture or with repeating structures there is no
method of finding true matches; and even if this matching problem is solved, images are
always noisy.

The loop-closing problem (a robot turns back to the starting point of its trajectory)
requires successful identification of revisited landmarks to build a consistent map in large
scale environments. Due to accumulated errors along the trajectory (drift), the recon-
structed map is not consistent, i.e., the loop of the trajectory is not closed properly. Cor-
rect data association is required to uniquely identify the landmarks corresponding to pre-
viously seen ones, from which loop-closing can be detected. Then, different techniques
are applied to correct the map, for example, Kalman smoother-based (used by most of
the current solutions to the SLAM problem) and EM-based techniques [27].

3. Classification: Pros and Cons

From the previous section, it seems clear that few works has been published on under-
water SLAM [5] [13] and even less on underwater visual SLAM [30]. Most of the un-
derwater approaches use sonar or other non visual sensory systems. There exist various
V-SLAM approaches for terrestrial applications [3] [4] [14] [15], most of them deal with
the uncertainties by using Kalman Filters (KF) and its variation Extended Kalman Filters
(EKF) [3] [14] [15], and another group of papers uses some improved information filter
[16] [17] [20] [21], i.e. sparse expanded information filter (SEIF).

It seems obvious that almost non of the current approaches can perform consistent
maps for large areas, mainly due to the increase on computational cost and on the uncer-
tainties. Therefore this is possibly the most important issue that needs to be improved.
Some recent publications tackle the problem by using multiple maps, or sub-maps that
are lately used to build a larger global map [4] [32] [33]. However these methods rely
considerably on assuming proper data association, which is another important issue that
needs to be improved. Table 1 provides a list of advantages and disadvantages of different
SLAM strategies in terms of the method used to deal with uncertainties.

Essentially, the most challenging methods not still solved are the ones enabling
large-scale implementations in increasingly unstructured environments, i.e. underwater,
and especially in situations where other current solutions are unavailable or unreliable.
According to the bibliographical survey, SLAM solutions could be improved either by
formulating more efficient and consistent to large scenarios filtering algorithms, and
solving in a very robust way the data association problem. For the first case, different
filters applied into the SLAM framework must be studied, for instance the compressed
extended Kalman Filter (CEKF), the Unscented Kalman Filter (UKF) or the information
filters(IF/EIF). The second issue is currently solved using SIFT and SURF, which seem
to be considerably good solutions for the data association problem, however they become
computationally expensive when dealing with high dimensional maps.

4. Discussion

This survey allows to find the most interesting filtering techniques and identify many of
its particularities. These filtering strategies are Kalman Filter (KF), Information Filter



Table 1. List of advantages and disadvantages of filtering approaches applied into the SLAM framework.

Pros Cons

Kalman Filter and Extended KF (KF/EKF) [3] [5] [14] [15]

- high convergence - Gaussian assumption
- handle uncertainty - slow in high dimensional maps

Compressed Extended KF (CEKF) [23]

- reduced uncertainty - require very robust features
- reduction of memory usage - data association problem
- handle large areas - require multiple map merging
- increase map consistency

Information Filters (IF) [16] [17]

- stable and simple - data association problem
- accurate - may need to recover a state estimates
- fast for high dimensional maps - in high-D is computationally expensive

Particle Filter (PF) [24] [25]

- handle nonlinearities - growth in complexity
- handle non-Gaussian noise

Expectation Maximization (EM) [16] [27]

- optimal to map building - inefficient, cost growth
- solve data association - unstable for large scenarios

- only successful in map building

(IF), Unscented Kalman Filter (UKF) and Compressed Kalman Filter (CKF). A general
classification of the current filtering strategies is given, contrasting the pros and cons.

The most interesting outcome from the survey is that for large scenarios, or maps
with high population of landmarks, the CKF seems to be better as compared to other
methods. When dealing with these kind of maps, the state vector and its associated co-
variance matrix keeps growing with the quantity of landmarks observed. This growth
makes the mathematical operations more complex and increases dramatically the time
consumption, i.e. the computational cost. The strategy used by the CKF to compute local
KFs and then update its output to a global map seems really consistent, because it only
needs to handle with small amounts of data during the local iteration process.

As always, there is room for additional improvement. Further areas of research that
have been identified encouraging future investigation are:

1. Test and adapt all methods to non-linear problems. this means to implement and
test linear models, and then improve them by implementing its extended formu-
lations, for instance, Extended Kalman Filter (EKF), Extended Information Fil-
ter(EIF) and Compressed Extended Kalman Filter (CEKF).

2. Find new solutions for non-gaussian noise problems. Although gaussian noise is
assumed in all models presented so far, not always reflects the problems of the
real world. It seems that UKF could handle with different types of noise, but this
topic has not been investigated in deep yet.

3. Develop Visual SLAM algorithms useful for navigation purposes on underwater
vehicles and for 3D reconstruction of the seafloor. In fact, this is the ultimate
destination of this work, which should contribute to improve current underwater



vehicles and underwater research. This survey is a first step to this whole work,
bringing insightful information on filtering techniques. As far as data association
problem is concerned, it is well known that it is completely dependent on the
ability to find proper features, which in underwater scenarios is a considerably
critical task, mainly due to the enormous amount of noise, the dynamism of the
environment and the lack of significant landmarks. Obviously if this landmark
detection is not robust enough there won’t be possibility for the SLAM to work.
For this reason, the use of vision to define landmarks seems to open a wide range
of different possibilities. In addition a vision system is considerably less expen-
sive than other sensorial systems, for instance, sonar. The main drawback lay in
its high computational cost to extract and match features. Further problems that
needs to be addressed from the limitations that arises from using computer vision
in SLAM are the dynamism of the robot environment, i.e. changes of location of
other agents in the environment, creates a big challenge, because it introduces in-
consistent sensor measurements and because there are almost no algorithms that
can dealt with mapping in dynamic environments.
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