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What is Required to Navigate?

@ Cognition/Reasoning
4 the ability to decide what actions are required to achieve a
certain goal in a given situation
¥ decisions ranging from what path to take to what
information on the environment to use

@ [ndustrial robots operate without cognition since they
work in static and very structured environments

2 |n mobile robotics cognition is mainly concerned to which
path is better to reach a given location

4 knowledge is partially known and uncertain

% requires hybrid solutions running in parallel
@ global path planning
@ |ocal obstacle avoidance
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Global Path Planning

2@ Assumption
¥ there exists a good enough map

@ Goal

% find the optimal geometrical path
@ optimal = minimum distance, minimum rotations

9 First step
4 use an environment representation that allows to apply

standard planning algorithms
@ Road-Map
@ visibility graphs
@ Voronoi graphs
@ Cell decomposition
@ Potential Field




Path Planning as a Graph Search Problem

@ For graph-based maps
@ Search problem <S, G, s, {O,, O,,

@ S: set of states

@ G: goal states

@ s & G: initial state

@{0, 0, .., 0}: finite set of available operators. If an
operator O, may be applied to a state it returns the
state Succj(s) with a cost cj(s) =0

2 Solution
@ each sequence that allows to pass from s, to a goal

state
2 Optimal solution
@ a solution is optimal if its cost is not greater than that
of any other solution




Search Solution Methods

9 To solve a search problem we
need to explore a portion (possibly
small) of the state space

@ We need to build a search tree

The general algorithm is
Initialize root node with the initial state
REPEAT
IF there is not any node to be extended THEN
RETURN failure
ELSE
choose a node n
IF nis a goal state THEN
RETURN solution
ELSE gt
extend n and add the produced nodes to the search tree ;"'




Evaluation of Different Search Strategies

2@ The main difference between the different search
strategies is the way in which they put new nodes into the
frontier (the set of nodes that have been generated but still
not expanded)

@ Properties of a search strategy

¥ completeness: it found a solution if at least one exists

% optimality: the found solution has minimum cost
¥ complexity: time and memory requirements

@ Parameters of a search strategies

% b: branch factor, i.e. max number of successor states T
¢ d: depth of the goal state nearest to the root node E?-f-'"




What Search Methods can be Used for?

@ (Good solution methods exist for problems
4 static

4 full observable T

4 discrete 347

2 deterministic il B
@ Examples

% Eight game

4 automatic assembly T T

¥ path planning
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Search Strategies

9@ Uninformed search strategies
9 breadth-first
9 uniform-cost
9 depth-first
@ depth-limited
@ jterative deepening depth first s
@ bidirectional
9 [nformed search strategies
9 best-first greedy
@ A*




Informed Search Strategies

9 [nformed search strategies exploit specific knowledge that
IS not contained in the problem formulation

2@ The next node to be evaluated is chosen according to an
evaluation function f(n)

@ Evaluation function tells how much a node is promising

@ According to the way f(n) is computed we have different
search strategies

@ For convention nodes with low values for f(n) are better

@ it is typically implemented through a priority queue
¥ the node with the lowest value is extracted to be extended
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Best-First Greedy Search

9@ The evaluation function is equal to a heuristic function h(n)

2@ f(n) = h(n) = estimated cost of the shortest path between
node n and one of the goal nodes

@ h(n)is an estimate not the real cost (otherwise is trivial)

9 Best-first greedy search is
4 not optimal

% suffers from local minima I
¢ temporal and spatial complexity
@ O(bm)

@ b is the branch factor
@ m is the maximum search depth (may be «)




@ A* is a kind of best-first search
@ The evaluation function is the sum of the cost to reach the
node n (g(n)) and the value of a heuristic function h(n)

4 f(n) =g(n) + h(n)
2 f(n)is an estimate of the most convenient solution among
those the pass through n
4 g(n): cost of the path from the root node to n
% h(n). estimate of the cost of the path from nto the nearest
goal node
2 A*is
4 complete
% optimal (under some hypotheses on h(.))
4 optimally efficient
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Best-First Greedy vs A*: An Example

i h(n): Manhattan distance

Best-First Greedy A*




Path Planning Overview

2@ Road Map, Graph

construction
9 identify a set of routes
within the free space
@ where to put the nodes?
2 Cell decomposition
¥ discriminate between free

and occupied cells
@ where to put the cell
boundaries

2 Potential field
4 imposing a mathematical
function over the space




Visibility Graph

@ Shortest path length
@ (Grow obstacles to avoid collisions




Obstacle Oriented Maps

@ QObstacles are stored as a
graph of vertexes
@ Grow obstacles to avoid
them
¥ use the radius if the robot
Is cylindrical
¥ use half-diagonal if the
robot is rectangular
@ This works If there are wide
free zones
@ Otherwise we need
different maps according to
the heading of the robot
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Growing Obstacles

9@ Consider a point R among the vertexes of the polygon that
defines the robot shape

@ Consider the polygon obtained through central symmetry
with respect to the point R

9 Make R overlap with all the vertexes of each obstacle and
add the obtained robot vertexes to the list of vertexes

@ Join all the external vertexes (obtaining the convex hull)




Planning with Visibility Graphs

2 Once grown the obstacle for a given heading, we build the
visibility graph

9@ The graph contains all the paths between start and goal

@ Planning can be made with the A* algorithm

@ The visibility graph is not suitable for dynamic words

@ The paths are close to the obstacles
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Piano Mover Problem

9 Not always the robot can move straight and then perform
rotations

2 |n the example below, the robot can find a path in the first
hallway, but without changing its heading there is not a
path in the second one




Voronoi Diagram

9 Easy executable: maximize the sensor readings
2@ Works also for map-building: Move on the Voronoi edges




Cell Decomposition

@ Divide space in simple, connected regions called cells

@ Construct a connectivity graph between adjacent cells

9 Find a path the connect the cells containing the initial and
goal configuration

@ Given the sequence of cells compute a path within each
cell




Planning with Regular Grid Maps

9@ The grid allows to represent both obstacles and free space

@ Consider a regular grid
% its dimension is given by the dimension of the robot

@ The robot may be considered either inside the cell or on a

vertex 1] 2] 3
2@ Planning can be made with A* % a
2 the successor function can be %ﬁﬂs

@ 8-connected map
@ 4-connected map RNND S WL = 5

@ orthogonal i i
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Planning with Regular Grid Maps: Wave Propagation

9 |nstead of A*, we can use an ad hoc method
2@ The idea is to compute for each cell its distance to the goal
@ The algorithm propagate the distance information as a wave
that starts from the goal
2 |f there is a path, the wave will reach the starting cell
@ The algorithm (sketch)
4 initialize the cell values (blocked = inf., goal=0, free=row*col)

¢ REPEAT

@ Forward step (from left to right, from up to bottom, if cell c is free)
@ c[x,y]:=min(c[x,y], c[x-1,y-1]+1, c[x-1,y]+1,c[x-1,y+1]+1,c[x,y-1]+1)
@ Beckward step (from right to left, from bottom to up, if cell ¢ is free) § ,.H:_-—-
@ c[x,y]:=min(c[x,yl.c[x+1,y-1]+1,c[x+1,y]+1,clx+1,y+1]+1,c[x,y+1]+1) :;.,_.f
< UNTIL no change
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Wave Propagation: Considerations

2 For the diagonal movement the cost could be 1.4
2@ The number of iterations depends on the obstacle shape
9@ The path from start to goal is obtained by following the

cells with decreasing value
% if the path cannot be found, it does not exist
@ The accuracy is in trade-off with the memory requirements
9@ Works in a discretized space
9 The path planning algorithm is easy

@ it does not suffer from local minima ~— - N
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Planning with Different Representations




Potential Field

@ Robot is treated as a point under the influence of an
artificial potential field "
¥ goal generates attractive force i« A
¥ obstacles are repulsive forces
% summing up the fields: U(q)
% functions must be differentiable

@ Generate artificial force field F(q) .

F(q)=—VU(q)=—VU,(q)-VU,,(q)=

@ Set robot speed (v, v,)

¥ the force drives the robot to the goal
¥ the robot is considered as a point mass
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Potential Field: An Example

@ Attractive

@ parabolic function: the distance from the goal

1

Uatz(Q)zzkatz<q_ngal)2

¥ the force converges linearly towards 0
@ Repulsing

¥ strong when close to the obstacles

9 not influence if far from the obstacles
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Potential Field: Issues

@ Suboptimal paths

9 extended potential field method
@ rotational potential field
@ force is also a function of the orientation to the obstacle
@ task potential field
@ filters-out tasks that should not influence the movement
2 | ocal minimum problem exists

< harmonic potentials
@ robot moving as a fluid particle following its stream
@ no local minima, but complex




Obstacle Avoidance

@ The goal is to avoid collisions with obstacles

2 |t is usually based on local maps

2 Often is implemented as an independent task

@ Efficient obstacle avoidance should be optimal w.r.t.
% the overall goal
% the actual speed and kinematics of the robot

¥4 the on-board sensors
¥ the actual and future risk of collisions




Obstacle Avoidance: Problem 1

2 Following along the obstacle to avoid
2@ To know which is the point closest to the goal, it is required
to fully circle each encountered obstacle




Obstacle Avoidance: Problem 2

2 Following the robot always on the left or right side
@ | eaving the obstacle if the direct connection between start
and goal is crossed




VHF: Vector Field Histogram

2@ Environment represented in a grid (2 DOF)
¥ cell values equivalent to the probability that there is an
obstacle
@ Reduction in different steps to a 1 DOF histogram
¥ calculation of steering directions
¥ all openings for the robot to pass are found
% the one with the lowest cost function G is selected
@ G = a*target_dir + b*wheel_orientation + c*previous_dir
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2@ Improved version of VHF that accounts also (in a very
simple way) for the moving trajectories
9 the robot is assumed to move on arcs
9 obstacle blocking a given direction also blocks all the
trajectories going through this direction




Bubble Band Concept

@ A bubble is the maximum free space which can be

reached without any risk of collision
¥ generated using the distance to the object and a simplified
model of the robot
% bubbles are used to form a band of bubbles which connects
the start point with the goal point




Basic Curvature Velocity Methods

9@ Adding physical constraints from the robot and the

environment on the velocity space (v,w) of the robot
4 assumption that the robot is traveling on arcs (exist
extensions using lanes)
@c=wnNV
¥ acceleration constraints

% obstacle constraints
@ obstacle are transformed in velocity space

¥ objective function to select the optimal speed
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Dynamic Window Approach

2@ The kinematics of the robot is taken into account by

searching a well chosen velocity space
% velocity space -> some sort of configuration space
¥ robot is assumed to move on arcs
¥ ensures that the robot comes to stop before hitting an
obstacle

¥ objective function is chosen to select the optimal velocity
@ O = a*heading(v,w) + b*velocity(v,w) + c*dist(v,w)




The Schlegel Approach

2@ Variation of the dynamic window approach
¥ takes into account the shape of the robot
¥ Cartesian grid and motion of circular arcs
¥4 wave propagation planner
@ real-time performance achieved by use of a precalculated
table B




Other Approaches

@ Behavior based

% Pros
@ easy to program
@ modular
<4 Contra
@ difficult to introduce a precise task z,
@ reachability of goal not provable

9@ Fuzzy, Neuro-Fuzzy
<9 Pros
@ handling of uncertainty
@ automatic programming
< Contra
@ |earning required
@ difficult to generalize




