
Depth Image Dimension Reduction Using Deep
Belief Networks

Isma Hadji* and Akshay Jain**
Department of Electrical and Computer Engineering

University of Missouri
19 Eng. Building West, Columbia, MO, 65211

Email: *ih9p5@mail.missouri.edu, **akshay.jain@mail.missouri.edu

Abstract—Nowadays 3D images are becoming a widely used
tool in many computer vision tasks, such as scene segmentation or
object recognition. A common problem when using 3D images,
is that often the size of the corresponding cloud of points is
very big and therefore hard to process, making the subsequent
algorithms computationally expensive. In this work, we address
this problem by introducing a pre-processing step in order to
reduce the number of points needed to represent an object in 3D
by reducing the number of pixels in the depth image. In order to
achieve this we use state-of-the-art techniques for data dimension
reduction; Deep Belief Networks based on RBM greedy layer wise
pre-training. In this work we demonstrate that the role of the
structure of the network is not as important as the underlying
methods used to learn the parameters of the network. Most
importantly, we prove in this work the strategic role of the fine
tuning and the RBM pre-training steps in several aspects.

I. INTRODUCTION

Data dimension reduction is a very important topic in the
field of machine learning. The choice of a subset of features
can be very helpful both in terms of data handling as well
as any subsequent task for which this data is to be used.
Some applications for which reduced dimension data can
be used include, but are not limited to, data clustering and
classification. In fact, the features used in such algorithms can
have a tremendous impact on their results. For example, using
different features or dimension can highly affect the results of a
classifierIn addition to that, reducing the dimensionality of the
feature space can ultimately help to reduce the time complexity
for various tasks. All these reasons make the problem of
dimension reduction a very hot topic that is being thoroughly
explored by the machine learning community.

Feature dimension reduction techniques can be classified
into 3 distinct categories. Traditionally, the primary choices
that have been used are algorithms that reduce connectivity
between data. PCA and ICA are the most well known and
widely used algorithms falling in this category. While the
former attempts to correlate features, the later goes further
by maximizing independence between them.

The second category of approaches for dimension reduction
are graph based approaches. ISOMAPs, Local Linear Embed-
ding (LLE) are such techniques. The common idea to most
of the methods falling in this category is to reduce dimension
while learning the manifold on which it falls and trying to
keep the same shape in lower dimensional spaces.

Finally in the last category, we find probabilistic approaches.
The most prominent work based on probabilistic approaches
are based on the principle of Auto-encoders. The recent Deep
Belief networks (DBN) are, undoubtedly, the most effective
method for achieving this task. Although, many algorithms
have been developed for training DBN, in this work we will
focus on one of the most successful implementations [1] that
uses Restricted Boltzman Machines (RBM) for initializing the
parameters of each level in the Deep network. The targeted
task in this case is the compression of depth images into
smaller codes, that could be used later on for categorizing
and recognizing the objects present in each image. Ultimately,
the goal of this work, is to study the various aspects of DBN
while encoding the input depth images in such a way as to
keep the most information about what object they represent,
hence, being able to recover the shape of the object from the
smaller code.

II. BACKGROUND AND RELATED WORK

Deep belief networks for data dimension reduction gained
popularity with the introduction of a Greedy layer wise train-
ing step by Hinton in 2006 [1], that treats each layer as a
Restricted Boltzman Machine. Ever since, many techniques
for pre-training the layers of the Deep network have been pro-
posed. These techniques can be divided into 2 main paradigms;
stochastic Restricted Boltzman Machines and deterministic
auto-encoders.

Dual layer RBM’s provide a simple and efficient way to
learn the features of data. However, it requires the visible
units to be binary valued which is not the case in many real
world applications. Therefore, a lot of work done on RBM’s
is focused towards approaches to use real valued inputs. [1]
scales RBM’s input vectors to values between [0,1]. These
vectors are then used as probabilities to calculate the binary
features. [2] presents an extension to the approach proposed in
[1] to modify the energy function of the RBM and changing
the range of input values. They modify the conditional density
of the units of one layer given the other layer of RBM as a
truncated exponential and a quadratic exponential term. They
also provide a method to allow the hidden unit values to be
non binary. [3]presents an approach called Noisy Rectified
Linear Units (NReLu). They modify there previous work [4]
to represent each hidden neuron with an infinite number of

binary hidden units with same weights but different biases.
This is found to be better for recognizing objects because it
learns the variation in intensity better than binary units.

The second approach for pre-training the layers of a deep
network is to consider each one of them as a small auto-
encoder. The most prominent methods falling in this category
include Sparse Auto-Encoders [5], Denoising [6] and Contrac-
tive Auto-Encoders [7], to state a few. The basic idea behind
this type of Auto-Encoders is to to learn an underlying network
that is insensitive to changes in the input while ultimately
reducing dimensionality. Sparse Auto-Encoders achieve this
goal by introducing a sparsifying function to the front end
of the decoder. The role of this function is to transform the
code to a sparse vector by making the output of the activation
function closer to zero. Denoising auto-encoder follow the
same general framework but in this case the goal is to make
the network insensitive to noisy data. Therefore, in this case,
changes are applied to the input directly by adding noise to the
input and modifying the learner so as to correct the effect of
the corruption. The so trained layers are stacked and further
trained in a similar manner to RBM based approaches [8].
Similarly, contractive Auto-Encoders (CAE) share the same
idea of making the Deep Network less prone to changes in
the input. However, CAEs do not alter the input but modify
the objective function instead. The main difference in this case
is adding a penalty whenever small changes in the input cause
relevant changes in the learned features. Although, these are
the main techniques used for building Deep networks, several
other methods have been proposed in the related literature such
as the more recent; saturating Auto-Encoders proposed in [9]
and transforming Auto-Encoders in [10]. We refer the reader
to the survey proposed by Bengio et al in [11] for a more
exhaustive description.

In this work, we use the approach presented in [1] because
of its simplicity to learn the features from high dimesnional
input vectors, as well as its widely accepted effectiveness.

III. DEEP BELIEF NETWORKS

Deep Belief Networks are multi-layer Neural networks,
characterized by the presence of many hidden layers. DBNs
are usually viewed as a probabilistic way to encode the input
data and model relationships between features. In that sense,
DBNs can be used as Auto-Encoders in which the network
is made of 2 main parts, an encoding part, that generates the
reduced dimensions data – the code, and the decoding part,
that reconstructs the data to its original dimensions. The main
idea in using DBN for data dimension reduction is to minimize
the reconstruction error between the 2 parts of the network. A
usual choice for the reconstruction error is the mean squared
error. However, because of the probabilistic character of DBN,
cross-entropy as defined in eq1 is a very common metric as
well. In eq 1 xkis the actual input, while zkis the reconstructed
data at the output.

E(x, z) =

d∑
k=1

xklog(zk) + (1− xk)log(1− zk) (1)

Having many layers, is a suitable characteristic in DBN for
encoding data to lower dimensional feature space going from
one layer to the next one. In fact, this is what makes DBN an
attractive choice for data dimension reduction. However, the
presence of many layers, implies a large amount of parameters
to learn and the traditional back-propagation is not efficient in
this case without a good initialization of the weights. For this
reason, a pre-processing step that trains each layer separately
is often involved. Restricted Boltzman Machines, is a simple
and robust way used to pre-train the layers of a DBN. To
find the initial weights each layer of the DBN is treated as
a separate RBM. The initial high dimesnional input vector is
used as visible layer while the hidden layer forms the features.
Since, there is only one actual visible layer, the output of first
RBM is used as the visible layer for the second layer and so
on.

RBMs encode the energy between the two layers using their
joint configuration as given by 2

E(v, h) = −
M∑
i=1

bivi −
N∑
j=1

bjhj −
∑
i,j

vihjwij (2)

where vi ,hj are the visible and hidden units respectively,
biand cj are the bias for the visible and hidden units respec-
tively. wij is the weight connecting uniti and j. M denotes
the number of visible units, while N are the number of hidden
units. 2 can be used to derive 3 and 4 which gives the
probability of one layer given other, where σ(x)is equal to
1/(1 + exp(−x)).

p(hi = 1|v) = σ(

N∑
j=1

wijvj + cj) (3)

p(vi = 1|h) = σ(

M∑
i=1

wijhi + bi) (4)

For our application of reducing depth image dimension, the
input units are gray scale pixels. To incorporate these real
values to RBM’s, each pixel is scaled between [0,1].For all the
RBM layers except the top one. Next, 3 is used to generate
the hidden units given the visible units. The hidden units
are converted back to binary values based on the probability
calculated by 3. Then, 4 is used to re-calculate the visible
units given hidden ones this time. The hidden units are then
updated again using the new visible units. It is worth noting,
that for the top most RBM layer, a linear activation function
is used, since we are looking for real gray scale image pixel
values. The update of the weights are calculated by equation
5

∆wt
ij = ε((V H ′)data − (V H ′)recons) + p∆wt−1

ij (5)

where V and H are the visible and hidden state vectors. This
equation takes into account the difference in the transitions
from visible state to the hidden state in the two updates. ε is
called the learning rate. Essentially, a learning rate that is too
big can make the lgorithm unstab;e, wile a learning rate that
is too small increases the chances of falling in a local minima
while slowing down the convergence process at the same time.
The symbol p denotes the momentum [12]. It controls how
much does the change in weight in the previous iteration affect
the the weights in the current one. This acts as a regularization
parameter that that penalizes situations that can cause over-
fitting.

Once the RBM pre-training is done, the parameters learnt
on the layer-wise basis, can now be used as initial parameters
to train the whole network, using traditional back-propagation
(BP) algorithm. Although the RBM pre-training plays an
important role in initializing the network, BP remains a very
important fine-tuning step. In fact, it puts together the con-
tribution of each layer and interconnects the different layers,
and since a good initialization is obtained from RBM, BP can
now be applied without much loss of information especially in
the last stages where the decay in the propagated error doesn’t
affect the results too much in this case.

Given that the core of the algorithm is reducing the error
using gradient descent, the back-propagation stage can affect
the results in different ways. In additon to the effect of the
learning rate and momentum that are used in a similar manner
to the RBM stage,the number of iterations plays a critical
role in over or under fitting the data. Therefore, one should
seek a good trade-off between the two when implememnting
this part of the algorithm Ulitimately ths should decrese the
reconstruction error while maintaining a good generalization
capability for the DBN.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

As was highlighted in section III the Deep Belief Networks
based on RBM layer wise pre-training depends on many
parameters. For this reason, we are testing, in this section,
the effect of each component on the overall data dimension
reduction results. This is specifically illustrated for the appli-
cation of depth image compression. In order to do this we are
treating one component at a time in what we will call a coarse
to fine testing scheme. We first start by testing the role of the
structure of the network both in terms of depth and number
of neurons per layer. Then, we focus on parameters governing
the convergence of the objective functions. To perform these
tests we use the auto encoder code available at [13]which is
a modified version of the code provided by [1].

The dataset used, is a subset of the RGB-D dataset
[14]containing 5 different objects seen from 3 different po-
sitions and 120 different views. Two subsets with 1235 depth
images each are randomly created, where one is used for
training and the other for testing. Since, the images contain
objects of the same size, the original depth images have been
resized to be all 50× 50 images.

Figure 1. The reconstruction error after the fine tuning stage versus the
number of BP iterations for different configurations of network structures

A. Effect of structure of the DBN

In this experiment, we address the effect of varying the
structure of the DBN by changing the number of layers as
well as the number of neurons in each layer. We test various
layer configurations and evaluate the results based on the
cross-entropy based, reconstruction error on the training as
well as testing dataset. To this end, we test by changing the
depth of the DBN while keeping the code size same and
vice versa. We also test by varying the number of neurons
for constant depth and code sizes. Figure 1 summarizes the
results obtained. We observe that increasing the depth of the
DBN decreases the performance for both training and testing
data, though not by much. We also verify that increasing the
code size results in better performance, since the images are
compressed by a smaller ratio. However, it is worth noting that
we get comparable errors for code size 8 and 100, provided
the decrease in number of neurons in the initial stages of the
network is not too big. Finally, we observe that a large drop
in the number of neurons in successive layers produces high
reconstruction error. This is more evident when the first hidden
layer has a lot less number of neurons than the input layer,
since the first few layers are the ones that count more on
the initialization given that the backpropagation error tends
to fade away in these layers and therefore the fine tunining
doesn’t help much. Putting all the results together, we note
that all the tested network configuration have errors within
a small interval, which suggests that minor variations in the
structure of the DBN does not have a significant effect on the
results. Following this, we choose the network configuration
2500− 2000− 1500− 1000− 500− 250− 100 for rest of the
experiments.

B. Effect of the BP error function

Next step in our coarse to fine testing scheme is addressing
the effect of the reconstruction error type, used for fine tuning

Figure 2. The overall back-propagation error versus the number of iterations
using cross-entropy and mean squared error.

the overall algorithm, on the behavior of the network. We
consider modifying the objective function minimized by the
Back-Propagation algorithm. As was introduced in III there
are two main error types that could be minimized; the mean
squared error and the cross-entropy. In this experiment we have
used the best network configuration obtained from previous
experiment and alternated between the two errors. Surpris-
ingly, as can be seen from figure 2 , the mean squared error
performance is better for both training and testing, although
cross-entropy, being a stochastic approach, is usually more
suited for this type of problems.

C. Overfitting/Underfitting due to pre training

In this experiment we test how much does the initial
weights computed during the RBM pre-training effect the
reconstruction error after fine tuning. In Figure 3 we report the
final reconstruction error for both training and testing data for
different sets of initial weights which are obtained by varying
the number of RBM iterations from 20 to 200. It is observed
that the RBM pre training stage is not able to find a good set of
initial weights for iterations less than 50. However, the initial
set of weights over-fit to the training data if the RBM runs
for more than 70 iterations. Hence, this is a very important
parameter which should be chosen according to the dataset.
We choose 50 number of RBM iterations for all the further
experiments.

D. Effect of the learning rate

A common problem to most Gradient Descent based ap-
proaches is the learning rate used to update the weights. The
method adopted in this paper, relies on learning rate both for
the RBM initialization as well as the back-propgataion fine
tuning. In this experiment, we focus on the role of the learning
rate for the initialization step. We vary this parameters from

Figure 3. The reconstruction error after the fine tuning stage versus the
number of BP iterations for different number of RBM iterations

Figure 4. The overall back-propagation error versus the number of iterations
using different learning rates

10−3 all the way to 10. Figure 4 confirms the role of the
learning rate as was described in section III. In fact, for both,
the high –10 and the low – 10−3 the algorithm fails and gets
entrapped in local minima. Moreover, the high learning rate
clearly is more harmful. The best learning rate appeared to be
a mid value of 0.1, therefore confirming our initial intuition.

E. Importance of pre training and fine tuning stage

The pre training step using RBM’s is an effective way to
calculate the initial weights for DBN’s. However, fine tuning
step is also very important to compute the final parameters. To
test this hypothesis we use the pre training weights to reduce
the dimensionality of the images and then reconstruct them
without going through the fine tuning stage. Figure 5 compares
the reconstruction of images by using just the pre training
weights and the ones obtained after fine tuning. It is evident
that the pre training weights produce noisier reconstructions

Figure 5. Reconstructed depth images. From top row to bottom, colored
images of 5 objects, depth images of the objects, image reconstructed after
the fine tuning stage, image reconstructed after the pre training stage

as compared to the fine tuning. Nevertheless, the shapes of
the objects are clearly visible in the RBM pretraining weights
case, proving there ability to provide good initializations for
the network parameters.

V. CONCLUSION AND FUTURE WORK

In this work, we compared different aspects of auto encoders
and there pre trianing for reducing dimensionality of depth
images. We conclude that the strcuture of the DBN, though
important, does not affect the results significantly as long as a
network with enough layers is selected. This favours the use
of DBN for dimensionality reduction without requiring a very
precise fine tuning of network structure. We also show that
the number iterations used to obtain the pre training weights
using RBM play an important role as it under-fits and over fits
the model. Hence, this parameter should be carefully chosen
for the application at hand. We also demonstrate that the
choice of the error function for back propagation and learning
rate of RBM also affects the DBN parameter calculation
significantly and thus the reconstruction results. Selecting the
correct learning rate is very important to avoid landing in local
minimas. Finally, we perform a qualitative analysis to highlight
the importance of both the RBM pre-trainig and fine tuning
stages.

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul 2006.

[2] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U. D. MontrÃ c©al,
and M. QuÃ c©bec, “Greedy layer-wise training of deep networks,” in
In NIPS. MIT Press, 2007.

[3] G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines vinod nair.”

[4] Y. W. Teh and G. E. Hinton, “Rate-coded restricted boltzmann machines
for face recognition,” 2001.

[5] R. Marc, C. Poultney, S. Chopra, and Y. Lecun, “Efficient learning
of sparse representations with an energy-based model,” in Advances in
Neural Information Processing Systems (NIPS 2006. MIT Press, 2006.

[6] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-
ceedings of the 25th international conference on Machine learning, ser.
ICML ’08, 2008, pp. 1096–1103.

[7] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in ICML,
2011.

[8] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, dec 2010.

[9] R. Goroshin and Y. LeCun, “Saturating auto-encoder,” CoRR, vol.
abs/1301.3577, 2013.

[10] G. Hinton, A. Krizhevsky, and S. Wang, “Transforming auto-encoders,”
in Artificial Neural Networks and Machine Learning ICANN 2011, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011,
vol. 6791, pp. 44–51.

[11] Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature
learning and deep learning: A review and new perspectives,” CoRR,
vol. abs/1206.5538, 2012.

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[13] S. Martin, “http://www.cs.otago.ac.nz/homepages/smartin/software.php.”
[14] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-

view rgb-d object dataset.”

