2009 IEEE International Conference on
Systems, Man, and Cybernetics |
![]() |
Abstract
In this paper, a novel Euclidean position estimation technique using a single uncalibrated camera mounted on a moving platform is developed to asymptotically recover the three-dimensional (3D) Euclidean position of static object features. The position of the moving platform is assumed to be measurable, and a second object with known 3D Euclidean coordinates relative to the world frame is considered to be available a priori. To account for the unknown camera calibration parameters and to estimate the unknown 3D Euclidean coordinates, an adaptive least squares estimation strategy is employed based on prediction error formulations and a Lyapunov-type stability analysis. The developed estimator is shown to recover the 3D Euclidean position of the unknown object features despite the lack of knowledge of the camera calibration parameters. Numerical simulation results along with experimental results are presented to illustrate the effectiveness of the proposed algorithm.